Publication

Guiding Real-world SAT Solving with Dynamic Hypergraph Separator Decomposition

AbstractThe general solution of satisfiability problems is NPComplete. Although state-of-the-art SAT solvers can efficiently obtain the solutions of many real-world instances, there are still a large number of real-world SAT families which cannot be solved in reasonable time. Much effort has been spent to take advantage of the internal structure of SAT instances. Existing decomposition techniques are based on preprocessing the static structure of the original problem. We present a dynamic decomposition method based on hypergraph separators. Integrating the separator decomposition into the variable ordering of a modern SAT solver leads to speedups on large real-world satisfiability problems. Compared with a static decomposition based variable ordering, such as Dtree (Huang and Darwiche, 2003), our approach does not need time to construct the full tree decomposition, which sometimes needs more time than the solving process itself. Our primary focus is to achieve speedups on large real-world satisfiability problems. Our results show that the new solver often outperforms both regular zChaff and zChaff integrated with Dtree decomposition. The dynamic separator decomposition shows promise in that it significantly decreases the number of decisions forsome real-world problems.

Download publication

Related Resources

See what’s new.

Publication

2011

Building Information Modeling and Heritage Documentation

Despite the widespread adoption of building information modeling (BIM)…

Publication

2016

A Quantum of Continuous Simulated Time

In the context of discrete-event simulation, time resolution pertains…

Project

2021

Mesh Processing

Computer representations of geometry are at the core of most problems…

Article

2022

Inside Autodesk Research – Exploring our Research Teams

Learn more about Autodesk Research, including our Industry Futures,…

Get in touch

Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.

Contact us