Publication | ACM Symposium on User Interface Software & Technology 2017
Trigger Action Circuits
Leveraging Generative Design to Enable Novices to Design and Build Circuitry
Abstract
Trigger Action Circuits: Leveraging Generative Design to Enable Novices to Design and Build Circuitry
Fraser Anderson, Tovi Grossman, George Fitzmaurice
ACM Symposium on User Interface Software & Technology 2017
The dramatic decrease in price and increase in availability of hobbyist electronics has led to a wide array of embedded and interactive devices. While electronics have become more widespread, developing and prototyping the required circuitry for these devices is still difficult, requiring knowledge of electronics, components, and programming. In this paper, we present Trigger-Action-Circuits (TAC), an interactive system that leverages generative design to produce circuitry, firmware, and assembly instructions, based on high-level, behavioural descriptions. TAC is able to generate multiple candidate circuits from a behavioural description, giving the user a number of alternative circuits that may be best suited to their use case (e.g., based on cost, component availability or ease of assembly). The generated circuitry uses off-the-shelf, commodity electronics, not specialized hardware components, enabling scalability and extensibility. TAC supports a range of common components and behaviors that are frequently required for prototyping electronic circuits. A user study demonstrated that TAC helps users avoid problems encountered during circuit design and assembly, with users completing their circuits significantly faster than with traditional methods.
Download publicationRelated Resources
2025
From Design and Break to Design and MakeExplore the benefits of designing and manufacturing real parts when…
2025
Paratrouper: Exploratory Creation of Character Cast Visuals Using Generative AIEnables creators to use generative AI to create casts of characters in…
2024
Connect with our Research Connections Series: Scan-to BIMLearn about how the Scan-to-BIM process can help architects…
2022
A force-mediated controller for cooperative object manipulation with independent autonomous robotsWe consider cooperative manipulation by multiple robots assisting a…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us