Publication

Programmable Matter by Folding

AbstractProgrammable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to meet the goal. This paper considers achieving programmable sheets that can form themselves in different shapes autonomously by folding. Past approaches to creating transforming machines have been limited by the small feature sizes, the large number of components, and the associated complexity of communication among the units. We seek to mitigate these difficulties through the unique concept of self-folding origami with universal crease patterns. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. To implement this self-folding origami concept, we have developed a scalable end-to-end planning and fabrication process. Given a set of desired objects, the system computes an optimized design for a single sheet and multiple controllers to achieve each of the desired objects. The material, called programmable matter by folding, is an example of a system capable of achieving multiple shapes for multiple functions.

Download publication

Related Resources

See what’s new.

Publication

2019

Extending Explicitly Modelled Simulation Debugging Environments with Dynamic Structure

The widespread adoption of Modelling and Simulation (M&S) techniques…

Publication

2021

How Tall is that Bar Chart? Virtual Reality, Distance Compression and Visualizations

As VR technology becomes more available, VR applications will be…

Publication

2011

TwitApp: In-product Micro-Blogging for Design Sharing

We describe TwitApp, an enhanced micro-blogging system integrated…

Publication

2016

Automated Extraction of System Structure Knowledge from Text

This paper presents a method to automatically extract structure…

Get in touch

Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.

Contact us