Publication
Effects of Abstraction on Selecting Relevant Biological Phenomena for Biomimetic Design
AbstractThe natural-language approach to identifying biological analogies exploits the existing format of much biological knowledge, beyond databases created for biomimetic design. However, designers may need to select analogies from search results, during which biases may exist toward: specific words in descriptions of biological phenomena, familiar organisms and scales, and strategies that match preconceived solutions. Therefore, we conducted two experiments to study the effect of abstraction on overcoming these biases and selecting biological phenomena based on analogical similarities. Abstraction in our experiments involved replacing biological nouns with hypernyms. The first experiment asked novice designers to choose between a phenomenon suggesting a highly useful strategy for solving a given problem, and another suggesting a less-useful strategy, but featuring bias elements. The second experiment asked novice designers to evaluate the relevance of two biological phenomena that suggest similarly useful strategies to solve a given problem. Neither experiment demonstrated the anticipated benefits of abstraction. Instead, our abstraction led to: (1) participants associating nonabstracted words to design problems and (2) increased difficulty in understanding descriptions of biological phenomena. We recommend investigating other ways to implement abstraction when developing similar tools or techniques that aim to support biomimetic design.PDF
Related Resources
See what’s new.
2023
Autodesk Research Celebrates International Women in Engineering DayIn celebration of International Women in Engineering Day, we talk with…
2014
Sensitivity-optimized Rigging for Example-based Real-time Clothing SynthesisWe present a real time solution for generating detailed clothing…
2005
Multi-level Interaction in Parametric DesignParametric design systems model a design as a constrained collection…
2022
Assemble Them All: Physics-Based Planning for Generalizable Assembly by DisassemblyThis work proposes a novel method to efficiently plan physically…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us