Publication 2024
XLB
A Differentiable Massively Parallel Lattice Boltzmann Library in Python
Abstract
XLB: A Differentiable Massively Parallel Lattice Boltzmann Library in Python
Mohammadmehdi Ataei, Hesam Salehipour
The lattice Boltzmann method (LBM) has emerged as a prominent technique for solving fluid dynamics problems due to its algorithmic potential for computational scalability. We introduce XLB library, a Python-based differentiable LBM library based on the JAX platform. The architecture of XLB is predicated upon ensuring accessibility, extensibility, and computational performance, enabling scaling effectively across CPU, TPU, multi-GPU, and distributed multi-GPU or TPU systems. The library can be readily augmented with novel boundary conditions, collision models, or multi-physics simulation capabilities. XLB’s differentiability and data structure is compatible with the extensive JAX-based machine learning ecosystem, enabling it to address physics-based machine learning, optimization, and inverse problems. XLB has been successfully scaled to handle simulations with billions of cells, achieving giga-scale lattice updates per second.
XLB is released under the permissive Apache-2.0 license and is available on GitHub.
Download publicationRelated Resources
2025
Connect with our Research Connections: How Disability can drive Design and InnovationLearn about designing empathy tools for people living with…
2024
StoryVerse: Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative PlanningExploring how to build interactive narratives based on Large Language…
2021
Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based LiquidsIn this research, we introduce a data-driven approach to increase the…
2023
Algorithms for Voxel-based Architectural Space AnalysisThis approach provides a simple and robust way to compute…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us