Publication | International Conference on Machine Learning 2014
Wasserstein propagation for semi-supervised learning
Abstract
Wasserstein propagation for semi-supervised learning
J. Solomon, R. Rustamov, L. Guibas, Adrian Butscher
International Conference on Machine Learning 2014
Probability distributions and histograms are natural representations for product ratings, traffic measurements, and other data considered in many machine learning applications. Thus, this paper introduces a technique for graph-based semi-supervised learning of histograms, derived from the theory of optimal transportation. Our method has several properties making it suitable for this application; in particular, its behavior can be characterized by the moments and shapes of the histograms at the labeled nodes. In addition, it can be used for histograms on non-standard domains like circles, revealing a strategy for manifold-valued semi-supervised learning. We also extend this technique to related problems such as smoothing distributions on graph nodes.
Download publicationAssociated Autodesk Researchers
Justin Solomon
Stanford University
Raif Rustamov
Stanford University
Leonidas Guibas
Stanford University
Related Resources
2003
Real-Time Fluid Dynamics for GamesIn this paper we present a simple and rapid implementation of a fluid…
2010
MouseLight: Bimanual interactions on digital paper using a pen and a spatially-aware mobile projectorMouseLight is a standalone mobile projector with the form factor of a…
2013
Development of Discrete Event System Specification (DEVS) Building Performance Models for Building Energy DesignThe discrete event system specification (DEVS) is a formalism for…
2000
Interaction and Outeraction: Instant Messaging in ActionWe discuss findings from an ethnographic study of instant messaging…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us