Publication | IEEE International Conference on Computer Vision (ICCV) 2019
Unsupervised Multi-Task Feature Learning on Point Clouds
3D point clouds are used in AEC applications such as Scan2BIM and also are compact representations of complex 3D models such as models used in manufacturing. Annotating point clouds is a labor-intensive and time-consuming task that is required to accurately classify or segment them. To address this, we introduce a unsupervised multi-task approach to learn high level features which in turn minimizes the need for labels. This can help to automatically segments objects to their parts or cluster 3D models. Specifically, automatic segmentation of 3D models to their constituent parts can help to automatically expand “Design Graph.”
Download publicationAbstract
Unsupervised Multi-Task Feature Learning on Point Clouds
Kaveh Hassani, Mike Haley
IEEE International Conference on Computer Vision (ICCV) 2019
We introduce an unsupervised multi-task model to jointly learn point and shape features on point clouds. We define three unsupervised tasks including clustering, reconstruction, and self-supervised classification to train a multi-scale graph-based encoder. We evaluate our model on shape classification and segmentation benchmarks. The results suggest that it outperforms prior state-of-the-art unsupervised models: In the ModelNet40 classification task, it achieves an accuracy of 89.1% and in ShapeNet segmentation task, it achieves an mIoU of 68.2 and accuracy of 88.6%.
Related Resources
2025
A Scalable Attention-Based Approach for Image-to-3D Texture MappingA fast transformer-based method that generates 3D textures from a…
2024
What’s in this LCA Report? A Case Study on Harnessing Large Language Models to Support Designers in Understanding Life Cycle ReportsExploring how large language models like ChatGPT can help designers…
2023
Amortizing Pragmatic Program Synthesis with RankingsA novel method of amortizing the RSA algorithm by leveraging a global…
2024
HG-CAD: Hierarchical Graph Learning for Material Prediction and Recommendation in Computer-Aided DesignThis work presents a new Machine Learning architecture to support…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us