Publication | International Conference on Machine Learning and Applications 2022
SimCURL
Simple Contrastive User Representation Learning from Command Sequences
This paper is an effort towards user modeling based on the raw command sequences of Fusion360. Proper encoding of commands are crucial for better understanding user behavior and making intelligent software. In SimCURL we proposed a method for learning representations of these command sequences.
Download publicationAbstract
SimCURL: Simple Contrastive User Representation Learning from Command Sequences
Hang Chu, Amir Khasahmadi, Karl D.D. Willis, Fraser Anderson, Yaoli Mao, Linh Tran, Justin Matejka, Jo Vermeulen
International Conference on Machine Learning and Applications 2022
User modeling is crucial to understanding user behavior and essential for improving user experience and personalized recommendations. When users interact with software, vast amounts of command sequences are generated through logging and analytics systems. These command sequences contain clues to the users’ goals and intents. However, these data modalities are highly unstructured and unlabeled, making it difficult for standard predictive systems to learn from. We propose SimCURL, a simple yet effective contrastive self-supervised deep learning framework that learns user representation from unlabeled command sequences. Our method introduces a user-session network architecture, as well as session dropout as a novel way of data augmentation. We train and evaluate our method on a real-world command sequence dataset of more than half a billion commands. Our method shows significant improvement over existing methods when the learned representation is transferred to downstream tasks such as experience and expertise classification.
Related Resources
2024
HG-CAD: Hierarchical Graph Learning for Material Prediction and Recommendation in Computer-Aided DesignThis work presents a new Machine Learning architecture to support…
2021
A Learning Approach to Robot-Agnostic Force-Guided High Precision AssemblyIn this work we propose a learning approach to high-precision robotic…
2022
SkexGen: Autoregressive Generation of CAD Construction Sequences with Disentangled CodebooksWe present SkexGen, a novel autoregressive generative model for…
2022
CAPRI-Net: Learning Compact CAD Shapes with Adaptive Primitive AssemblyWe introduce CAPRI-Net, a self-supervised neural net-work for learning…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us