Publication | Conference on Neural Information Processing Systems 2022
MaskTune
Mitigating Spurious Correlations by Forcing to Explore
Activation visualizations of ERM (middle) and MaskTune (right) for Waterbirds samples, in which MaskTune enforces exploring new features. After applying MaskTune, the task-relevant input signals (bird features) are emphasized.
Learning the right features during training is a significant challenge for deep neural networks (DNNs). DNNs might instead pick up spurious features. This work investigates a novel solution to this problem.
Code for MaskTune is available at https://github.com/aliasgharkhani/Masktune.
DownloadAbstract
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
Saeid Asgari, Aliasghar Khani, Fereshte Khani, Ali Gholami, Linh Tran, Ali Mahdavi-Amiri, Ghassan Hamarneh
Conference on Neural Information Processing Systems 2022
A fundamental challenge of over-parameterized deep learning models is learning meaningful data representations that yield good performance on a downstream task without over-fitting spurious input features. This work proposes MaskTune, a masking strategy that prevents over-reliance on spurious (or a limited number of) features. MaskTune forces the trained model to explore new features during a single epoch finetuning by masking previously discovered features. MaskTune, unlike earlier approaches for mitigating shortcut learning, does not require any supervision, such as annotating spurious features or labels for subgroup samples in a dataset. Our empirical results on biased MNIST, CelebA, Waterbirds, and ImagenNet-9L datasets show that MaskTune is effective on tasks that often suffer from the existence of spurious correlations. Finally, we show that \method{} outperforms or achieves similar performance to the competing methods when applied to the selective classification (classification with rejection option) task.
Associated Researchers
Saeid Asgari
Former Autodesk
Fereshte Khani
Stanford University
Linh Tran
Autodesk AI Lab
Ghassan Hamarneh
School of Computing Science, Simon Fraser University
Ali Mahdavi-Amiri
School of Computing Science, Simon Fraser University
Related Resources
2025
Fabrica: Dual-Arm Assembly of General Multi-Part Objects via Integrated Planning and LearningIntroduces a dual-arm robotic system capable of end-to-end planning…
2024
Reduced-order modeling of unsteady fluid flow using neural network ensemblesA framework to enhance the accuracy of time-series predictions in…
2023
CAD-LLM: Large Language Model for CAD GenerationThis research presents generating Computer Aided Designs (CAD) using…
2022
CAPRI-Net: Learning Compact CAD Shapes with Adaptive Primitive AssemblyWe introduce CAPRI-Net, a self-supervised neural net-work for learning…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us