Publication

Learned Visual Features to Textual Explanations

TExplain projects learned visual representations of a frozen image classifier onto a space that an independently trained language model can interpret. Using a large number of generated sentence samples along with the visual representation, TExplain produces a word cloud for each visual representation. Blue and green refers to frozen and trainable parameters, respectively. The category of the feature representation is highlighted in red, while other captured features are shown in gray. The font size of each word indicates the strength of its corresponding feature.

Abstract

Learned Visual Features to Textual Explanations

Saeid Asgari Taghanaki, Aliasghar Khani, Amir Khasahmadi, Aditya Sanghi, Karl D.D. Willis, Ali Mahdavi-Amiri

Interpreting the learned features of vision models has posed a longstanding challenge in the field of machine learning. To address this issue, we propose a novel method that leverages the capabilities of large language models (LLMs) to interpret the learned features of pre-trained image classifiers. Our method, called TExplain, tackles this task by training a neural network to establish a connection between the feature space of image classifiers and LLMs. Then, during inference, our approach generates a vast number of sentences to explain the features learned by the classifier for a given image. These sentences are then used to extract the most frequent words, providing a comprehensive understanding of the learned features and patterns within the classifier. Our method, for the first time, utilizes these frequent words corresponding to a visual representation to provide insights into the decision-making process of the independently trained classifier, enabling the detection of spurious correlations, biases, and a deeper comprehension of its behavior. To validate the effectiveness of our approach, we conduct experiments on diverse datasets, including ImageNet-9L and Waterbirds. The results demonstrate the potential of our method to enhance the interpretability and robustness of image classifiers.

Download publication

Associated Researchers

Aliasghar Khani

School of Computing Science, Simon Fraser University

Ali Mahdavi-Amiri

School of Computing Science, Simon Fraser University

View all researchers

Related Resources

Publication

2024

TimeTunnel Live: Recording and Editing Character Motion in Virtual Reality

An animation authoring interface for recording and editing motion in…

Publication

2022

Evolving Through the Looking Glass: Learning Improved Search Spaces with Variational Autoencoders.

Nature has spent billions of years perfecting our genetic…

Project

2022

Systems Design and Simulation

Predictive models of complex systems will require a more scalable,…

Project

2009

Large Displays

Exploring design solutions to the unique interaction challenges which…

Get in touch

Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.

Contact us