Publication
Guiding Real-world SAT Solving with Dynamic Hypergraph Separator Decomposition
AbstractThe general solution of satisfiability problems is NPComplete. Although state-of-the-art SAT solvers can efficiently obtain the solutions of many real-world instances, there are still a large number of real-world SAT families which cannot be solved in reasonable time. Much effort has been spent to take advantage of the internal structure of SAT instances. Existing decomposition techniques are based on preprocessing the static structure of the original problem. We present a dynamic decomposition method based on hypergraph separators. Integrating the separator decomposition into the variable ordering of a modern SAT solver leads to speedups on large real-world satisfiability problems. Compared with a static decomposition based variable ordering, such as Dtree (Huang and Darwiche, 2003), our approach does not need time to construct the full tree decomposition, which sometimes needs more time than the solving process itself. Our primary focus is to achieve speedups on large real-world satisfiability problems. Our results show that the new solver often outperforms both regular zChaff and zChaff integrated with Dtree decomposition. The dynamic separator decomposition shows promise in that it significantly decreases the number of decisions forsome real-world problems.
Download publicationRelated Resources
See what’s new.
2024
Kaizen Aerospace Collaboration Yields Modular Testbeds for Performance-Aided DesignLearn how Autodesk Research and Kaizen Aerospace are exploring…
2024
2024 Forecasts: Autodesk Researchers Weigh InWe’re sharing thoughts from some members of the Research team on…
2013
Design Tools for the Rest of Us: Maker Hardware Requires Maker SoftwareIn our own work, we are developing and applying a system which…
2003
The Effects of Posture on Forearm Muscle Loading During GrippingThe purpose of this study was to quantify the response of the forearm…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us