Publication
Dirichlet energy for analysis and synthesis of soft maps
Abstract
Soft maps taking points on one surface to probability distributions on another are attractive for representing surface mappings in the presence of symmetry, ambiguity, and combinatorial complexity. Few techniques, however, are available to measure their continuity and other properties. To this end, we introduce a novel Dirichlet energy for soft maps generalizing the classical map Dirichlet energy, which measures distortion by computing how soft maps transport probabilistic mass from one distribution to another. We formulate the computation of the Dirichlet energy in terms of a differential equation and provide a finite elements discretization that enables all of the quantities introduced to be computed efficiently. We demonstrate the effectiveness of our framework for understanding soft maps arising from various sources. Furthermore, we suggest how these energies can be applied to generate continuous soft or point-to-point maps.
Download publicationRelated Resources
See what’s new.
2013
TutorialPlan: Automated Tutorial Generation from CAD DrawingsAuthoring tutorials for complex software applications is a time…
1997
The Rockin’Mouse: Integral 3D manipulation on a planeA novel input device called the Rockin’Mouse is described and…
2019
Towards an Ontology for Generative Design of Mechanical AssembliesIn software-based generative design, a user specifies goals expressed…
2023
Research Conversations with Vivian LiuA former Autodesk Research intern shares her experiences and reflects…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us