Publication
Automatic Extraction of Causally Related Functions from Natural-Language Text for Biomimetic Design
AbstractIdentifying relevant analogies from biology is a significant challenge in biomimetic design. Our natural-language approach addresses this challenge by developing techniques to search biological information in natural-language format, such as books or papers. This paper presents the application of natural-language processing techniques, such as part-of-speech tags, typed-dependency parsing, and syntactic patterns, to automatically extract and categorize causally related functions from text with biological information. Causally related functions, which specify how one action is enabled by another action, are considered important for both knowledge representation used to model biological information and analogical transfer of biological information performed by designers. An extraction algorithm was developed and scored F-measures of 0.78–0.85 in an initial development test. Because this research approach uses inexpensive and domain-independent techniques, the extraction algorithm has the potential to automatically identify patterns of causally related functions from a large amount of text that contains either biological or design information.
Download publicationRelated Resources
See what’s new.
2015
Your Paper is Dead! Bringing Life to Research Articles with Animated FiguresThe dissemination of scientific knowledge has evolved over the…
2013
Net Promoter Scores and the Value of a Good User ExperienceAt Autodesk we’ve been using the Net Promoter method to analyze user…
2001
A Simple Fluid Solver based on the FFTThis paper presents a very simple implementation of a fluid solver…
2013
Swifter: Improved Online Video ScrubbingOnline streaming video systems have become extremely popular, yet…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us