Publication
An Illumination Model For a Skin Layer Bounded by Rough Surfaces
AbstractIn this paper we present a novel illumination model that takes into account multiple anisotropic scattering in a layer bounded by two rough surfaces. We compute the model by a discrete-ordinate solution of the equation of radiative transfer. This approach is orders of magnitude faster than a Monte Carlo simulation and does not suffer from any noisy artifacts. By fitting low order splines to our results we are able to build analytical shaders. This is highly desirable since animators typically want to texture map the parameters of such a shader for higher realism. We apply our model to the important problem of rendering human skin. Our model does not seem to have appeared before in the optics literature. Most previous models did not handle rough surfaces at the skin’s boundary. Also we introduce a simple analytical bidirectional transmittance distribution function (BTDF) for an isotropic rough surface by generalizing the Cook-Torrance model.
Download publicationRelated Resources
See what’s new.
2024
Handcrafting Non-uniform Grid Refinement for Modern GPUsLearn about a new methodology that carefully orchestrates the parallel…
2022
SimCURL: Simple Contrastive User Representation Learning from Command SequencesUser modeling is crucial to understanding user behavior and essential…
2007
Statistics of Infrared ImagesThe proliferation of low-cost infrared cameras gives us a new angle…
2019
GAMMA: Space Exploration LanderExploring new approaches to design and manufacturing processes for…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us