Publication | International Conference on Machine Learning 2022
SkexGen
Autoregressive Generation of CAD Construction Sequences with Disentangled Codebooks
This Autodesk Research paper describes a new approach to generation of solid CAD models that enhances user control and enables efficient exploration of the design space.
Download publicationAbstract
SkexGen: Autoregressive Generation of CAD Construction Sequences with Disentangled Codebooks
Xiang Xu, Karl D.D. Willis, Joseph G. Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, Yasutaka Furukawa
International Conference on Machine Learning 2022
We present SkexGen, a novel autoregressive generative model for computer-aided design (CAD) construction sequences containing sketch-and-extrude modeling operations. Our model utilizes distinct Transformer architectures to encode topological, geometric, and extrusion variations of construction sequences into disentangled codebooks. Autoregressive Transformer decoders generate CAD construction sequences sharing certain properties specified by the codebook vectors. Extensive experiments demonstrate that our disentangled codebook representation generates diverse and high-quality CAD models, enhances user control, and enables efficient exploration of the design space.
Associated Researchers
Chin-Yi Cheng
Autodesk Research
Yasutaka Furukawa
Simon Fraser University
Related Resources
2025
RECALL-MM: A Multimodal Dataset of Consumer Product Recalls for Risk Analysis using Computational Methods and Large Language ModelsNew multi-modal design dataset contains historical information about…
2023
Extracting Design Knowledge from Optimization Data: Enhancing Engineering Design in Fluid Based Thermal Management SystemsExtracting knowledge from optimization data in multi-split thermal…
2023
BOP-Elites: A Bayesian Optimisation Approach to Quality Diversity Search with Black-Box descriptor functionsAn algorithm that efficiently tackles expensive black-box optimization…
2023
What’s In A Name? Evaluating Assembly-Part Semantic Knowledge in Language Models through User-Provided Names in CAD FilesThe natural language names designers use in CAD software are a…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us