Conference on Robot Learning (CoRL)

GraspFactory: A Large Object-Centric Grasping Dataset

Robotic grasping is a crucial task in industrial automation, where robots are increasingly expected to handle a wide range of objects. However, a significant challenge arises when robot grasping models trained on limited datasets encounter novel objects. In real-world environments such as warehouses or manufacturing plants, the diversity of objects can be vast, and grasping models need to generalize to this diversity. Training large, generalizable robot-grasping models requires geometrically diverse datasets. In this paper, we introduce GraspFactory, a dataset containing over 109 million 6-DoF grasps collectively for the Franka Panda (with 14,690 objects) and Robotiq 2F-85 grippers (with 33,710 objects). GraspFactory is designed for training data-intensive models, and we demonstrate the generalization capabilities of one such model trained on a subset of GraspFactory in both simulated and real-world settings. The dataset and tools are made available for download at https://graspfactory.github.io/.

Download publication

Related Publications

Get in touch

Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.

Contact us