Publication
A Simulation Analysis of the Combined Effects of Muscle Strength and Surgical Tensioning on Lateral Pinch Force Following Brachioradialis to Flexor Pollicis Longus Transfer
AbstractBiomechanical simulations of tendon transfers performed following tetraplegia suggest that surgical tensioning influences clinical outcomes. However, previous studies have focused on the biomechanical properties of only the transferred muscle. We developed simulations of the tetraplegic upper limb following transfer of the brachioradialis (BR) to the flexor pollicis longus (FPL) to examine the influence of residual upper limb strength on predictions of post-operative transferred muscle function. Our simulations included the transfer, ECRB, ECRL, the three heads of the triceps, brachialis, and both heads of the biceps. Simulations were integrated with experimental data, including EMG and joint posture data collected from five individuals with tetraplegia and BR-FPL tendon transfers during maximal lateral pinch force exertions. Given a measured co-activation pattern for the non-paralyzed muscles in the tetraplegic upper limb, we computed the highest activation for the transferred BR for which neither the elbow nor the wrist flexor moment was larger than the respective joint extensor moment. In this context, the effects of surgical tensioning were evaluated by comparing the resulting pinch force produced at different muscle strength levels, including patient-specific scaling. Our simulations suggest that extensor muscle weakness in the tetraplegic limb limits the potential to augment total pinch force through surgical tensioning. Incorporating patient-specific muscle volume, EMG activity, joint posture, and strength measurements generated simulation results that were comparable to experimental results. Our study suggests that scaling models to the population of interest facilitates accurate simulation of post-operative outcomes, and carries utility for guiding and developing rehabilitation training protocols.
Download publicationRelated Resources
See what’s new.
2014
Parameters Tell the Design Story: Ideation and Abstraction in Design OptimizationWe report qualitative findings from interviews and observations…
2010
Making Shapes from Modules by MagnificationWe present a distributed algorithm for creating a modular shape by…
1999
The Hotbox: efficient access to a large number of menu-itemsThe proliferation of multiple toolbars and UI widgets around the…
2023
Why is applying Artificial Intelligence in Construction so difficult?While applying AI in construction can be challenging, Kasia Borowska…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us