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Abstract. Volumetric data structures typically prioritize data locality,
focusing on efficient memory access patterns. This singular focus can ne-
glect other critical performance factors, such as occupancy, communica-
tion, and kernel fusion. We introduce a novel disaggregated design that re-
balances trade-offs between locality and these objectives—reducing com-
munication overhead on distributed memory architectures, mitigating
register pressure in complex boundary conditions, and enabling kernel
fusion. We provide a thorough analysis of its benefits on a single-node
multi-GPU Lattice Boltzmann Method (LBM) solver. Our evaluation
spans dense, block-sparse, and multi-resolution discretizations, demon-
strating our design’s flexibility and efficiency. Leveraging this approach,
we achieve up to a 3x speedup over state-of-the-art solutions.
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1 Introduction

Since the 2000s, the memory wall [23, 1] has underscored the critical importance
of data locality optimizations in computational tasks. This challenge is especially
acute in memory-bound volumetric physics simulations, prompting research into
strategies such as blocking [4], time-tiling [22], polyhedral optimizations [2], and
cache-oblivious methods [5].

Although GPUs provide high memory bandwidth, achieving peak perfor-
mance also requires addressing occupancy, load balancing, synchronization over-
head, and data movement. Traditionally, volumetric data structures are designed
to improve data locality first, with other optimizations (e.g., overlapping compu-
tation and communication [16], time skewing [22], kernel fusion [20], tiling [19])
introduced afterward. Because these methods are not considered during data
structure design, significant performance opportunities are lost. We argue that
additional objectives should be incorporated into volumetric data structure de-
sign. While data locality remains essential, selectively compromising it can im-
prove end-to-end performance by addressing other goals.

In this paper, we propose disaggregated design for volumetric data structures,
which balances multiple performance objectives by:


https://arxiv.org/abs/2503.07898v2

2 Meneghin and Mahmoud

1. Grouping voxels based on desired properties: Rather than relying
solely on spatial locality, we cluster voxels according to the traits most rele-
vant for performance.

2. Applying traditional data locality optimizations within each group:
Within these groups, we still exploit locality as appropriate while addressing
other performance targets.

We evaluate our disaggregated approach on a LBM fluid solver running on
single- and multi-GPU systems, achieving:

— A zero-copy multi-GPU implementation that overlaps computation and com-
munication for dense discretizations, minimizing transfer overhead and
delivering up to a 3x speedup over state-of-the-art solutions.

— A disaggregated interface and layout for block-sparse data structures that
reduce high register pressure in complex boundary conditions (e.g., regu-
larized LBM [10]), achieving up to a 2x speedup over naive implementations
without extra boundary-data storage.

— A multi-resolution grid representation that maximizes kernel fusion in
regions unaffected by neighboring cells of different sizes, yielding up to a
26% performance improvement on a single GPU.

In Section 2, we formalize the disaggregated design methodology. Sections 3,
4, and 5 apply this approach to dense, sparse, and multi-resolution volumetric
grids, respectively. Section 6 presents our evaluation using LBM solvers across
multiple GPU architectures. We discuss related work in Section 7 and conclude
in Section 8.

2 Disaggregated Design Method

Voxel-based representations, derived from Cartesian discretization, include dense
(every voxel in a multidimensional interval is allocated), sparse (an irregular
subset of the interval), and multi-resolution (voxels of different sizes in a sin-
gle interval). Traditional design efforts have focused on data locality to reduce
the growing gap between compute speed and memory latency. However, other
performance-critical optimizations—e.g., minimizing communication overhead,
reducing register pressure, and maximizing kernel fusion—are equally important.
To address these, we introduce disaggregated design, a multi-objective method
for volumetric data structures defined as follows:

Definition 1. Given an optimization objective @ to be considered alongside data
locality, a disaggregated design maps data over a vozelized domain into a 1D
memory space in four steps:

1. Definition: Identify properties P1,...,Pn influencing P.

2. Classification: Group vozels Gy, ...,G, based on those properties.

8. Mapping: Within each group G;, map vozel data to memory using classical
data-locality optimizations.
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Fig. 1: Illustration of a five-point stencil on a two-component vector field in a 2D
domain with partitioning along one axis (a) and three different memory layouts

(b,c,d).

4. Operations: Apply group-specific operations to mazimize P.

By incorporating objectives beyond locality (definition), grouping voxels
accordingly (classification), and then applying classical optimizations locally
(mapping), we enable targeted operations that yield higher end-to-end perfor-
mance. Success depends on whether gains from optimizing ®; outweigh potential
drawbacks, e.g., sub-optimal locality since locality may suffer if inter-group op-
timizations are underutilized or increased complexity since additional indexing
is needed for separate groups.

We study disaggregated design within a for-each data-parallel pattern ap-
plying a side-effect-free function to each voxel. Under this model, we consider
three compute patterns: (1) Map Pattern where each voxel depends only on local
data, (2) Uniform Stencil Pattern where each voxel queries its neighbors (e.g.,
convolution), and (3) Multi-resolution Stencil Pattern where varying voxel sizes
require neighbor access at different resolutions.

In the following, we apply disaggregated design to dense (Section 3), sparse
(Section 4), and multi-resolution representations (Section 5). We then detail its
performance impact on a fluid simulation solver in Section 6.

3 Disaggregation on a Dense Domain

In this setup, a dense grid is divided across multiple GPUs, each handling one
partition. In stencil computations that require neighbor data, fetching data di-
rectly from neighboring GPUs each iteration is highly inefficient due to com-
munication overhead. To mitigate this, each partition maintains a halo region
(Figure la). Synchronizing these halos (the halo update [16]) can significantly
add to execution time if performed before every stencil step. Overlapping Compu-
tation and Communication (OCC) addresses this by dividing the stencil update
into two phases. First, private voxels (relying only on local data) are processed
while the halo is updated in parallel. Then, shared voxels (requiring neighbor
data) are computed. This hides communication costs and improves scalability
on multi-GPU systems.

We adopt a communication model [3] with a constant setup time, tsetyp, plus
a term proportional to message size (size(msg)) and the interconnect through-
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put, beom, such that tsenq(msg) = tserup + w. If exchanged data resides in
disjoint memory regions, multiple transfers are required.

We consider a 2D stencil on a vector field, where each point stores a 2D
vector. Two common layouts are Array-of-Structures (AoS) and Structure-of-
Arrays (SoA). SoA typically yields better coalesced GPU memory access [21].
For a grid of size d, x d,, partitioned along one dimension (Figure la), the
halo-update time for a generic partition can be approximated as:

size(T)

bcom (1)

where « is the number of transfer operations, and 8 the total number of
elements sent. With a 1D decomposition, o > 2 (upper and lower neighbors),
and 8 =2 - d, for shared boundary elements.

Using AoS (Figure 1b) keeps shared-voxel

thalo_update = atsetup +

data contiguous, minimizing « to 2, but it |l B Coalesced
breaks coalesced GPU access [21]. Conversely, AoS|2 2-d, No
SoA (Figure 1c) preserves coalesced accesses SoAl|4 2-d, Yes

but splits data, increasing a to 4. This in- Disag SoA|2 2-d, Yes
crease occurs because the 2D components are
stored non-contiguously in memory, as illus- Table 1: Comparison of disag-
trated by the four distinct regions in Fig- gregated, AoS, and SoA layouts
ure lc. To reduce the number of communi- for a five-point stencil using the
cation operations, the data would need to be model in Eq. 1. The 2D domain
copied into a contiguous buffer. has dimensions d, x dy, with a

To reduce o while retaining coalesced ac- 1D partition along the y-axis.
cesses, we apply disaggregated design. We define P; and Ps to enforce contiguous
mapping for voxels shared with the upper (G;) and lower (G2) neighbors, while
remaining private voxels form G3 (Figure 1d). We then map each group in SoA
format, preserving P; and Ps.

Table 1 compares these layouts, showing that the disaggregated SoA merges
the benefits of AoS (minimal transfers) with SoA’s coalesced memory access.

4 Disaggregation on a Sparse Domain

When the region of interest in a simulation domain is significantly smaller than
the full domain, dense representations become inefficient. In these scenarios,
sparse representations are preferred, allocating data only for actively used vox-
els and thus conserving memory and compute resources. A common use case
in sparse domains involves handling boundary conditions in physics solvers,
where computations on each voxel may vary based on its boundary type. For
instance, in computational fluid dynamics, no-slip conditions are enforced on
boundary voxels at walls, whereas interior (non-boundary) voxels typically fol-
low the Navier—Stokes equations.

The ratio of boundary to total voxels is often small, as boundaries generally
scale with surface area rather than volume. Here, we assume a block-sparse
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‘# Kernels # Blocks # Registers Storage Indexing

Naive ‘ 1 ny + Nnb T SwNnbbsize Direct
. . ny +n r .
Disag - Bitmask 2 b b b $i(np + Nnp )bsize  Indirect
ny + Nnb Tnb
Disag - Mem 2 "t " 0 Direct
Nnb T'nb

Table 2: Comparison of the disaggregated design vs. a naive approach for a map
pattern involving complex boundary conditions in a block-sparse representation.
# Kernels is the number of kernels launched; # Blocks is the number of blocks
per kernel; # Registers is the register usage; Storage quantifies additional space
needed for boundary metadata (s,, is the memory size per boundary voxel, bsjze
is the number of voxels in a block, and s; is the size of the indexing type).

representation (commonly managed by space-filling curves) though other layouts
are possible. The computational load on boundary voxels varies based on their
type, introducing a few challenges for efficient GPU implementations:

— Register pressure: Additional registers may be needed for boundary com-
putations, decreasing kernel occupancy.

— Memory overhead: Managing boundary conditions often requires per-
voxel metadata, increasing memory requirements.

Let r,p be the resource needs for non-boundary computations and ry, for
boundary computations. We focus on the practical case 1, > ru,, which can
degrade performance by reducing occupancy and increasing memory usage.

Naive Approach A naive solution launches a single kernel for all voxels. Be-
cause boundary logic is included, the kernel’s resource demand is 7 = max(ryp, ) =
7. Even though most voxels only need r,, the kernel is constrained by ry,. This
often leads to suboptimal occupancy and high memory usage, i.e., allocating a
full buffer for all voxels, even though only some are boundary voxels.

Disaggregated Approach Sparse domains typically exhibit heterogeneous
workloads, with boundary voxels requiring significantly more resources. The dis-
aggregated design alleviates this by separating the domain into two groups:

— Boundary Group (Gp): Blocks containing at least one boundary voxel.
— Non-Boundary Group (G, ): Blocks with only non-boundary voxels.

This separation allows two specialized kernels, each optimized for its target
group. Next, we consider two implementations of this concept:

Memory-Based Grouping: All boundary blocks are contiguous in memory, fol-
lowed by non-boundary blocks. Each group is processed by a separate kernel,
removing the need for runtime checks on block type and simplifying memory
access.
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Fig.2: A multi-resolution domain with three levels (a) where red blocks lie near
resolution transitions, and green blocks are farther away. The computational
graph (b) shows dependencies between two kernels: both run on red and green
blocks, but kernel B waits for cross-level boundary data. Fusing kernels is tradi-
tionally feasible only at the finest resolution level. In the disaggregated approach
(c), green blocks fuse computations at any level, while red blocks execute two
kernels sequentially once boundary data is available, reducing iteration time.

Bitmask-Based Grouping: In this implementation, we use a bitmask at runtime
to distinguish block types. Since the spans of the two groups are no longer
contiguous, both kernels must execute over the entire domain. Memory for
boundary-specific data is allocated using indirect indexing, where a unique iden-
tifier is assigned to each voxel. This identifier maps boundary voxels to their
metadata, which is stored in a contiguous buffer.

Table 2 summarizes these approaches. We examine the performance results
and trade-offs of these two implementations in Section 6.2.

5 Disaggregation on a Multi-resolution Domain

Multi-resolution data structures handle voxels of varying sizes in one domain
(Figure 2), supporting both intra-level stencil operations (within a single reso-
lution) and cross-level interactions (between adjacent resolutions).

During each time step in multi-resolution solvers [9], only voxels near resolu-
tion boundaries require cross-level communication. Figure 2 distinguishes green
(intra-level only) from red (cross-level) voxels. Due to producer/consumer de-
pendencies, iterations are typically split into two steps and can be fused only at
the finest level (Figure 2b).

Using the disaggregated design, we improve memory throughput by maximiz-
ing kernel fusion for intra-level computations. Voxels far from resolution jumps
do not need cross-level data, so their iterations can fuse at any resolution level.
To formalize this, we define a discrete distance property, P4, measuring how close
a voxel is to a resolution jump (distance 0 indicates immediate proximity). Each
resolution level is partitioned into: (1) G;: Blocks where all voxels have distance
> 1, allowing fully fused operations, and (2) G.: Blocks with at least one voxel
at distance 0, requiring separate cross-level and intra-level steps.

We apply a standard memory locality layout to each group within each level.
Under disaggregation, G; blocks use fused kernels across resolution levels, whereas
G. blocks wait for boundary data (Figure 2¢). This approach minimizes memory
pressure for G; while preserving accurate cross-level operations for G..
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Fig.3: (a) 1D-partitioned LBM grid: white arrows show local dependencies, and
red/blue arrows show dependencies from upper/lower partitions. (¢) Computa-
tion graph with OCC in the reference implementation. (b,d) SoA and disag-
gregated SoA layouts for a D2Q9 lattice in 2D, with black arrows indicating
memory mapping.

6 Evaluation and Discussions

We evaluate the disaggregated design method using a fluid dynamics simulation
based on LBM on dense, sparse, and multi-resolution grids. We selected LBM as
a representative application since it could benefit from many of the objectives
our design method targets. LBM models the time evolution of wvelocity distri-
bution functions (f;) along discrete lattice directions e; = (e1,...,eq). In 3D,
we use lattices with 19 (D3Q19) or 27 (D3Q27) directions. Each f; value, or
population, evolves through a collide-and-stream process. Collision is a nonlin-
ear, local operation that modifies f; at each lattice point. Here, we employ the
BGK single-relaxation-time model for the collision [8]. Streaming is a non-local
advection of f; values along each of the @) discrete directions via a stencil.

In optimized GPU LBM implementations, collision, streaming, and boundary
conditions are often fused into a single kernel [6]. We use the work of Meneghin
et al. [16] as our baseline since they achieve state-of-the-art results on single-
and multi-GPU.

6.1 Improving LBM Scalability

We evaluate our disaggregated design on a lid-driven cavity flow problem [12]
within a cubic domain, using LBM and a dense voxel representation on single-
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node multi-GPU systems. We analyze both a theoretical communication model
(Section 3) and runtime performance.

Reference Implementation In single-node multi-GPU systems, inter-GPU
communication can occur via PCI or faster interconnects like NVLink. Here,
we use native cudaMemcpyPeer for best performance [7]. Because these systems
typically house up to 8-16 GPUs, we use a 1D partitioning scheme [7], giving
each partition at most two neighbors (upper and lower) and enabling efficient
zero-copy memory transfers.

Figure 3a shows LBM data dependencies with green private voxels (computed
locally) and red shared voxels (requiring data from an adjacent partition). At the
lattice granularity, some populations remain local (white or gray), while others
must be exchanged (red or blue). Only certain populations of each shared voxel
are transferred, which is a defining feature of the LBM streaming operation.

Efficient OCC is critical for achieving fine-grain scalability in LBM [16]. Fig-
ure 3c show the computation graph where private-voxel computation is over-
lapped with halo exchanges for shared voxels, hiding latency and improving
performance. This OCC-based implementation is our baseline reference.

Modeling Communication Overhead The parameters « and § from Eq. 1
vary with LBM lattice and data layout (Table 3). Under AoS, all populations in a
voxel are contiguous, yielding o = 2 transfers (one for each neighbor), but forcing
B to include unneeded populations. Conversely, in SoA (Figure 3b), populations
are contiguous per direction, increasing a but minimizing 8. Table 3 shows that
AoS has a smaller a but higher £, while SoA has the opposite trade-off.

Disaggregated Optimization We

, D2Q9|D3Q19|D3Q27
now extend the disaggregated layout a Bla B8 la 8

introduced for stencil operations on

a vector-valued field to fully support AoS|2 18s|2 38s |2 b54s
zero-copy communication by includ- SoA |6 6s |10 10s |18 18s

ing halo regions. These halos enable Disag SoA[2 6s |2 10s |2 18s

direct data sharing without additional
staging buffers. Concretely, we define
distinct properties to ensure contigu-
ous mappings for each critical region:
upper halos, upper boundary voxels, lower boundary voxels, and lower halos.
As with our original design, each of these groups is mapped using an SoA lay-
out. Figure 3d shows both how the domain is split into groups and how these
groups are placed in memory. In this arrangement, any data that needs to be
transferred or received resides contiguously—the solid-colored (red or blue) pop-
ulations in Figure 3d. This means each group’s data is placed in a continuous
block, allowing for a minimal number of bulk transfers. In the D2Q9 example,
this disaggregated SoA configuration results in an « value of 2, so each partition

Table 3: LBM communication parame-
ters for Eq. 1; s is half the shared voxels:
dy in 2D and d, - dy in 3D.



Disaggregated Design for GPU-Based Volumetric Data Structures 9

AWS-G5-A10 S0A DGX-A100-40GB SoA

AWS-G5-A10 SoA 8" e AWS.G5-A10Disag.  —=— DGX-AL00-40GB Disag.
120000 - ~" AWS-G5-A10 Disag - AWS-P3V100 SoA ideal

AWS-P3-V100 SoA AWS-P3-V100 Disag

AWS-P3-V100 Disag, 7-

DGX-A100-40GB S0A
100000 - —— DGX-A100-40GB Disag.

AWS-P5-H100 SoA

o

—=— AWS-P5-H100 Disag.

80000 - 2
"] s
] @
= 60000 - -
s g,
&
40000
3
20000-
5
ol
‘ ‘ ‘ ‘ ‘ 1-
I I S U C A 1 2 3 4 s 6 7 8
Domain size Number of GPUs
(a) D3Q19, speedup (b) D3Q27, strong scaling

Fig. 4: (a) MLUPS performance of disaggregated vs. SoA on an 8-GPU lid-driven
cavity flow (D3Q19). (b) Strong scaling for D3Q27 on a 1923 domain.

sends just one message per neighbor. Meanwhile, 8 remains at 6, representing
the exact amount of data required by the stencil. Table 3 shows that for D3Q19
and D3Q27, the disaggregated layout delivers similarly optimal o and 3 values,
consistently outperforming basic AoS or SoA alone. Overall, the disaggregated
SoA layout combines AoS-like benefits of minimal transfer operations with SoA’s
advantage of transferring only the necessary populations. By maintaining zero-
copy efficiency, it reduces overhead in inter-partition data exchanges, making it
theoretically the most communication-efficient layout for multi-GPU LBM.

Benchmarking ~ We measure Name‘ Arch GPUs Mem Interc.

runtime on a lid-driven cavity

flow with a cubic domain, using DGX-A100{A100-SXM4 8 40GB NVLink-2
boundary conditions from Latt AWS p3|V100-SXM2 8 16GB NVLink-1
et al. [12]. Table 4 lists three AWS gb Al0 8 24GB  PCI
single-node multi-GPU  systems
tested, spanning high-end (A100),
midrange (A10), and previous-
generation (V100) GPUs. A100 and V100 use NVLink; A10 relies on PCI. We
exclude AoS due to poor coalesced performance in LBM. Figure 4a compares
disaggregated and SoA layouts for 3D D3Q19 and D3Q27 lattices, using the
Million Lattice Updates per Second (MLUPS) metric.

Disaggregated consistently matches or outperforms SoA, especially on smaller
domains: up to 4x speedup below 1503, about 2.5x from 15032502, and 1.5x for
larger volumes. This reduction in performance improvement for larger domains
is well explained by Eq. 1: with 1D partitioning, the impact of 8 (the amount
of data transferred) increases with domain size while the number of private vox-
els grows cubically with the domain edge length L—significantly increasing the

Table 4: Machines used in benchmarking.
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amount of computation that can be overlapped with communication. Finally,
Figure 4b shows strong scaling for 1922 domains. While traditional methods
struggle to exceed 3x scaling from a single GPU, the disaggregated layout con-
sistently achieves 6x or more, regardless of GPU architecture.

6.2 Improving LBM Register Allocation

We evaluate the effect of disaggregation on register usage by simulating fluid
flow over an obstacle in a cubic domain. The simulation uses a block-sparse grid,
with each block containing 4% voxels. This setup resembles a typical wind tunnel,
where a bounce-back boundary condition [13] is applied to obstacle surfaces.
Additionally, an inflow boundary condition is applied to one face, and an outflow
boundary condition is applied to the opposite face.

The bounce-back boundary condition is register-light, requiring 2Q) popula-
tions. By contrast, the inflow and outflow faces use a regularized boundary con-
dition [11], which is register-heavy, needing 3Q populations. Combining bounce-
back and regularized boundaries in one kernel forces resource requirements to
accommodate max(2Q), 3Q) = 3Q, potentially over-allocating registers for most
voxels. Because the fraction of regularized voxels is O(%) relative to domain size
x, this wastes registers on the majority of the grid.

Disaggregated Solution. To address this, we classify voxels needing the regular-
ized method as boundary, while bounce-back and other voxels are non-boundary.
Any block containing at least one regularized voxel is marked a boundary block;
the rest are non-boundary blocks. We then assign each category to its own special-
ized kernel, reducing register pressure for non-boundary blocks. This layout can
be implemented by storing boundary blocks contiguously in memory or by using
a bitmask to identify them. Both approaches let non-boundary voxels be pro-
cessed using fewer registers, thus improving occupancy. Table 2 summarizes these
advantages, showing how disaggregation avoids register-related bottlenecks.

Benchmarks We ran this scenario on a single GPU from each system in Ta-
ble 4, letting CUDA compiler determine register allocation and spilling. Figure 5
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shows the performance (MLUPS) for D3Q27 across different domain sizes. In
every tested case, the disaggregated solutions (bitmask or memory-based) out-
perform the naive approach. Gains can reach 2x on V100 and A10 and 1.3x
on A100. On V100, the naive kernel needs 55 registers—matching the boundary
kernel in the disaggregated case—and suffers spills for the entire domain. Under
disaggregation, only the smaller boundary block regions invoke the 55-register
kernel, while the majority use a lower-resource kernel. For a domain of size 368,
the naive approach has 2.2x more L2-DRAM traffic, explaining the 2x speedup.

On A100, all kernels (naive and disaggregated) also require 55 registers.
Spilling occurs only in the naive approach, yet the A100’s larger L2 cache reduces
its overall penalty, limiting speedup to around 1.3x. Still, data traffic between
L2 and DRAM is 1.3x higher for the naive kernel, matching the measured per-
formance improvement. Finally, regarding memory overhead for boundary condi-
tions, the regularized method stores a d-component velocity vector (where d = 2
in 2D and d = 3 in 3D). Let F be the floating-point type and I the indexing
type. Then s,, = sizeOf(F) - d and s; = sizeOf(I). As noted in Table 2, only
the disaggregated approach avoids additional storage for boundary voxels; other
methods typically allocate boundary-related data throughout the entire domain.

6.3 Improving Multi-resolution LBM Kernel Fusion

We evaluated a single-GPU op- GPU‘Size‘ Distribution‘Ours Baseline Gain
timized multi-resolution LBM solver ol512° 7 1. 04l6072 4591 25%
14] enh ith the di - P °
[14] enhanced with the disaggre- o0l balo0 5 0= do0sle01s 4760 26%
gated design. The data structure

comprises multiple uniform block-  V100[320° 15,1, 0.1/4421 3770 17%
sparse grids (one per resolution V100[320°|15, 1, 0.1, 0.002(4422 3770  17%

3
level), along with transition meta- V100 4803 53, 4, 0.4/5006 4047 23%
data to manage inter-level depen- V100|480%|53, 4, 0.3, 0.008/5005 4050 23%
dencies. A10(|320%|15, 1, 0.1, 0.002|4083 3982 2%
In multi-resolution LBM, each ~ A10 480353, 4, 0.3, 0.008|4483 4306 4%
A10|5128 77,4, 0.4/4093 3901 4%

time step entails two key inter-
level operations: (1) Ezplosion
where collision results at one res-
olution feed into lower-resolution
levels and (2) Coalescence where
streaming data from higher res-
olution levels merges into lower-
resolution blocks.

These create dependency edges
in a graph similar to Figure 2b,
with operator A for collision and
B for streaming. Except at the
finest resolution, explosion and coalescence prevent kernel fusion without ad-
ditional processing.

A10[512%|73, 3, 0.5, 0.003|3890 3719 4%

Table 5: Performance comparison of our dis-
aggregated multi-resolution LBM approach
vs. a state-of-the-art baseline [14] on a lid-
driven cavity flow. Size is the length of the
virtual finest-level box; Distribution lists the
fraction of active voxels per level (finest
to coarsest); Baseline is baseline’s MLUPS;
Ours is our MLUPS; and Gain is computed
as (Ours— Baseline) / Baseline x 100%.
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We classify blocks as: (1) Puniform which are blocks that operate uniformly
and don’t require inter-level synchronization and (2) Pjymp which are blocks
containing at least one voxel near a resolution jump, needing explicit explosion /-
coalescence handling. Using the disaggregated interface, we eliminate unneeded
synchronizations at the kernel level. For Punitorm blocks, we fuse collision and
streaming into a single kernel. For Pjymp blocks, the original multi-step execution
is preserved to correctly process inter-level data.

Table 5 shows a lid-driven cavity flow benchmark at multiple resolutions on
three different GPUs. In all configurations, the disaggregated approach outper-
forms the baseline. On the A100, a high-end architecture, improvements can
reach 26% for domains of size 5123. The V100 also achieves up to 23% on 4803
grids. These speedups stem from merging collision and streaming on uniform
blocks, thus reducing overhead where inter-level dependencies are not needed.

In contrast, the A10 exhibits smaller gains (2-4%), largely due to register
spilling penalizing performance more acutely on midrange GPUs with smaller
cache sizes and lower memory bandwidth. Nonetheless, the disaggregated method
consistently demonstrates advantages for larger domains and higher active-voxel
counts, confirming its suitability for diverse multi-resolution setups.

7 Related Work

While extensive research has been conducted on optimizing stencil computations,
most efforts focus on improving data locality. To the best of our knowledge, this
work is the first to propose a data structure design methodology aimed at multi-
objective optimization, where data locality can be strategically traded off for
other performance goals.

Optimizing communications via data layout: Zhao et al. [24] introduced
a layout scheme for block representations designed to minimize communication
overhead and enable zero-copy communication. Their approach incorporates vir-
tual memory techniques to reduce the impact of indirect indexing which is ef-
fective for stencils with a radius that is a multiple of four. However, for stencils
with a radius of one, users must resort to time tiling, which can increase mes-
sage sizes or become infeasible if reductions are involved. While their method
demonstrates significant speedups on distributed systems, it does not address
the challenges of multi-cardinality fields.

Reducing Register Pressure and Spilling: Managing register pressure
and minimizing spilling are critical challenges in GPU computing. Temporal
blocking techniques, e.g., register blocking, serialize one domain dimension to
improve data reuse [15]. Other strategies leverage GPU shared memory to miti-
gate the impact of spilling [17]. However, no prior work has explored using data
structure design to address register pressure.

Kernel Fusion: Kernel fusion is a well-known optimization for memory-
bound problems, as it reduces memory pressure by keeping shared data in reg-
isters between consecutive kernels. This technique is widely used in dense LBM
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implementations [12] and multi-resolution representations [18]. However, existing
works do not explore leveraging data layouts to facilitate kernel fusion.

8 Conclusion and Future Work

Past advances in volumetric computation have helped data-structure designers
create layouts that emphasize memory access efficiency. In this work, we intro-
duced disaggregated design, a unified framework that broadens the optimization
focus beyond data locality to include minimizing multi-GPU data transfers, re-
ducing register pressure, and maximizing kernel fusion. Our analytical models
and empirical results confirm the benefits of these objectives, while also clarifying
the potential drawbacks of more intricate indexing schemes and slightly compro-
mised locality. Ultimately, the overall gains depend on whether the performance
improvements outweigh these costs.

This study represents the first in-depth analysis of disaggregated design and
its practical scope. Several directions remain for future exploration: (1) extending
the applicability of the disaggregated design to other spatial data structures, e.g.,
unstructured meshes and hash grids, and (2) exploring additional optimization
objectives tailored to diverse computational workloads, e.g., load balancing for
particle-based simulations.
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