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ARTICLE INFO ABSTRACT

Structural components in assemblies often require specific geometric features — such as cylindrical regions for
joints — to function correctly. Standard topology optimisation methods, however, struggle to impose geometric,
feature-preserving constraints on selected boundary regions during shape updates. We propose a shape update
strategy for level set-based topology optimisation of mechanical assemblies that enables constrained shape up-
dates along user-specified boundaries while allowing free-form updates elsewhere. The constrained regions are
limited to affine motions such as translation, rotation, and scaling, providing greater control that is especially
valuable in engineering design. This is particularly useful for multi-functional components in larger assemblies,
where certain boundaries must retain primitive geometries and vary only within specified limits. For example,
when a component must contain a cylindrical aperture to fit a pin of unknown radius, our method allows simulta-
neous optimisation of the aperture’s location, orientation, and size, alongside the component’s overall topology.
We extend the standard Hilbert space extension method by introducing its constrained variant which incorpo-
rates affine motion constraints into the velocity extension. The resulting velocity field satisfies descent direction
requirements for the optimisation while ensuring that all feature-preserving constraints are met. We demonstrate
the method’s effectiveness on canonical structural problems with geometrically constrained boundaries.
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1. Introduction into account their neighbouring components in the assembly and the
assembly as a whole.
The components of an assembly typically interact with their neigh-

bours through well-defined interfaces whose nature depends on engineer-

1.1. Topology optimisation of components in an assembly

Topology optimisation is often used to design structural compo-

nents to optimally fulfil a load-bearing function subject to constraints
on material usage, manufacturability, and other factors. The topology
optimisation algorithm achieves this by iteratively updating the shape
of the component until a measure of its performance under the applied
loads (e.g., compliance or average stress) is optimised subject to the
given constraints. However, structural components are often not meant
to operate in isolation since they are intended to perform their structural
function within a larger and more complex engineered system consisting
of an assembly of interacting components operating together to achieve a
range of holistic functions. For example, Fig. 1 shows the structural com-
ponent known as the rocker within a vehicle suspension system, whose
purpose is to transmit loads from the wheel sub-assemblies to the chassis
through an assembly of rods, springs, dampers, and other components.
Therefore, the optimal design of such components should ideally take
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ing requirements. For example, interfaces can be welded connections
or joint connections that allow only certain relative motions between
the components. The vehicle suspension system of Fig. 1 shows such
interfaces between the rocker and its neighbours (pull-rods, anti-roll
bar, spring/damper sub-assembly). In this system, the components are
connected to each other through welds, revolute joints, and cylindrical
joints in such a way that the suspension system as a whole achieves a
desired dynamical performance appropriate for the operational range
of the vehicle. In order to maintain the integrity and function of the
assembly, the interface geometries are often highly constrained (e.g., a
revolute joint must be cylindrical to permit uni-axial rotational motion,
or a weld must be flat for ease of manufacture). Moreover, the optimality
of the assembly as a whole can depend critically on the location, orien-
tation, and scale of these interfaces in the design envelope. Therefore,
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Fig. 1. Vehicle suspension assembly. Left: full assembly. Right: rocker detail with
interfaces. Image courtesy of Andy Harris, Autodesk.

topology optimisation algorithms suitable for the optimal design of com-
ponents in an assembly should be able to respect the constraints and
design freedoms provided by the interfaces.

In this work, we propose a shape update approach for level set-based
topology optimisation to find the optimal shape of components in an as-
sembly while preserving the nature of their interfaces. The essence of our
approach is a new update scheme for the evolving level set function that
allows for the simultaneous free-form optimisation of the non-interface
part of component shape boundaries, along with the optimisation of the
location, orientation, and scale of the interfaces. We achieve this by con-
straining the local shape updates of the interface regions to rigid motions
and orthotropic scalings (which therefore preserve the flat, cylindrical,
or spherical regions typical of welds and joints — i.e., the nature of
the interfaces) while allowing the non-interface parts of the component
shape boundaries to move freely during optimisation. The update can
be chosen via a shape sensitivity analysis, which ensures that the com-
bined free-form and constrained displacements of the shape boundary
constitute a descent direction for an optimisation objective function.
Consequently, for an initial geometry with specified interfaces, if we
apply the update in each subsequent iteration of a topology optimisa-
tion procedure, the nature of the interface regions will be maintained
as the shape and its interface parameters (i.e., location, orientation, and
scale) evolve towards optimality.

The level set update scheme that we develop in this work is based on
two key modifications of the standard update scheme in level set-based
topology optimisation, which is based on solving a Hamilton-Jacobi
equation for the level set function of the updated shape using a well-
chosen update velocity function. First, we construct an update velocity
that is both a descent direction for the optimisation objective function
and provides the desired controlled motion of the interfaces at an in-
finitesimal level. We do this by modifying the Hilbert space extension
(HSE) method to include constraints in the interface regions. Second, we
integrate the velocity via a time-dependent Hamilton-Jacobi equation,
which ensures that the macroscopic motion of the level set representing
the shape has the desired controlled motion in the interface regions.

In this work, we present our update scheme in a simplified single-
component setting that is representative of the full-assembly setting. In
this way, we can focus on the details of the update scheme while avoid-
ing additional complexities inherent in working with multiple level set
functions, as well as full-assembly simulation and sensitivity analysis.

1.2. Related work

Traditional topology optimisation methods primarily focus on single-
component optimisation, applying boundary conditions to fixed regions
of the domain that are excluded from the optimisation process. We
highlight two key reasons for this: first, these regions often represent in-
terfaces with other existing components in an assembly, and so changes
to the shape may interfere with correct mating; second, the topology
optimisation algorithm must account for shape sensitivities in these
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regions, which adds complexity to the process. Despite these challenges,
several studies have sought to address such limitations. In [16], the de-
sign domain is partitioned such that support elements are optimised
on a special thin-edge layer while the material distribution in the rest
of the domain is concurrently optimised. Similarly, [22] optimises the
positions of interface regions connecting a component to a support struc-
ture, alongside the shape and topology of the component represented as
a level set. Furthermore, [1] incorporates the position and orientation
of support and load regions as design variables within a density-based
topology optimisation framework, using a super-Gaussian projection
method to streamline the model.

Approaches related to our method of constraining boundary re-
gions to rigid transformations include those that incorporate parametric
primitives into continuum-based topology optimisation. In [21], param-
eterised bars are differentiably projected onto a continuous background
grid, where a density-based topology optimisation is used to update the
bar parameters. Similarly, [17] co-optimises a beam model fitted to a
free-form level set representing a component undergoing topology op-
timisation, refining both the beam model and the free-form geometry
until convergence. In [15], the moving morphable component approach
embeds a fixed set of geometric primitives into the design domain, op-
timising their rotation, scaling, and translation parameters based on
sensitivities from a density-based topology optimisation. They rely on
representing the entire shape as a collection of geometric primitives,
whereas in our work the shapes can be free-form and although we do not
explicitly model primitives in our framework, we impose constraints on
shape updates to preserve the geometric properties of primitive shapes.
This allows, for example, the length and radius of bar-like primitives to
be adjusted during the topology optimisation process.

Topology optimisation with geometric constraints has also been stud-
ied in the context of optimising for manufacturability, where properties
such as hollow tubes or stamped parts [13], minimum thickness [5], and
overhang distance [2] are controlled. More recently, a Hilbertian pro-
jection approach was proposed in [29] to handle constraints expressible
as shape functions (e.g., volume, stress, or microstructural properties)
by constructing a constraint-improving descent direction. While these
methods also pertain to constrained optimisation, their formulations do
not allow for constraining shape updates in specified regions to preserve
the geometric nature of an interface, which is the central focus of our
work.

Many researchers have also explored topology optimisation of com-
pliant mechanisms, where material placement allows some regions to
bend to achieve a desired displacement [8,30]. These mechanisms are
typically designed as single-component entities, facilitating continu-
ous representation of both component and joint geometries. However,
single-component mechanisms often have a limited range of motion
and are less compatible with traditional manufacturing methods com-
pared to multiple-component mechanisms. Additionally, extra care is
required to prevent over-stressing the notches designed for bending
in compliant mechanisms [23]. In our work, we target a more tradi-
tional mechanism design, where multiple components may be combined
to form a mechanism with interface regions connecting the com-
ponents. This problem is also tackled in [6], where joint locations
are optimised along with the topology of a set of connected com-
ponents using the solid isotropic material with penalisation (SIMP)
method. They use the adjoint method to solve for the joint location
sensitivities and also model a non-design clearance space around the
joint geometry. In [27], a Gaussian function is used to parametrise
the joint locations connecting multiple components, optimising the
joint locations and component shapes with the SIMP method for dis-
placement objectives using non-linear, large-rotation finite element
analysis.

In summary, while previous studies have made significant strides in
optimising components within assemblies and incorporating parametric
primitives in topology optimisation, our level set-based approach of-
fers additional capabilities. Specifically, it enables the optimisation of



A. Humphry, M. Ebrahimi, N. Morris et al.

the position, orientation, and scaling of any localised region of the ge-
ometry, with smooth transitions to the surrounding geometry, ensuring
interface/joint compatibility constraints.

1.3. Organisation of the paper

This paper is organised as follows. In Section 2, we first present a
brief review of the key steps in the standard sensitivity-based update
procedure used in level set-based topology optimisation. We then modify
this procedure (specifically, the HSE method for constructing the exten-
sion velocity used to update the level set function) to support the optimal
design of components of an assembly. Section 3 is the heart of our paper,
where we explain how to incorporate constraints on the level set update
velocity in the interface regions to ensure that the interfaces are pre-
served during topology optimisation. This is achieved in two steps: our
constrained Hilbert space extension (C-HSE) method in Section 3.3, and
the velocity integration in Section 3.4. We then apply our approach to
solve some representative topology optimisation problems, formulated
in Section 4.1, with results presented in Section 4.3. Finally, Section 5
discusses the limitations of the proposed method and outlines directions
for future work, and Section 6 concludes the paper.

2. Preliminaries from level set-based topology optimisation

In level set-based topology optimisation, shapes are represented im-
plicitly via level set functions defined on a universal design domain
D C R’ containing all admissible shapes. A typical topology optimi-
sation problem seeks to find an admissible shape, represented by a level
set function, that optimises a given objective function and satisfies given
constraints (posed as equality and inequality constraints for a collection
of constraint violation functions). The level set-based topology optimi-
sation algorithm solves this problem as follows. We start from an initial
shape, represented by an initial level set function, that is given a priori.
The level set function is then updated iteratively in order to improve
the objective function value and reduce constraint violations in each it-
eration until the convergence criteria are met. The specific form of the
level set function update in each iteration is determined by performing
a sensitivity analysis of the objective and constraint violation functions
with respect to shape changes. The update itself is typically performed
by solving a so-called Hamilton-Jacobi equation for a short time deter-
mined by a line search with an update velocity that is derived from the
sensitivity analysis via a velocity extension procedure.

This work proposes a modification of the standard level set update
procedure above in order to support a level set-based topology optimi-
sation approach for the optimal design of multiple components in an
assembly. We therefore begin by reviewing the standard update proce-
dure in more detail before turning to the specifics of the modifications
we have in mind.

2.1. Shape updates in level set-based topology optimisation

Level set shape representation. Let F : D — R be a scalar function
defined on the design domain. The sublevel set of value ¢ € R is the
subset of D defined by {x € D : F(x) < ¢}, and the level set of value ¢
is the subset of D defined by {x € D : F(x) = ¢}. When F is sufficiently
regular from a mathematical point of view, then these subsets inherit
a nice structure. For example, it is a classical result of multivariable
calculus that if F is differentiable and c is a regular value, then the c-level
set of F is a differentiable, orientable, two-dimensional submanifold of
D that bounds the c-sublevel set of F (e.g., [25]). We say that a shape Q
contained in the design domain D is represented by the level set function
F if Q is the zero-sublevel set of F.

Level set-based shape updates.  Let Q be a shape represented by the level
set function F. A level set-based shape update is a one-parameter family
of shapes of the form Q, := {x € D : F,(x) <0} where F, : D —» R is
a one-parameter family of level set functions that is differentiable with
respect to . We also assume that ¢ varies in a small interval containing
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zero, and F, = F. Consequently, one can show that Q, is a geometric
perturbation of Q.

Level set-based shape updates via deformations. There are a variety of
ways to construct level set-based shape updates. A very geometric way
is based on deformations of D. A deformation of D is a one-parameter
family of invertible mappings ¢, : D — R3 that is differentiable with
respect to e, where we assume that ¢ varies in a small interval contain-
ing zero, and ¢, is the identity mapping. Any point x € D now moves
along a trajectory ¢ — ¢,(x) starting at x as a function of the “time” e.
The time-dependent vector field ®, : D — R3 of velocity vectors of
these trajectories is called the infinitesimal generator of the deformation
because ¢, can be reconstructed from the ordinary differential equation

0, (x(e)) = %

satisfied by the trajectories. Thus, we also say that ©, is the infinitesimal
generator of ¢,.

Let Q be a shape represented by the level set function F, and consider
the shape update Q, = ¢,(Q) for some deformation ¢,. Then, it is quite
simple to show that Q, is represented by the level set function

F, 1= Fog~".

Thus, every deformation ¢, gives rise to a level set-based shape up-
date F,.

Equivalent updates via the transport equation. By differentiating the
relationship F,o¢, = F with respect to ¢, we have

JF, 9
0= fo¢£+<VFEo¢E,%>.
€

de

Composing with qﬁ;l and using the definition of the infinitesimal gener-
ator, we obtain

oF,
a; +(VF,,0,)=0. (1a)

Together with the initial conditions
F._,=F, (1b)

we obtain the initial value problem for the level set-based shape update
F,, called the transport equation. It is an example of the class of Hamilton-
Jacobi equations.

Since the transport Eq. (1) no longer references the original defor-
mation ¢,, the level set update F, can be derived directly from the
infinitesimal generator ©, simply by solving this equation. We refer to F,
as the level set-based shape update generated by the vector field ©,. Itisa
fundamental result in the theory of Hamilton-Jacobi equations [14] that
this update is equivalent for sufficiently small ¢ to the deformation-based
shape update described in the previous paragraph.

2.2. Choosing the level set-based shape update via sensitivity analysis

Sensitivity with respect to shape changes.  In level set-based topology op-
timisation, level set functions are updated in each iteration based on the
sensitivity analysis of the shape-dependent optimisation objective func-
tion J. (For brevity, we present the derivations only for the objective
function; the extension to constrained problems follows analogously.)
We assume that J is shape-differentiable, meaning that for any level
set-based shape update Q, of a shape Q generated by the vector field
@, , the limit

JQ)-JQ)
m el Y

DJg(®,=) := lim @

€

exists and is a linear function of ®, (making it a so-called Fréchet deriva-
tive). The above limit is called the shape derivative of J with respect to
the given shape update.
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It can be shown using the techniques of shape differentiation (see
[11] and numerous papers on level set-based topology optimisation e.g.,
[4,28]) that the shape derivative of many shape-differentiable shape
functions has the form

DJs(0,_) =/ dJq noa + Opps ©)
p1o}

where the scalar-valued function dJ, : 0Q — R is known as the shape
gradient of J at the shape Q. The form (3) is an instance of a general re-
sult known as the Hadamard-Zolésio structure theorem. Moreover, one can
often derive a reasonably explicit formula for d.J, depending on the spe-
cific details of the function .J. We will not present any derivations here
since these can readily be found in the literature; see for example [3].

Level set-based shape updates that are descent directions for an objective func-
tion. Typically, in level set-based optimisation algorithms, the level set
updates are required to cause the objective function J to decrease in ev-
ery iteration. The above sensitivity analysis provides a condition on ©,
that ensures this for sufficiently small ¢ as the shape is updated under
the deformation generated by ©,. We can deduce this condition from
the identity

JQ) = J(Q) +eDJq(0,) + o), 4

which holds by definition of shape-differentiability. We see that J(Q,)
decreases for sufficiently small ¢ when

DIo(®,_9) = / dJq nyg O, <0 )
0Q

is satisfied. A shape update satisfying this condition is said to be a descent
direction for J at Q. In particular, the steepest descent direction is when
the shape update satisfies nyq - 0, = —dJq.

Velocity extension. Being a descent direction is clearly an underdeter-
mined condition because (5) constrains only the values of the normal
component of ©,(x) for x € 0Q at time ¢ = 0. The final step in the up-
date of the level set function via the transport Eq. (1) is thus to extend
the definition of ®,(x) to all remaining x (at least in a narrowband of 0Q
and for € # 0).

There are two common ways to construct such extensions, the classi-
cal normal extension procedure where 0, is defined to be constant along
normal lines emanating from dQ in the narrowband, and the HSE pro-
cedure, where @, is obtained by solving a partial differential equation
(PDE) in the narrowband. The latter has been found to be more desirable
since it creates a smoother extension velocity and leads to fewer oscilla-
tions in the overall convergence of the topology optimisation procedure.
See [10] for a discussion of these and other extension approaches.

2.3. The Hilbert space extension method

We will now describe the HSE method in more detail, since the ap-
proach we propose in this paper for constructing the extension velocity
in such a way that it preserves the nature of the interfaces is based on
it.

The linear algebra of gradients in a Hilbert space. A Hilbert space is a com-
plete vector space that possesses a symmetric, strictly positive definite
bilinear form, a.k.a., an inner product. Let H be a Hilbert space with
an inner product ((-,-));;. Consider the Fréchet derivative of a function
T : H — R, namely the linear functional DT, defined by

DT,(v) := ;—ST(M-FEU) VveH

=0

that gives the rate of change of T in the direction v at the point u € H.
The so-called Hilbert space gradient of T at u € H, denoted grad(T),,
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satisfies

DT, (v) = ((grad(T),, v) VveH.

Using the properties of the Hilbert space inner product and the definition

of the Fréchet derivative, it is straightforward to show that —grad(T), is
a descent direction for T at u € H (see [3]).

Application to the shape gradient in level set-based topology optimisation.
We now consider a Hilbert space of infinitesimal generators of deforma-
tions of a domain B C D contained in the universal design domain D.
To be precise, B is a narrowband of 0Q from which we have excised
smaller narrowbands of any parts of Q where the extension velocity
is required to vanish (e.g., non-design regions in the interior of Q or
on the boundary dQ). Let I'; be the union of all parts of 5 in contact
with these non-design regions. We choose the Hilbert space H(} (B,R3?)
of square-integrable vector fields on B with square-integrable first weak
derivatives and satisfying homogeneous Dirichlet boundary conditions
on I'y. We equip this space with the inner product

(©,.0,), :=/®1 ~®2+y2/D®1 : DO,  VO,,0, € Hj(B.RY),
B B

where y > 0 is a scalar parameter. The space H&(B, R?) together with
the inner product (-,-)), is an example of a so-called Sobolev space of
vector-valued functions. Next, we consider the shape derivative of the
objective function J as a linear functional on this space, namely

DJg : Hy(B.R*) > R

DJo(®) := / dJo nyq - O,
0Q

where dJ, is the shape gradient as defined in Section 2.2. We note
that DJ, is indeed a bounded linear functional on Hé (B,R?) under
suitable regularity assumptions thanks to the trace theorems of mathe-
matical analysis [14]. Consequently, DJ, has a Hilbert space gradient
with respect to the inner product (-, -)),, which satisfies

(grad(J)g. 0), = /,, . dJgnyg-© VO € H)(B,R). 6)

As discussed above, the vector field —grad(J), is a descent direction
for J at Q. That is, if Q, denotes the updated shape with respect to the
deformation generated by this vector field, then we substitute ©,_, :=
—grad(J)q into (4) and apply (6) to obtain

J Q) = J(Q) - egrad(J)o. grad(J)q)), + ole) < J(Q)

when e > 0 is sufficiently small. In the context of topology optimisation,
we will call the vector field grad(J)q the HSE velocity associated with
the shape derivative DJ,. Moreover, we will see below why the HSE
velocity enjoys a smoothing property controlled by y. As mentioned,
this smoothing property has been observed to improve the behaviour
of the shape updates, leading to better convergence in level set-based
topology optimisation.

NOTE: There are many ways to apply the notion of Hilbert space gra-
dient to the shape derivative of a shape-differentiable objective function.
Some interesting possibilities are described in [3], including an interpre-
tation of the Sequential Linear Programming approach to level set-based
topology optimisation [28].

Equations satisfied by the HSE velocity.  The defining Eq. (6) of the HSE
velocity amounts to the weak form of a PDE. It is instructive to see
the PDE itself, which we obtain in the usual way by integrating the
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derivative terms by parts. We see that © := grad(J), satisfies

0-y’A0=G in B,
9 _
on
0=0

0 on dB\ T, @)

on I,

where A is the scalar Laplace operator and ;—” is the outward normal
derivative, both acting component-wise. The right-hand side G should
be understood as a distribution supported on 0Q which is defined by
integration against test functions via

/GvG)::/ dJgnyg-©® VO € H)(BR).
B 0Q

From the strong form (7), we see that the components of the HSE ve-
locity satisfy an elliptic PDE whose eigenvalues are strictly positive
thanks to the presence of the negative Laplace operator. Therefore, we
can interpret the solution of (7) as a diffusive smoothing of G where y
can be characterised as a length-scale over which the smoothing takes
place.

3. Geometrically constrained level set-based shape updates

We now turn to the central construction of this paper, namely a shape
update for a component in a larger assembly that preserves the desired
geometric features of the interface regions where the component inter-
acts with its neighbouring components. In the context of level set-based
topology optimisation, this means constructing the infinitesimal gener-
ator O, of a level set update, via the transport Eq. (1), that achieves this
behaviour in the updated level set function F,. We propose the following
two-step construction:

1. Enforce infinitesimal motion constraints in the interface regions
during the velocity extension procedure that determines ©,_.
The resulting vector field must be a descent direction for the
optimisation objective function.

2. Define ©, for ¢ # 0 in such a way that the transport equation
induces the desired macroscopic motion of the level set function.

We now describe these two steps in more detail, beginning with precise
definitions of the motions we wish to allow in the interface regions.

3.1. Geometry of the interfaces

The shapes we consider in this paper are meant to represent the ge-
ometry of an individual component in an assembly consisting of multiple
interacting components. A shape Q of this kind interacts with the rest
of the assembly through a collection of interfaces where Q comes into
contact with its neighbours. Thus, we assume 0Q contains a collection
of disjoint subsets F(Il), ,I“(IN ) where these interactions occur. As we
know, the geometry of these subsets is special — e.g., flat if the inter-
face supports a weld, cylindrical if the interface supports a revolute joint.

We endow the n'” interface with a spatial location parameter p(l") eR’
and an orientation parameter Q(I"> € R33 given as an orthonormal ma-
trix; these are sufficient to locate the interfaces in space. Fig. 2 illustrates
these parameters for a domain with two interfaces.

NOTE: Recall that 0Q may also contain additional subsets where ex-
ternal surface traction forces per unit area (i.e., Neumann boundary
conditions) or fixities (i.e., Dirichlet boundary conditions) are imposed.
We denote these subsets by I'y, and I'j, respectively. If we wish to
include these in the design domain, we count them among the interfaces.

3.2. Preserving geometry at the interfaces

Thanks to their critical role in the assembly, component interfaces
are only allowed to move during topology optimisation in such a way
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Fig. 2. Notation for interfaces.

as to preserve their special nature — e.g., flat interfaces remain flat,
cylindrical interfaces remain cylindrical. In this paper, we satisfy this
requirement by ensuring that the interfaces are only allowed to move
by rigid motions (translations and rotations) and by orthotropic scalings
aligned with the orientation of the interface (e.g., cylindrical aperture
supporting a revolute joint may increase in radius or length). Motions
of this kind will affect the location and orientation parameters of the
interfaces as well as their sizes relative to the axes of orientation, but
will not change the nature of the interfaces. In what follows, we show
how to define and impose these motion constraints.

Allowed motions. ~We state the following definitions of the allowable
motions and their infinitesimal generators.

Translations. The one-parameter family of translations by + € R? is given
by

1 ) -
G (x) 1= x +et.
The infinitesimal generator of this motion is the affine vector field
@(x) 1=1.
Without loss of generality, we can write t = Qf, for #, € R? when an
orientation is prescribed via an orthogonal matrix Q € R¥S,
Rotations. The one-parameter family of rotations about a fixed point p €
R? and an axis 4 € R? through p is given by

P (x) 1= exp(e A(N))(x — p) + p,

where A(h) is the antisymmetric matrix satisfying A(h)x = h X x. The
matrix exponential can be computed using the Rodrigues formula. Note
that & is un-normalised, and thus ||2|| gives the angular velocity of the
rotation about the unit axis 4/||A||. The infinitesimal generator of this
motion is the affine vector field

0" (x) := A(h)(x — p).

Without loss of generality, we can write h = Qh, for h, € R when an
orientation is prescribed via an orthogonal matrix Q € R¥3,

Orthotropic scalings. The one-parameter family of orthotropic scalings
about a fixed point p and by scaling factors d := (d,,d,.d;) oriented
along the columns of an orthogonal matrix Q € R*3 is given by

¢ (x) := Qexp(e D)Q" (x - p) + p,

where D = diag(d) and the matrix exponential is just exp(eD) =
diag(et®, ef%2,¢t%), The infinitesimal generator of this motion is the
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affine vector field
0% (x) := 0DQ" (x — p).

Compound motions. It is necessary to make a concrete choice for the order
of operations of a combination of the above motions since they do not,
in general, commute. We choose

¢leowed(x) = ¢1‘Erans O¢;ato¢;ca[ (x) (8)
= exp(e A(h)Q exp(e D)O T (x — p) + p + ¢t

as the allowed compound motion of each interface. The infinitesimal
generator of this motion is the affine vector field

@dllowed (xy 1=t + A(h)(x — p — €1)
+ exp(e A(h)) QDO exp(—e A(R))(x — p — €1). 9

Note that unlike the infinitesimal generators of the individual transla-
tions, rotations, and orthotropic scalings, this vector field is explicitly
time-dependent.

A basis for the allowed infinitesimal generators of an interface. =~ We see
from (9) that the infinitesimal generator of the allowed compound
motion at £ = 0 satisfies

@wed (x) 1= 1 + A()(x — p) + QDQ" (x = p), 10)

which is simply a linear combination of an infinitesimal translation field,
an infinitesimal rotation field, and an infinitesimal orthotropic scaling
field. Therefore, the allowed infinitesimal motions belong to a finite-
dimensional space spanned by vector fields of these kinds. We now
construct a basis for this space near a given interface.

Let I'; be one of the interfaces, with the spatial location parameter
p; and orientation parameter Q; := [q; ;,q;,,4;3]- Define the linearly
independent vector fields

Vlrran.v(x) =qp
Vzrrans(x) =qp5,

Vv}rrans(x) = 413

Vlmr(x) = A(LI],])(X - P
Vo (x) i = Algy)(x = pp),
Vi (x) i = Algy)(x = pp),

lewl(x) = 511,1[111,1]1-(" - P
V;MI(X) = ‘I],z[‘][,z]T(x - P
V;wl(x) = 41,3[41,3]T(X -pp)-

These vector fields form a basis for the nine-dimensional vector space

spanned by the infinitesimal generators of all translations, rotations,
and orthotropic scalings aligned with the orientation and location of
the interface.

The desired vector space of allowed motions is a subspace of this
vector space whose precise definition depends on the nature of the in-
terface, since we may not always want to allow all nine dimensions
of design freedom. For example, if the interface supports a revolute
joint, then T'; is a cylinder oriented along, say, the axis g; ;. The al-
lowed motions must preserve the fact that I'; is a cylinder; thus only
orthotropic scalings in the g;; direction and uniform orthotropic scal-
ings in the {g;,.9;3) plane are allowed, while rotations about the ¢;
axis are irrelevant. Therefore, the subspace of allowed motions in this
case is the seven-dimensional vector space spanned by the velocity fields
Vlrrans’ Vztrans, V;‘mns’ Vzrot’ V{m, lecal, and stcal + I/;cal.

Allowed motion constraints on the extension velocity. —Recall that in each
iteration of topology optimisation, the motion of the shape Q is obtained
by solving the transport Eq. (1) for the level set update with an extension
velocity ©, derived from a sensitivity calculation. We will thus achieve
the allowable motions of each interface of Q by imposing constraints on
0, in the vicinity of each interface.

Let BB be the narrowband of dQ where we intend to construct the ex-
tension velocity, and let M 1(”) C B denote a smaller narrowband of each

F(]") that is small enough to be contained in B. We can now formulate
the allowed motion constraints as follows.
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« First, we require that the restriction of ©,_, to this narrowband
belongs to the vector space spanned by the allowed infinitesimal
motions of F(I"). Let Vl("), ,Vd(") for some d, < 9 be a basis for

the allowed infinitesimal motions near F(,"). Thus, there exist scalar

coefficients 2(1"), o z;") € R so that

dy
Og(0) = ) 2V (x)  Vxe N (11

s=1

Each such vector can then be expressed as a linear combination
of the infinitesimal rotation, translation, and scaling vector fields
introduced above.

Second, we require that ©, has the form (9), where 1, h, and d are
the appropriate linear combinations of the z-coefficients determined
from (11).

These constraints now ensure that the deformation generated by ©, per-
forms the allowed motion near 1“(1") for sufficiently small ¢ — namely

until ¢, (x) leaves N 1(") for some x € " (1">.

3.3. The constrained Hilbert space extension method

We now introduce the constrained Hilbert space extension method as
the first step in the construction of the extension velocity that we pro-
pose to use in each iteration of level set-based topology optimisation.
The purpose of this method is to find an update velocity that satisfies
the constraints (11) while remaining a descent direction for the optimi-
sation objective function and enjoying the smoothing properties of the
conventional HSE method.

The HSE procedure is variational.  The starting point for our modifica-
tion of the HSE procedure is the following important observation: the
conventional HSE velocity associated with the shape gradient d J, of a
shape-differentiable objective function J can be obtained by solving a
variational problem. That is, Equation (6) defining the HSE velocity is
the first-order optimality condition for the variational problem

minimise

1

Lie.0), - / dJo g+ ©
2 0Q

over  ©€ H)(B,RY).

Since the above minimisation problem is convex quadratic, the solution
of the first-order optimality condition is the unique global minimiser.

Adding allowed motion constraints.  Our proposed method is simply to
include the constraints (11) on the extension velocity into the above
minimisation problem. That is, we define the desired extension velocity
Oc sk to be the solution of

minimise %«@, oy, - /d dJamg-© (122)
dy
subject to O(x) = 2 zg")Vs(")(x) Vx e N'I(")and vn=1,...N
- (12b)
over Oe€ Hé(b’, R%* and z(l]), ,z(dx) eR.

Since the included constraints carve out a linear subspace of HS(B, R3),
the constrained minimisation problem is still convex and has a unique
global minimiser.

Equations satisfied by the C-HSE velocity. =~ We first recast the variational
problem (12) in a more convenient form. It is clear that (12) is equivalent
to minimising the objective function (12a) over vector fields defined on
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the smaller domain
N

B =B\ JN"
n=1

with the constraints (12b) given as boundary conditions on each N’ ,(").
The minimiser in the full domain B is then just obtained by extending
the solution to the interior of each N ;") via (12b) with the minimising
z-coefficients.

We would typically include essential boundary conditions of this form
(12b) in the definition of the space of functions over which the vari-
ational problem is posed. However, since the unknown z-coefficients
appear in these boundary conditions, it turns out to be more conve-
nient to include them in the objective function instead via a Nitsche
term [19]. Thus, we arrive at the equivalent variational problem for the
C-HSE velocity

minimise %Q(@ 20 z(N))—E(G,z(Il),... z(N))

D2y s 20 Zay
N 0 dy _(n)y,(n)

“E g 22 (0= iy 20 as)
over G)eH(}(B’,IRZ’) and z(ll),...,sz;’l)eR,

where

(0,2, ...z : =/ ®~®+y2/ DO : DO
N B B

N d,
IECE

n=1 s,1=1 N

s t

(V(") V" 42DV DV,“”),
ﬂ’(nl
d,

N
(O] (N .=
COA ) = [ W0 BB

n=1 s=1

dJg naq - an)
QN
are, respectively, positive-definite quadratic and linear functionals
acting on both functions © € Hé(B’ ,IR3) as well as the z-coefficients.
We can now derive the weak and strong forms of the first-order opti-
mality conditions satisfied by minimising ® € H& (B',R3) as well as the
z-coefficients in the usual way. For brevity, we present the weak form
in Appendix A. The strong form consists of the following algebraic and
partial differential equations:

0-y’A0 =G in B,
0=0 onTl,
d
n (14a)
@:22?’)1{:") on 0.Af1(">forn= l,...,N,
s=1
00 1 N
=20 on 05\ (Fy UV U U Y),

together with

dn

) ) U _
$xpsne [ %0 o

— fors=1,...,dandn=1,...,N.
=1 -’\/(n) on !
= I

(14b)
In the above equations,
(n) . _ (n) 2 . (n)
K9 = [ (v v e ove s v,
N
1
G i= / 40 nag V",
’ nN ’
and G is the distribution defined by its action on test functions via

/G~6®:=/ dJg nyg 60 V8O € H)(B,R?).
B Qannp

If we now compare these equations with those satisfied by the un-
constrained HSE velocity (7) we see that the C-HSE velocity satisfies
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the same elliptic partial differential Eq. (14a) but with new boundary
conditions depending on the z-coefficients on each 0N1("). A unique
solution to this equation exists for any choice of z-coefficients and ex-
hibits the expected smoothing properties. The z-coefficients can then be
determined uniquely via the integral conditions (14b). For details on
how we discretise and solve (14) using the finite element method, see
Appendix B.

The C-HSE velocity yields a descent direction. Let Ocpgp and

(ll), e z(dz ) be the solution of the C-HSE equations. Substitute these and

60 1= Oy gp and 6z := 2™ into the weak Eq. (A.19). Thanks to the
boundary conditions satisfied by ©¢ 55 on each oN ,("), the constraint
terms vanish, and the remaining terms collapse by definition. Thus, we
obtain

0=(OchsEe.OcuseN, — /ogz dJq nya - Ocyses 15)

where we view Oqpygp as a function defined on B, but equal to
Zj;l 2"V" on each N\". Equation (15) implies that —Oc ¢; is a
descent direction for J at Q.

Conclusion.  The first step in the construction of the extension velocity
used in each iteration of level set-based topology optimisation is to let
0O, := —OcpsE, i-e., the negative C-HSE velocity defined in the pre-
vious paragraph. As a result, we obtain both a descent direction for the
optimisation objective function and a velocity that satisfies the infinites-
imal motion constraints (11) in the neighbourhood of each interface by
construction.

3.4. Time-dependence of the extension velocity

We now turn to the second step of the construction of the extension
velocity used in each iteration of level set-based topology optimisation.
This is to define ©, for ¢ # 0 in such a way that we obtain the al-
lowed macroscopic motions of the interfaces, i.e., the combination of
translation, rotation, and scaling of the form (8), at least for sufficiently
small .

Recall that the desired motion will occur if the infinitesimal genera-
tor has the form (9) near each interface. We achieve this as follows. For
each interface, let /", h(l"), and d;") be the unique translation, rotation,

I
and scaling parameters determined from the coefficients z(l"),

cause (11) to match the desired form inside N 1(") ate =0. Let @Z””“’Ed’(")

denote the matching time-dependent vector field. Let )(;") : B — Rbe

S z;':) to

a smooth, positive cut-off function that equals one on N ;") and vanishes
outside a slightly larger narrowband of F(["). Then, we define

N
@E = G)CHSE + Z 1}}1) (@:llawed,(n) _ ®CHSE)’ (16)

n=1

where O¢p g is the solution of (12). The above definition completes
our construction of the interface-preserving extension velocity.

Thanks to our construction, the extension velocity given by (16) is
explicitly time-dependent only within the support of each )(;"), and coin-
cides with the infinitesimal generator of the desired compound motion

inside a slightly smaller subset of N 1("). Furthermore, it is continuous at
e = 0 because @i"lo = Ocysg inside the interface region J\/'l(”), which
is the support of ;(;"). Therefore, the solution of the transport equation
with time-dependent infinitesimal generator ®, will produce a contin-
uous evolution of the level set function everywhere and generate the
desired motion near each interface, at least for sufficiently small ¢.
NOTE: It is not always necessary to carry out this step. This is because
for certain combinations of vector subspaces of allowed motions and
interface geometries, the time-independent vector field (11) integrates
into a one-parameter family of motions that preserves the interface ge-
ometry, although it does not explicitly have the sequential form (8).
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Therefore, in such a case, no special definition for ¢ > 0 needs to be
made. In particular, if the allowed motions consist of translations and
rotations only, or translations and scalings only, then it is possible to in-
tegrate the time-independent vector field to create the desired motion.
When scalings and rotations are combined, however, it is necessary to be
more careful since the non-commutativity of these operations can lead
to undesired shearing when the time-independent vector field is used.
We will not analyse this phenomenon further here, since that would take
us too far afield.

3.5. A caveat on topology changes

It is important to note that the use of the linear transport equation
to update the level set function with respect to a background time-
dependent velocity field precludes topology changes because the evolv-
ing level sets are all diffeomorphic to each other under the deformation
generated by this velocity field. One can view this as a limitation of our
method, because the ability to induce topology changes is seen as critical
for obtaining “true” optimised geometry that is useful from a designer’s
perspective, rather than local optima of the objective function.

In this paper, we have decided not to address this limitation be-
cause our goal is simply to demonstrate that a level set update with
a well-chosen velocity field preserves the nature of the interfaces while
allowing their spatial location and scale to be optimised. Nevertheless,
we suggest here a more elaborate procedure for integrating the C-HSE
velocity that does not preclude topology changes outside the interface
regions.

Topology changes in standard topology optimisation arise because
the level set is updated with respect to an adaptive velocity field — one
that remains normal to the evolving level sets while having a prescribed
speed derived from sensitivity analysis. With this in mind, we suggest
a small modification of (16) to create an adaptive velocity outside the
interface regions while maintaining the required velocity near the in-
terfaces. Let n, := VF,/||VF,|| be the unit normal vector field of the
level sets, and let ©% 1= (O¢cpyspsh,) be the normal component of

CHSE
Ocpyse- Then, we propose

@deified i= @J_

CHSE

N

() ( @allowed.(n) _ gL

”e+211 (@gowed®™ — Opy gpne ).
n=1

If we now substitute the modified velocity into the transport equation
for the evolving level set field F,, we obtain

N
oF,
L llowed,, L =
-+ 0Ly s IVEN + > 2 (@tteed™ —@r, pn.),VE ) =0
n=1
Fy=F.

We see that outside of the interface regions, all the cut-off functions
vanish, and we recover the level set update of standard topology optimi-
sation with prescribed speed equal to @é s This transitions smoothly
until we are inside any of the interface regions, where one cut-off func-
tion is identically equal to one. There, we have the level set update via
the transport equation with an interface-preserving velocity field. We

will test this modified update procedure in future work.

4. Application to topology optimisation
4.1. A representative topology optimisation problem

In this section, we apply the shape update procedure we have de-
veloped to a collection of archetypal topology optimisation problems.
Although our shape update is eventually meant to be used to optimise
one or more components belonging to an assembly of multiple com-
ponents interacting with each other through interfaces that support
mechanical joints, we restrict ourselves for the moment to a single-
component context, where the boundary of the shape to be designed
has one or more interfaces of a specified nature. This allows us to
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demonstrate the utility of our update procedure while avoiding the
additional complications of the multiple-component context, e.g., full-
assembly simulation and the associated sensitivity analysis, and multiple
co-evolving level set functions. Nevertheless, we attempt to choose
topology optimisation scenarios that are as representative as possible
of the multiple-component context.

Problem statement. ~ We now state a common formulation for the collec-
tion of topology optimisation problems that we solve below. We will find
an optimal shape from an admissible class of shapes, where a shape Q
is deemed admissible if 0Q contains interfaces 1“(1'), ,F(IN ). The geom-
etry of these interfaces is specified in advance, parameterized by their
location, orientation in space, and scale. Each interface is either des-
ignable or non-designable, and only the designable ones will have their
parameter values determined through optimisation.

The optimal shape and optimal interface parameter values are deter-
mined by minimising the elastic compliance with respect to a single set of
external loads and fixities. We also subject the optimal shape to an equal-
ity constraint on its volume. We solve this equality-constrained topology
optimisation problem using the augmented Lagrangian algorithm [20]
(a common approach in level set-based topology optimisation), where
the shape is updated in each inner iteration of this algorithm with our
shape update procedure applied to the augmented Lagrangian shape
function.

The elastic compliance is defined as follows. Let I';,,, denote the
union of all the interfaces of Q where loads are applied. We denote these
loads collectively by the load distribution per unit area g : I[',,,;, — R’.
Let 'y, denote the union of all the interfaces of Q where fixities are
applied. Let I'f,,, := 0Q \ (I';poy U T'f;,) denote the remainder of the
boundary. Additionally, we suppose that a body force distribution per
unit volume f : Q — R3 acts on Q. The elastic compliance of a shape Q
with respect to this loading condition is given by

Teomp(€Q) 1= / o(ug) : e(ug),
Q

where ug is the elastic response of Q under these loads, e(ug) is the
associated strain tensor, and o(ug) is the associated stress tensor. The
vector field u, satisfies the linear elastic equation

—div(o(ug)) = f in Q,

n-o(ug) =g only,.4. a”
n-o(ug) =0 only,,,,
ug =0 only,,

where n is the outward-pointing unit normal vector field of 0Q.

4.2. Sensitivity analysis

As mentioned in Section 2.2, the sensitivity of the elastic compliance
with respect to a deformation Q, generated by a vector field ®, has the
form

d
DJcomp,Q(Ge :0) L= EJcomp(Qs)

= / d']comp,Q Lo 65:0’ (18)
e=0  Joo
where dJ,,,q is the shape gradient of the elastic compliance with re-
spect to boundary variations. We must use (18) in order to compute
the terms appearing in (B.21) for the right-hand side of the C-HSE
Egs. (B.22).

The formula for the shape gradient away from the interfaces sup-
porting loads and fixities is well-known and can readily be found in the
literature (e.g., [4]), namely

AT compo = —0lug) * e(ug) +2 f -ug only.,,.

We use this formula to compute the GE,O) source terms of (B.21). On the
other hand, the formula for the shape gradient on the interfaces sup-
porting loads and fixities when these are allowed to deform under the
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action of ®, is more complicated. First, one must be precise about what
a load applied to a deforming interface means and include this in the
calculation of the shape derivative. Second, one must take into account
the singularities that appear at the curve of overlap between the free
boundary and the interfaces where the fixities are applied [9]. We have
decided to side-step these difficulties by computing the G using finite-
differencing. That is, for each deformation generated by the allowed
infinitesimal motions for each interface, we approximate the derivative
with respect to e appearing in (18) by a difference quotient with suit-
ably small ¢. In our test cases, the number of interfaces is small, so this
approach is not too onerous; but it is, of course, not optimal. For the
moment, however, it serves the purpose of demonstrating our velocity-
constrained shape updates. We will replace the finite-differencing with
an approach suggested in [9] (i.e., the volumetric shape derivative
formula) in future work.

4.3. Results

In this section, we demonstrate the C-HSE method on three repre-
sentative problems in 3D: an L-bracket with an aperture, a cantilever,
and the rocker component of the vehicle suspension system discussed
in the introduction. These problems demonstrate the various geomet-
ric constraints that can be imposed on distinct regions of the domain,
including loaded or fixed interfaces, with free-form optimisation in the
rest of the domain.

4.3.1. Implementation details

Here, we note additional implementation details that, while they are
not directly related to our novel contributions, have an important effect
on the subsequent results presented here.

Meshing. Each time we need to evaluate the compliance of a new shape,
we regenerate the mesh from the signed distance function representing
the shape. This occurs for each new shape generation but also for each
iteration of any line searches and for any finite difference computations.
To generate a volume mesh for the component, we first generate a sur-
face mesh from the signed distance function using OpenVDB [18]. We
then use geogram [7] to remesh the surface mesh, including mesh refine-
ment in the regions of loads or supports (this helps reduce the variance
in the compliance due to meshing). Finally, we employ geogram again
to generate the volume mesh from the refined surface mesh.

Timestep selection. Each time we generate a velocity field in order to
update the shape, we need to decide on a timestep. There are a few
mechanisms that inform this decision: first, at the start of each inner loop
of the augmented Lagrangian (i.e., when the augmented Lagrangian pa-
rameters are updated), we perform a line search [20] with six iterations
to determine an optimal timestep for that iteration. For subsequent iter-
ations, we take the timestep value from the previous iteration, increase
it by a small factor, and then apply it to the current iteration. Finally,
in a procedure known as back-tracking, if the Lagrangian has increased

I N;
vt N3
Tz (/\,
Fn1

(a) Fixed interfaces (red), loaded in-
terfaces (green) and applied loads.

(b) Constraint regions (blue).
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after a shape update, we restore the component shape to the state from
before the update, reduce the timestep, and update the shape again with
the smaller timestep.

Smoothing parameter selection. The smoothing parameter y is the fore-
most hyperparameter for the C-HSE method, controlling the amount
of smoothing applied to the velocity field. We note that higher values
of smoothing (to a certain extent) engender faster convergence, while
lower values of y lead to slightly lower objective function values at the
end of optimisation. The smoothing parameter values for the following
problems were selected heuristically.

Topology change. One interesting numerical artefact produced by our
implementation is that it does produce topology changes in the zero-
level set of the evolving level set function, contrary to what we expect
from theory. This is evident in the results that we will present below.
We speculate that the reason for this is the effective numerical dissipa-
tion present in the first-order finite-difference scheme of the transport
equation, which allows the solution procedure to mimic the behaviour
of the non-linear Hamilton-Jacobi equation of standard level set-based
topology optimisation with respect to topology change. For the moment,
we benefit from this artefact in practice, since it allows us to avoid the
additional complexity described in Section 3.5. Nevertheless, we intend
to investigate this artefact more thoroughly in future work.

4.3.2. L-bracket with an aperture

The initial geometry of the L-bracket is shown in Fig. 3. A load is ap-
plied to the face indicated by the green circle (in the direction indicated
by the green arrow), and a fixed boundary condition is imposed on the
two red surfaces. The blue circles represent constraint regions, each with
different imposed geometric constraints. The constraint region labelled
N, is allowed to scale and translate horizontally, while N, is allowed to
scale and translate vertically. The region N; is allowed to translate in-
plane. Finally, the region marked “KO” is defined as a keep-out (i.e., the
component may not overlap with this region). We minimise the com-
pliance of the shape under the defined load, with a volume constraint
ensuring that the volume of our final component does not exceed 20 % of
the initial volume. For this problem with a characteristic length of 140,
the smoothing parameter y> was set to 500 (the effect of this parameter
depends on the size of the problem).

The evolution of the shape throughout the optimisation is shown in
Fig. 4, and the final shape is shown in Fig. 5. Fig. 6 shows the conver-
gence of the Lagrangian for this problem. This problem demonstrates
some key features: first, our ability to very closely maintain the shape of
the constrained regions (the loaded face I'y, remained perfectly cylin-
drical); second, the simultaneous scaling and translation of constraint
regions; third, our ability to optimise for the position and size of the fix-
ities. We remark that despite the symmetry of the setup for this problem,
the optimised shape (Fig. 5) is non-symmetric. While this was mildly un-
expected, the non-symmetry seems to aid in minimising the compliance,

—— -

(c) Isometric view.

Fig. 3. The initial geometry for the L-bracket problem, with all boundary conditions and constraint regions labelled.
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(a) Iteration 0 (b) Iteration 5

(c) Tteration 25
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(d) Iteration 100 (e) Iteration 275

Fig. 4. The L-bracket at various iterations during the optimisation.

Fig. 5. The L-bracket after optimisation. Subplot (a) overlays the initial geometry in green.
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Fig. 6. Convergence plot showing the different contributions to the Lagrangian
for the L-bracket. The values are smoothed by a moving average with a window
size of 5. Note that the contribution of the volume constraint converges to zero,
indicating that the constraint is satisfied.

and we expect that there is an equally optimal shape that can be found
by reflecting the shape in Fig. 5 about the plane defined by the applied
force vector and the pin-hole axis.

4.3.3. Cantilever

The initial geometry of the cantilever is shown in Fig. 7. A down-
ward load is applied to the face indicated by the green line, and fixed
boundary conditions are imposed on the red lines. The blue contours
indicate constraint regions, with region N5 being allowed to translate
vertically, while regions N, and N, are frozen (i.e., are not allowed to
change). Notice that the initial geometry and position of the loaded re-
gion are deliberately asymmetric. We minimise the compliance of the
shape under the defined load, with a volume constraint ensuring that
the volume of our final component does not exceed 30 % of the initial

10

volume. For this problem with a characteristic length of 80, the smooth-
ing parameter y> was set to 4000. This is comparatively larger than the
smoothing parameter for the other two problems; we chose y2 to be large
to help avoid the uncontrolled hole generation/removal discussed in the
following paragraph.

The evolution of the shape throughout the optimisation is shown in
Fig. 8, and the final shape is shown in Fig. 9. Fig. 10 shows the conver-
gence of the Lagrangian for this problem. This problem demonstrates
our ability to optimise for the load interface location (region N;) and
also demonstrates that we can reproduce a theoretical cantilever re-
sult: a Michell truss, albeit a very simple one, similar to those found
in [1,12,28]. We make a cautionary note here: the changes in topology
(i.e., the addition/removal of holes) are due to numerical dissipation, as
discussed in Section 4.3.1, and thus we do not have suitable methods
of controlling these topology changes. This uncontrolled hole genera-
tion/removal leads to slow convergence, which could explain the high
number of iterations required here.

4.3.4. Vehicle suspension rocker

The initial geometry of the suspension rocker is shown in Fig. 11.
Loads are applied to the green circles (representing pin joints that con-
nect to the rest of the suspension assembly) in the direction of the green
arrows with their relative magnitude represented by the arrow length.
Note that the Fy; force has a component that is in the out-of-plane di-
rection, which cannot be seen in Fig. 11. A fixed boundary condition is
imposed on the red line. The blue contours indicate constraint regions,
with region N, being allowed to translate in-plane, while regions N, and
N, are frozen. Constraint region N3 only allows for rotation of the re-
gion about an axis such that the interface (another pin joint) can align
with the applied force (the axis of rotation and the direction of the force
are more obvious in the results in Fig. 13). We again minimise the com-
pliance of the shape under the defined load, with a volume constraint
ensuring that the volume of our final component does not exceed 70 %
of the initial volume. For this problem with a characteristic length of
175, the smoothing parameter y> was set to 1000.

The evolution of the shape throughout the optimisation is shown
in Fig. 12, and the final shape is shown in Fig. 13. Fig. 14 shows
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Ny
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(a) Fixed interfaces (red), loaded in-
terfaces (green) and applied loads.

(b) Constraint regions (blue).
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N3

(c) Isometric view.

Fig. 7. The initial geometry for the cantilever problem, with all boundary conditions and constraint regions labelled.

(a) Iteration 0 (b) Iteration 50

(c) Iteration 500

(d) Iteration 1000 (e) Iteration 1632

Fig. 8. The cantilever at various iterations during the optimisation.

(a)

Fig. 9. The cantilever after optimisation.
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Fig. 10. Convergence plot showing the different contributions to the Lagrangian
for the cantilever. The values are smoothed by a moving average with a window
size of 5. Note the different scale for the y-axes of the two curves. Also, the contri-
bution of the volume constraint converges to zero, indicating that the constraint
is satisfied.

the convergence of the Lagrangian for this problem. This problem also
demonstrates our ability to optimise interface regions, including their
position (as in region N, ) and orientation (as in region N3). In particular,
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Subplot (a) overlays the initial geometry in green.

the constraint region N; rotated to more-optimally align with the applied
force, as depicted in Fig. 13.

5. Limitations and future work

The applications presented in the previous section show that our
level set update procedure can be used within a level set-based topology
algorithm to generate an optimal shape with interface regions having
optimal location, orientation, and scale. While carrying out this work,
a number of limitations have become apparent, some of which we now
highlight.

Topology change. As discussed in earlier sections of the text, the level set
update transport Eq. (1) cannot change the topology of the freely evolv-
ing part of the shape boundary in theory. However, since topology does
change in practice due to numerical dissipation, this does not seem to
be a practical limitation in the examples we have studied. Nevertheless,
we have proposed a theoretical solution to this problem in Section 3.5
which we intend to investigate in future work.

Fine control. We have found instances where the behaviour of the evolv-
ing shape near the interfaces can be quite delicate, leading to a lack of
robustness in the convergence of the topology optimisation procedure.
For example, in some cases it can be difficult to prevent the evolving
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(c) Isometric view.

Fig. 11. The initial geometry for the rocker problem, with all boundary conditions and constraint regions labelled.
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Fig. 13. The suspension rocker after optimisation. The green arrow represents the direction of the applied force acting on I'y; . Subplot (a) overlays the initial geometry

in green.

constrained region from merging into the evolving geometry in the free
region or into another evolving constrained region, when this is the be-
haviour that is “desired” by the sensitivity analysis. Further research
is needed to determine the most lightweight and graceful way of au-
tomatically detecting and handling situations such as these when they
arise.

Smoothness of the evolving geometry. It is sometimes possible to observe
a kink (a.k.a., discontinuity in the tangent planes) arise and grow in
the evolving shape boundary at the location where its constrained re-
gions overlap with its free regions. This occurs because the C-HSE
procedure solves a second-order PDE for the update velocity. We es-
sentially prescribe Dirichlet boundary conditions where the constrained
and free regions overlap, thereby ensuring continuity of the update ve-
locity across the overlap. Consequently, we cannot expect the derivative
of the update velocity across the overlap to be continuous as well. In
practice, however, this effect is small and usually most apparent in the
earlier iterations of topology optimisation. Later iterations tend to cause
the geometry to become smoother as it converges towards local opti-
mality. Nevertheless, it is possible to overcome this problem fully in
theory by considering a stronger smoothing inner product in the HSE
formulation. For example, we could consider a second-order smoothing
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energy that penalises the L? norm of the HSE field along with its first
two derivatives. In this case, the associated fourth-order PDE allows both
the update velocity and its first derivatives to be continuous across the
overlap between the constrained and free regions. Such an approach is
investigated in [26], where it is implemented in a lightweight manner
using a mixed finite element method.

Computation time. Both the standard HSE procedure and our modifica-
tion, the C-HSE procedure, require that an additional PDE be solved
for the update velocity in each iteration of topology optimisation. These
procedures can thus become burdensome if their computation time nears
that of other computationally heavy steps in the topology optimisation
method, e.g., the solution of the linear elasticity equation used to carry
out the sensitivity analysis. However, these PDEs are typically solved in
a much smaller domain than the elasticity equation (in a narrowband
of the shape boundary rather than in the shape itself). In the case of the
standard HSE procedure, which solves a scalar PDE in the narrowband,
the computational expense is deemed acceptable. The C-HSE procedure,
on the other hand, solves a vector PDE in a large subset of the nar-
rowband and can therefore require up to three times as many degrees of
freedom as the standard HSE procedure. The system matrix of the C-HSE
equation is thus up to three times larger, making the computation time
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Fig. 14. Convergence plot showing the different contributions to the Lagrangian
for the rocker. The “adjusted” compliance contribution is computed by subtract-
ing the minimum value of the compliance Lagrangian contribution. The values
are then smoothed by a moving average with a window size of 5. Note the use
of a logarithmic scale for the y-axis. As with the other examples, the contribu-
tion of the volume constraint converges to zero, indicating that the constraint is
satisfied.

correspondingly longer. Despite its increased size, we find that the com-
putational expense of the elasticity equation remains the bottleneck of
the topology optimisation method. We leave the investigation of meth-
ods for accelerating the solution procedure of the C-HSE equations to
future work.

Smoothing parameter selection and update. From our observations on the
effect of y on the optimisation (see Section 4.3.1), we expect that a non-
constant y value could prove beneficial. Thus, as an avenue of future
work, we look to develop an automated y update procedure, in order
to achieve fast convergence and lower final objective function values.
We would also benefit from an automated way of selecting the (initial)
value of y.

Interface sensitivities. As previously discussed, in this work, we employ
finite differencing to compute the shape gradient on the interfaces
(i.e., the G terms). In future work, we plan to explore a volumet-
ric sensitivity analysis [9] to solve for these shape gradients more
efficiently.

Extension to assemblies. In addition to transcending the limitations listed
above, a more significant body of future work concerns the extension
and application of our work to the multi-component setting. We remind
the reader that the inspiration and intended application of our veloc-
ity update is for the co-design of one or more structural components of
an assembly of components, such as the vehicle suspension system of
Fig. 1. To this end, it will be necessary to add the following ingredi-
ents to our methodology. First, we must represent multiple designable
components using separate level set functions that align appropriately
along their interfaces. Second, we must compute sensitivity informa-
tion from a full-assembly simulation, where load cases are prescribed
at the external interfaces of the assembly (e.g., the tire and the chas-
sis for the vehicle suspension system) and propagated throughout the
assembly as design-dependent reaction loads at the interfaces between
the assembly components. This new sensitivity formula will have to re-
place the right-hand side of our C-HSE method. Once this is done, the
C-HSE update velocity can be used to update all level set functions si-
multaneously in a conflict-free manner since the integrated velocity field
acts like a one-parameter family of diffeomorphisms of the background
domain containing all geometry.
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6. Conclusion

In this paper, we have developed a level set-based shape update
procedure for shapes whose boundaries contain interfaces that must pre-
serve their nature in the course of topology optimisation. We achieve
this by incorporating translation, rotation, and scaling constraints in the
interface regions into a novel HSE procedure for the level set update
velocity in each iteration of the topology optimisation method. This pro-
cedure yields an interface-preserving update velocity that is a descent
direction for the optimisation objective function. Consequently, the free-
form part of the shape boundary, as well as the location, orientation, and
scale of the interface regions can be optimised.

Finally, we note that, as with most topology optimisation for-
mulations, the solutions obtained with the proposed method are not
guaranteed to be unique. Multiple locally optimal configurations may
satisfy the objective and constraints, and the final design can depend on
factors such as the initial geometry and the smoothing parameter. The
focus of this paper has been to introduce and demonstrate the C-HSE
framework; a comprehensive exploration of the solution space, includ-
ing the use of multiple initialisations or stochastic search strategies, is a
valuable direction for future work.
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Appendix A. Weak form of the C-HSE equations

By equating the variation of the objective in (13) to zero for all vari-
ations 60 € H (B',R3) and all variations 62(") € R, we obtain the weak
form of the C- HSE equations:

0:/ ®~5®+y2/ DO : DsO
B B

+Z Z 52002 / (V;n) VO 4 DY ; DV<">)
n=1 s,r=1 ()
950 &
_ Z/ <@ -y zg")V;"))
=1 ()N;”) 0n s=1 l l
d/l
)
z::/ - (5@ ;52 v )
N d,
- dJq nyo - 60 — 6z / dJg nyo - V.
/aszn ,Zf Szf nN" ’

(A.19)
Appendix B. Numerical implementation of the level set update

Constrained Hilbert space extension. ~ The C-HSE procedure can be imple-
mented quite straightforwardly using a finite element approach. First,
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we describe the discrete versions of 3 and its relevant subsets. For sim-
plicity, we will use the same notation as before for these objects. In every
iteration of topology optimisation, we use the level set function of the
current shape Q to select a narrowband 5 of a fixed small size surround-
ing 0Q consisting of cells from the same uniform background grid used
for the discretisation of the level set function and transport equation. We
excise small internal neighbourhoods B consisting of all grid cells suffi-
ciently close to each interface region I“(,"). We denote these by NV’ ;") , and
we denote the remaining region by B’. The cell boundaries belonging to
o5’ adjacent to the non-design region are denoted by I',.

Next, we introduce finite element shape functions {¢;, : i €
nodes(/3')} for all cells in B’. Here, we use the notation nodes(x) for the
set of nodes contained in any simplicial subset of B’. Without loss of
generality, we can assume multilinear shape functions so that nodes co-
incide with the vertices of the background grid. Let e, for « = 1,2,3 be
the standard basis vectors and let x; for i € nodes(3') be the node loca-
tions. We now introduce a finite element representation for the extension
velocity in B’ that explicitly includes the allowed motion constraints on
the oN ;") and the Dirichlet condition on I',. We propose

N

n

3
Y XA, be |

1 ienades(()f\/,(”)) a=1

3 N
0:= Y Y O.be+

i€nodes(B'\0B') a=1 =1 s

3

(B.20)

Finally, we derive the discrete version of the weak Egs. (A.19) that
we must solve for the coefficients ®,, and z”. To do this, we insert
the representation (B.20) for both ® and 60 into (A.19) (or rather, its
precursor

(©.50)), = / dJonsg - 60,
0Q

which holds when both ® and 60 satisfy the allowed motion con-
straints.) After some work, the result is a positive-definite system of
linear equations. To express these equations compactly, we introduce
the following notation. For each @ = 1,2,3 let ©, :=[...0,,...]" € R
where I is the number of nodes in B’ \ dB’. For each n = 1,..., N let
2™ =[P ]T € R where I is the number of nodes in JN'{".
Let

K 3=/ (di¢; +7Vi - Vo))
B\B

be the relevant integrals of the finite element shape functions. We
partition this data into a collection of matrices:

K .= K, for i, j € nodes(13' \ 01') e R,
KOm .= K,;for i € nodes(B' \ 053)and j € nodes(ON™) e R,
K™ = K, fori.je nodes(a./\/l(")) eRIMXI™

Note that there are no matrices of the form K" for n # n' since the
interface regions are disjoint. Define the matrices of nodal values of the
allowed motion fields

v = VO (x)for i € nodes(&./\/;"))and s=1,....d, e RI"xd,
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Finally, define the source terms

.
GO :=[ /mdjﬂ[nm~ea¢,.foriEnodes(B’\aB’) . ] eR/,
T
G" := [ / dJgnaq - V"fors=1,....d, € R,
0Q
(B.21)

We can now express the discrete version of the weak Egs. (A.19) that
we must solve for the nodal vectors ©, and the z-coefficients in the
following block-matrix form:

K@@, + Y KOy = GO fora = 1,2,3

n
3 VO KOO, + Y VO] KV ® ™ = GO forn=1,...,N.
a a
(B.22)

The system of Egs. (B.22) can be assembled using standard finite-
element methods (e.g., element-wise integration of shape functions and
source terms), and it can be solved using any standard linear solver. We
note that the total number of degrees of freedom of this system is equal
to 31+ Z:,V: | d,, which is typically significantly smaller than the number
of degrees of freedom of the finite element discretisation used for the
elasticity equations in the shape Q since 5 is a small narrowband of Q.

Transport equation. We implement the time-dependent transport
equation for the update of the level set function using the straight-
forward first-order upwind finite-difference scheme described in [24]
on a fixed background grid. We simply modify this scheme by up-
dating the velocity at each time step according to (16). In principle,
one might want to improve the scheme to higher-order accuracy in
order to prevent unwanted numerical drifting of the solution in the
constrained regions, ensuring that the allowed motion occurs exactly.
However, we have found that first-order accuracy is sufficient for our
purposes.

Data availability

No data was used for the research described in the article.
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