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A B S T R A C T

Structural components in assemblies often require specific geometric features — such as cylindrical regions for 

joints — to function correctly. Standard topology optimisation methods, however, struggle to impose geometric,

feature-preserving constraints on selected boundary regions during shape updates. We propose a shape update 

strategy for level set-based topology optimisation of mechanical assemblies that enables constrained shape up-

dates along user-specified boundaries while allowing free-form updates elsewhere. The constrained regions are 

limited to affine motions such as translation, rotation, and scaling, providing greater control that is especially 

valuable in engineering design. This is particularly useful for multi-functional components in larger assemblies, 

where certain boundaries must retain primitive geometries and vary only within specified limits. For example, 

when a component must contain a cylindrical aperture to fit a pin of unknown radius, our method allows simulta-

neous optimisation of the aperture’s location, orientation, and size, alongside the component’s overall topology. 

We extend the standard Hilbert space extension method by introducing its constrained variant which incorpo-

rates affine motion constraints into the velocity extension. The resulting velocity field satisfies descent direction 

requirements for the optimisation while ensuring that all feature-preserving constraints are met. We demonstrate 

the method’s effectiveness on canonical structural problems with geometrically constrained boundaries.

1. Introduction 

1.1. Topology optimisation of components in an assembly

Topology optimisation is often used to design structural compo-

nents to optimally fulfil a load-bearing function subject to constraints 

on material usage, manufacturability, and other factors. The topology 

optimisation algorithm achieves this by iteratively updating the shape 

of the component until a measure of its performance under the applied 

loads (e.g., compliance or average stress) is optimised subject to the 

given constraints. However, structural components are often not meant 

to operate in isolation since they are intended to perform their structural 

function within a larger and more complex engineered system consisting 

of an assembly of interacting components operating together to achieve a 

range of holistic functions. For example, Fig. 1 shows the structural com-

ponent known as the rocker within a vehicle suspension system, whose 

purpose is to transmit loads from the wheel sub-assemblies to the chassis 

through an assembly of rods, springs, dampers, and other components. 

Therefore, the optimal design of such components should ideally take

into account their neighbouring components in the assembly and the 

assembly as a whole.

The components of an assembly typically interact with their neigh-

bours through well-defined interfaces whose nature depends on engineer-

ing requirements. For example, interfaces can be welded connections 

or joint connections that allow only certain relative motions between 

the components. The vehicle suspension system of Fig. 1 shows such 

interfaces between the rocker and its neighbours (pull-rods, anti-roll 

bar, spring/damper sub-assembly). In this system, the components are 

connected to each other through welds, revolute joints, and cylindrical 

joints in such a way that the suspension system as a whole achieves a

desired dynamical performance appropriate for the operational range 

of the vehicle. In order to maintain the integrity and function of the 

assembly, the interface geometries are often highly constrained (e.g., a 

revolute joint must be cylindrical to permit uni-axial rotational motion, 

or a weld must be flat for ease of manufacture). Moreover, the optimality 

of the assembly as a whole can depend critically on the location, orien-

tation, and scale of these interfaces in the design envelope. Therefore,
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Fig. 1. Vehicle suspension assembly. Left: full assembly. Right: rocker detail with 

interfaces. Image courtesy of Andy Harris, Autodesk.

topology optimisation algorithms suitable for the optimal design of com-

ponents in an assembly should be able to respect the constraints and 

design freedoms provided by the interfaces.

In this work, we propose a shape update approach for level set-based 

topology optimisation to find the optimal shape of components in an as-

sembly while preserving the nature of their interfaces. The essence of our 

approach is a new update scheme for the evolving level set function that 

allows for the simultaneous free-form optimisation of the non-interface 

part of component shape boundaries, along with the optimisation of the 

location, orientation, and scale of the interfaces. We achieve this by con-

straining the local shape updates of the interface regions to rigid motions

and orthotropic scalings (which therefore preserve the flat, cylindrical, 

or spherical regions typical of welds and joints — i.e., the nature of 

the interfaces) while allowing the non-interface parts of the component 

shape boundaries to move freely during optimisation. The update can 

be chosen via a shape sensitivity analysis, which ensures that the com-

bined free-form and constrained displacements of the shape boundary 

constitute a descent direction for an optimisation objective function. 

Consequently, for an initial geometry with specified interfaces, if we 

apply the update in each subsequent iteration of a topology optimisa-

tion procedure, the nature of the interface regions will be maintained 

as the shape and its interface parameters (i.e., location, orientation, and 

scale) evolve towards optimality.

The level set update scheme that we develop in this work is based on 

two key modifications of the standard update scheme in level set-based 

topology optimisation, which is based on solving a Hamilton-Jacobi 

equation for the level set function of the updated shape using a well-

chosen update velocity function. First, we construct an update velocity 

that is both a descent direction for the optimisation objective function 

and provides the desired controlled motion of the interfaces at an in-

finitesimal level. We do this by modifying the Hilbert space extension 

(HSE) method to include constraints in the interface regions. Second, we 

integrate the velocity via a time-dependent Hamilton-Jacobi equation, 

which ensures that the macroscopic motion of the level set representing 

the shape has the desired controlled motion in the interface regions.

In this work, we present our update scheme in a simplified single-

component setting that is representative of the full-assembly setting. In 

this way, we can focus on the details of the update scheme while avoid-

ing additional complexities inherent in working with multiple level set 

functions, as well as full-assembly simulation and sensitivity analysis.

1.2. Related work

Traditional topology optimisation methods primarily focus on single-

component optimisation, applying boundary conditions to fixed regions 

of the domain that are excluded from the optimisation process. We 

highlight two key reasons for this: first, these regions often represent in-

terfaces with other existing components in an assembly, and so changes 

to the shape may interfere with correct mating; second, the topology 

optimisation algorithm must account for shape sensitivities in these

regions, which adds complexity to the process. Despite these challenges, 

several studies have sought to address such limitations. In [16], the de-

sign domain is partitioned such that support elements are optimised 

on a special thin-edge layer while the material distribution in the rest 

of the domain is concurrently optimised. Similarly, [22] optimises the 

positions of interface regions connecting a component to a support struc-

ture, alongside the shape and topology of the component represented as 

a level set. Furthermore, [1] incorporates the position and orientation 

of support and load regions as design variables within a density-based 

topology optimisation framework, using a super-Gaussian projection 

method to streamline the model.

Approaches related to our method of constraining boundary re-

gions to rigid transformations include those that incorporate parametric 

primitives into continuum-based topology optimisation. In [21], param-

eterised bars are differentiably projected onto a continuous background 

grid, where a density-based topology optimisation is used to update the 

bar parameters. Similarly, [17] co-optimises a beam model fitted to a 

free-form level set representing a component undergoing topology op-

timisation, refining both the beam model and the free-form geometry 

until convergence. In [15], the moving morphable component approach 

embeds a fixed set of geometric primitives into the design domain, op-

timising their rotation, scaling, and translation parameters based on 

sensitivities from a density-based topology optimisation. They rely on 

representing the entire shape as a collection of geometric primitives, 

whereas in our work the shapes can be free-form and although we do not 

explicitly model primitives in our framework, we impose constraints on 

shape updates to preserve the geometric properties of primitive shapes. 

This allows, for example, the length and radius of bar-like primitives to 

be adjusted during the topology optimisation process.

Topology optimisation with geometric constraints has also been stud-

ied in the context of optimising for manufacturability, where properties 

such as hollow tubes or stamped parts [13], minimum thickness [5], and 

overhang distance [2] are controlled. More recently, a Hilbertian pro-

jection approach was proposed in [29] to handle constraints expressible

as shape functions (e.g., volume, stress, or microstructural properties) 

by constructing a constraint-improving descent direction. While these 

methods also pertain to constrained optimisation, their formulations do 

not allow for constraining shape updates in specified regions to preserve 

the geometric nature of an interface, which is the central focus of our 

work.

Many researchers have also explored topology optimisation of com-

pliant mechanisms, where material placement allows some regions to 

bend to achieve a desired displacement [8,30]. These mechanisms are 

typically designed as single-component entities, facilitating continu-

ous representation of both component and joint geometries. However, 

single-component mechanisms often have a limited range of motion 

and are less compatible with traditional manufacturing methods com-

pared to multiple-component mechanisms. Additionally, extra care is 

required to prevent over-stressing the notches designed for bending 

in compliant mechanisms [23]. In our work, we target a more tradi-

tional mechanism design, where multiple components may be combined 

to form a mechanism with interface regions connecting the com-

ponents. This problem is also tackled in [6], where joint locations 

are optimised along with the topology of a set of connected com-

ponents using the solid isotropic material with penalisation (SIMP) 

method. They use the adjoint method to solve for the joint location 

sensitivities and also model a non-design clearance space around the 

joint geometry. In [27], a Gaussian function is used to parametrise

the joint locations connecting multiple components, optimising the 

joint locations and component shapes with the SIMP method for dis-

placement objectives using non-linear, large-rotation finite element 

analysis.

In summary, while previous studies have made significant strides in 

optimising components within assemblies and incorporating parametric 

primitives in topology optimisation, our level set-based approach of-

fers additional capabilities. Specifically, it enables the optimisation of
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the position, orientation, and scaling of any localised region of the ge-

ometry, with smooth transitions to the surrounding geometry, ensuring 

interface/joint compatibility constraints. 

1.3. Organisation of the paper

This paper is organised as follows. In Section 2, we first present a 

brief review of the key steps in the standard sensitivity-based update 

procedure used in level set-based topology optimisation. We then modify 

this procedure (specifically, the HSE method for constructing the exten-

sion velocity used to update the level set function) to support the optimal 

design of components of an assembly. Section 3 is the heart of our paper, 

where we explain how to incorporate constraints on the level set update 

velocity in the interface regions to ensure that the interfaces are pre-

served during topology optimisation. This is achieved in two steps: our 

constrained Hilbert space extension (C-HSE) method in Section 3.3, and 

the velocity integration in Section 3.4. We then apply our approach to 

solve some representative topology optimisation problems, formulated 

in Section 4.1, with results presented in Section 4.3. Finally, Section 5 

discusses the limitations of the proposed method and outlines directions 

for future work, and Section 6 concludes the paper. 

2. Preliminaries from level set-based topology optimisation

In level set-based topology optimisation, shapes are represented im

plicitly via level set functions defined on a universal design domain

D ⊆ R 

3 containing all admissible shapes. A typical topology optimi

sation problem seeks to find an admissible shape, represented by a level

set function, that optimises a given objective function and satisfies given

constraints (posed as equality and inequality constraints for a collection

of constraint violation functions). The level set-based topology optimi

sation algorithm solves this problem as follows. We start from an initial

shape, represented by an initial level set function, that is given a priori.

The level set function is then updated iteratively in order to improve

the objective function value and reduce constraint violations in each it

eration until the convergence criteria are met. The specific form of the

level set function update in each iteration is determined by performing

a sensitivity analysis of the objective and constraint violation functions

with respect to shape changes. The update itself is typically performed

by solving a so-called Hamilton-Jacobi equation for a short time deter

mined by a line search with an update velocity that is derived from the

sensitivity analysis via a velocity extension procedure.

-

-

-

-

-

This work proposes a modification of the standard level set update

procedure above in order to support a level set-based topology optimi

sation approach for the optimal design of multiple components in an

assembly. We therefore begin by reviewing the standard update proce

dure in more detail before turning to the specifics of the modifications

we have in mind.

-

-

2.1. Shape updates in level set-based topology optimisation

Level set shape representation. Let 𝐹 ∶ D → R be a scalar function

defined on the design domain. The sublevel set of value 𝑐 ∈ R is the 

subset of D defined by {𝑥 ∈ D ∶ 𝐹 (𝑥) ≤ 𝑐}, and the level set of value 𝑐 

is the subset of D defined by {𝑥 ∈ D ∶ 𝐹 (𝑥) = 𝑐}. When 𝐹 is sufficiently 

regular from a mathematical point of view, then these subsets inherit 

a nice structure. For example, it is a classical result of multivariable 

calculus that if 𝐹 is differentiable and 𝑐 is a regular value, then the 𝑐-level 

set of 𝐹 is a differentiable, orientable, two-dimensional submanifold of

D that bounds the 𝑐-sublevel set of 𝐹 (e.g., [25]). We say that a shape Ω 

contained in the design domain D is represented by the level set function 

𝐹 if Ω is the zero-sublevel set of 𝐹 . 

Level set-based shape updates. Let Ω be a shape represented by the level

set function 𝐹 . A level set-based shape update is a one-parameter family 

of shapes of the form Ω 𝜀 ∶= {𝑥 ∈ D ∶            

 

𝐹𝜀 

(𝑥) ≤ 0} where 𝐹 ∶ D →𝜀 R is

a one-parameter family of level set functions that is differentiable with 

respect to 𝜀. We also assume that 𝜀 varies in a small interval containing

zero, and 𝐹0  

= 𝐹 . Consequently, one can show that Ω 𝜀 

is a geometric

perturbation of Ω. 

Level set-based shape updates via deformations. There are a variety of

ways to construct level set-based shape updates. A very geometric way 

is based on deformations of D. A deformation of D is a one-parameter

family of 

3invertible  

 mappings 𝜙 that𝜀 ∶ D → R   

 

is differentiable with

respect to 𝜀, where we assume that 𝜀 varies in a small interval contain

ing zero, and 𝜙 0           

 

is the identity mapping. Any point 𝑥 ∈ D now moves

along a trajectory 𝜀 ↦ 𝜙  

 

(𝑥) starting at 𝑥 as a𝜀   function of the “time” 𝜀. 

The time-dependent  

 vector field Θ𝜀     

3
    

 

∶ D → R of velocity vectors of

these trajectories is called the infinitesimal generator of the deformation 

because 𝜙𝜀 can be reconstructed from the ordinary differential equation 

-

Θ 𝜀 

(𝑥(𝜀)) = 

𝑑𝑥
𝑑𝜀

satisfied by the trajectories. Thus, we also say that Θ is𝜀  

 

the infinitesimal 

generator of 𝜙𝜀  

. 

Let Ω be a shape represented by the level set function 𝐹 , and consider

the shape update Ω𝜀 = 𝜙 𝜀(Ω)  

 

for  

 

some deformation 𝜙 𝜀 

. Then, it is quite

simple to show that Ω 𝜀 

is represented by the level set function 

𝐹 

 

∶= 𝐹 ◦𝜙 

−1.𝜀 𝜀

Thus, every deformation 𝜙 gives to𝜀  rise   

 

a level set-based shape up

date 𝐹𝜀  

. 

-

Equivalent updates via the transport equation. By differentiating the

relationship 𝐹 with respect to , we have𝜀 ◦𝜙𝜀 = 𝐹    𝜀   

0 =
𝜕𝐹 𝜀
𝜕𝜀 

◦𝜙 𝜀 

+
⟨

∇𝐹𝜀◦𝜙 𝜀 

,
𝜕𝜙 𝜀
𝜕𝜀 

⟩ 

.

−1Composing with 𝜙  

 and𝜀  using the definition of the infinitesimal gener

ator, we obtain

-

𝜕𝐹 𝜀
𝜕𝜀 

+ ⟨∇𝐹 𝜀,Θ 𝜀 

⟩ = 0. (1a)

Together with the initial conditions

𝐹 𝜀=0 = 𝐹 , (1b) 

we obtain the initial value problem for the level set-based shape update 

𝐹  

 

, called the𝜀   transport equation. It is an example of the class of Hamilton-

Jacobi equations.

Since the transport Eq. (1) no longer references the original defor-

mation 𝜙 𝜀, the level set update 𝐹 𝜀 can be derived directly from the

infinitesimal generator Θ 𝜀 

simply by solving this equation. We refer to 𝐹 𝜀 

as the level set-based shape update generated by the vector field Θ 𝜀 

. It is a 

fundamental result in the theory of Hamilton-Jacobi equations [14] that 

this update is equivalent for sufficiently small 𝜀 to the deformation-based 

shape update described in the previous paragraph. 

2.2. Choosing the level set-based shape update via sensitivity analysis

Sensitivity with respect to shape changes. In level set-based topology op

timisation, level set functions are updated in each iteration based on the 

sensitivity analysis of the shape-dependent optimisation objective func

tion J . (For brevity, we present the derivations only for the objective 

function; the extension to constrained problems follows analogously.) 

We assume that J is shape-differentiable, meaning that for any level 

set-based shape update Ω  

 

of a shape Ω generated by𝜀   the vector field

Θ 𝜀 

, the limit 

-

-

𝐷J Ω 

(Θ 𝜀=0 

) ∶= lim
𝜀→0

J (Ω 𝜀) − J (Ω)
𝜀 

(2)

exists and is a linear function of Θ 𝜀 

(making it a so-called Fréchet deriva

tive). The above limit is called the shape derivative of J with respect to 

the given shape update.

-
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It can be shown using the techniques of shape differentiation (see 

[11] and numerous papers on level set-based topology optimisation e.g., 

[4,28]) that the shape derivative of many shape-differentiable shape 

functions has the form

𝐷J Ω 

(Θ 𝜀=0) = ∫ 𝜕Ω 

𝑑J Ω 

𝑛 𝜕Ω 

⋅ Θ 𝜀=0, (3)

where the scalar-valued function 𝑑JΩ ∶ 𝜕Ω → R is known as the shape 

gradient of J at the shape Ω. The form (3) is an instance of a general re-

sult known as the Hadamard-Zolésio structure theorem. Moreover, one can 

often derive a reasonably explicit formula for 𝑑J Ω 

depending on the spe-

cific details of the function J . We will not present any derivations here 

since these can readily be found in the literature; see for example [3].

Level set-based shape updates that are descent directions for an objective func-

tion. Typically, in level set-based optimisation algorithms, the level set 

updates are required to cause the objective function J to decrease in ev-

ery iteration. The above sensitivity analysis provides a condition on Θ 𝜀 

that ensures this for sufficiently small 𝜀 as the shape is updated under 

the deformation generated by Θ 𝜀 

. We can deduce this condition from 

the identity

J (Ω 𝜀) = J (Ω) + 𝜀𝐷J Ω 

(Θ 𝜀=0 

) + 𝑜(𝜀), (4)

which holds by definition of shape-differentiability. We see that J (Ω 𝜀 

)
decreases for sufficiently small 𝜀 when

𝐷J Ω 

(Θ 𝜀=0) = ∫ 𝜕Ω
𝑑J Ω 

𝑛 𝜕Ω 

⋅ Θ 𝜀=0 < 0 (5)

is satisfied. A shape update satisfying this condition is said to be a descent 

direction for J at Ω. In particular, the steepest descent direction is when 

the shape update satisfies 𝑛𝜕 Ω 

⋅ Θ =0 

= −𝑑JΩ .𝜀

Velocity extension. Being a descent direction is clearly an underdeter-

mined condition because (5) constrains only the values of the normal 

component of Θ 𝜀(𝑥) for 𝑥 ∈ 𝜕Ω at time 𝜀 = 0. The final step in the up-

date of the level set function via the transport Eq. (1) is thus to extend 

the definition of Θ 𝜀 

(𝑥) to all remaining 𝑥 (at least in a narrowband of 𝜕Ω 

and for 𝜀 ≠ 0).
There are two common ways to construct such extensions, the classi-

cal normal extension procedure where Θ 𝜀 

is defined to be constant along 

normal lines emanating from 𝜕Ω in the narrowband, and the HSE pro-

cedure, where Θ 𝜀 

is obtained by solving a partial differential equation

(PDE) in the narrowband. The latter has been found to be more desirable 

since it creates a smoother extension velocity and leads to fewer oscilla-

tions in the overall convergence of the topology optimisation procedure. 

See [10] for a discussion of these and other extension approaches.

2.3. The Hilbert space extension method

We will now describe the HSE method in more detail, since the ap-

proach we propose in this paper for constructing the extension velocity 

in such a way that it preserves the nature of the interfaces is based on 

it.

The linear algebra of gradients in a Hilbert space. A Hilbert space is a com-

plete vector space that possesses a symmetric, strictly positive definite 

bilinear form, a.k.a., an inner product. Let H be a Hilbert space with

an inner product ⟨⟨⋅, ⋅⟩⟩ H 

. Consider the Fréchet derivative of a function

𝑇 ∶ H → R, namely the linear functional 𝐷𝑇 𝑢 defined by

𝐷𝑇 𝑢(𝑣) ∶= 

𝑑
𝑑𝜀

𝑇 (𝑢 + 𝜀𝑣) 

|

|

|

|𝜀=0
∀ 𝑣 ∈ H

that gives the rate of change of 𝑇 in the direction 𝑣 at the point 𝑢 ∈ H. 

The so-called Hilbert space gradient of 𝑇 at 𝑢 ∈ H, denoted grad(𝑇 )𝑢 ,

satisfies 

𝐷𝑇 𝑢(𝑣) = ⟨⟨grad(𝑇 ) 𝑢 

, 𝑣⟩⟩ H ∀ 𝑣 ∈ H.

Using the properties of the Hilbert space inner product and the definition 

of the Fréchet derivative, it is straightforward to show that −grad(𝑇 ) 𝑢 

is 

a descent direction for 𝑇 at 𝑢 ∈ H (see [3]).

Application to the shape gradient in level set-based topology optimisation.

We now consider a Hilbert space of infinitesimal generators of deforma-

tions of a domain B ⊆ D contained in the universal design domain D. 

To be precise, B is a narrowband of 𝜕Ω from which we have excised 

smaller narrowbands of any parts of Ω where the extension velocity 

is required to vanish (e.g., non-design regions in the interior of Ω or 

on the boundary 𝜕Ω). Let Γ 0 

be the union of all parts of 𝜕B in contact 

with these non-design regions. We choose the Hilbert space 𝐻 

1 

0 (B,R 

3 )
of square-integrable vector fields on B with square-integrable first weak 

derivatives and satisfying homogeneous Dirichlet boundary conditions 

on Γ 0. We equip this space with the inner product 

⟨⟨Θ 1,Θ 2 

⟩⟩ 𝛾 ∶= ∫ B
Θ 1 ⋅ Θ 2 + 𝛾 

2 

∫ B 

𝐷Θ 1 

∶ 𝐷Θ 2 ∀Θ 1 

,Θ 2 ∈ 𝐻 

1 

0 (B,R 

3 ),

where 𝛾 > 0 is a scalar parameter. The space 𝐻 

1 

0 (B,R 

3 ) together with 

the inner product ⟨⟨⋅, ⋅⟩⟩ 𝛾 is an example of a so-called Sobolev space of 

vector-valued functions. Next, we consider the shape derivative of the 

objective function J as a linear functional on this space, namely

𝐷J Ω ∶ 𝐻 

1 

0 (B,R 

3 ) → R

𝐷J Ω(Θ) ∶= ∫ 𝜕Ω
𝑑J Ω 

𝑛 𝜕Ω ⋅ Θ,

where 𝑑J Ω 

is the shape gradient as defined in Section 2.2. We note 

that 𝐷JΩ is  

    𝐻 

1indeed a bounded linear  B 3functional on  

 under0 ( ,R ) 

suitable regularity assumptions thanks to the trace theorems of mathe-

matical analysis [14]. Consequently, 𝐷J Ω 

has a Hilbert space gradient 

with respect to the inner product ⟨⟨⋅, ⋅⟩⟩𝛾 , which 

 

satisfies

⟨⟨grad(J ) Ω,Θ⟩⟩ 𝛾 = ∫ 𝜕Ω
𝑑J Ω 

𝑛 𝜕Ω ⋅ Θ ∀Θ ∈ 𝐻 

1
0 (B,R 

3 ). (6)

As discussed above, the vector field −grad(J ) Ω is a  

 

descent direction 

for J at Ω. That is, if Ω denotes the𝜀  updated shape with respect to the 

deformation generated by this vector field, then we substitute Θ 𝜀=0 

∶= 

−grad(J ) Ω into (4) and apply (6) to obtain 

J (Ω 𝜀 

) = J (Ω) − 𝜀⟨⟨grad(J ) Ω, grad(J ) Ω⟩⟩ 𝛾 

+ 𝑜(𝜀) < J (Ω)

when 𝜀 > 0 is sufficiently small. In the context of topology optimisation, 

we will call the vector field grad(J ) Ω 

the HSE velocity associated with 

the shape derivative 𝐷J Ω. Moreover, we will see below why the HSE 

velocity enjoys a smoothing property controlled by 𝛾. As mentioned, 

this smoothing property has been observed to improve the behaviour 

of the shape updates, leading to better convergence in level set-based 

topology optimisation.

NOTE: There are many ways to apply the notion of Hilbert space gra-

dient to the shape derivative of a shape-differentiable objective function. 

Some interesting possibilities are described in [3], including an interpre-

tation of the Sequential Linear Programming approach to level set-based 

topology optimisation [28].

Equations satisfied by the HSE velocity. The defining Eq. (6) of the HSE

velocity amounts to the weak form of a PDE. It is instructive to see 

the PDE itself, which we obtain in the usual way by integrating the

Computers and Structures 319 (2025) 107973 

4 



A. Humphry, M. Ebrahimi, N. Morris et al.

derivative terms by parts. We see that Θ ∶= grad(J )Ω  

satisfies

Θ − 𝛾 

2 ΔΘ = 𝐺 in B,
𝜕Θ
𝜕𝑛

= 0 on 𝜕B ⧵ Γ 0 

,

Θ = 0 on Γ 0 

,

(7)

𝜕where Δ is the scalar Laplace operator and is𝜕𝑛  the outward normal

derivative, both acting component-wise. The right-hand side 𝐺 should 

be understood as a distribution supported on 𝜕Ω which is defined by 

integration against test functions via

∫ B
𝐺 ⋅ Θ ∶= ∫ 𝜕Ω

𝑑J Ω 

𝑛 𝜕Ω ⋅ Θ ∀Θ ∈ 𝐻 

1 

0 (B,R 

3 ).

From the strong form (7), we see that the components of the HSE ve-

locity satisfy an elliptic PDE whose eigenvalues are strictly positive 

thanks to the presence of the negative Laplace operator. Therefore, we 

can interpret the solution of (7) as a diffusive smoothing of 𝐺 where 𝛾 

can be characterised as a length-scale over which the smoothing takes 

place.

3. Geometrically constrained level set-based shape updates

We now turn to the central construction of this paper, namely a shape 

update for a component in a larger assembly that preserves the desired 

geometric features of the interface regions where the component inter-

acts with its neighbouring components. In the context of level set-based 

topology optimisation, this means constructing the infinitesimal gener-

ator Θ 𝜀 

of a level set update, via the transport Eq. (1), that achieves this 

behaviour in the updated level set function 𝐹 𝜀 

. We propose the following 

two-step construction:

1. Enforce infinitesimal motion constraints in the interface regions

during the velocity extension procedure that determines Θ .𝜀=0  

 

The resulting vector field must be a descent direction for the 

optimisation objective function.

2. Define Θ  

 

for 𝜀 ≠ 0 in such a way that the transport𝜀   equation

induces the desired macroscopic motion of the level set function.

We now describe these two steps in more detail, beginning with precise 

definitions of the motions we wish to allow in the interface regions.

3.1. Geometry of the interfaces

The shapes we consider in this paper are meant to represent the ge

ometry of an individual component in an assembly consisting of multiple 

interacting components. A shape Ω of this kind interacts with the rest 

of the assembly through a collection of interfaces where Ω comes into 

contact with its neighbours. Thus, we assume 𝜕Ω contains a collection 

(1) (𝑁)
of disjoint subsets Γ ,… ,Γ where these interactions occur.𝐼 𝐼   As we 

know, the geometry of these subsets is special — e.g., flat if the inter

face supports a weld, cylindrical if the interface supports a revolute joint. 

We endow  𝑛 

𝑡ℎ 
(𝑛) 3the interface with a spatial location parameter 𝑝 ∈𝐼  R 

(
and an orientation parameter 𝑄 𝑛)

 ∈ R3×3 

𝐼  given as an orthonormal ma-

trix; these are sufficient to locate the interfaces in space. 

-

-

Fig. 2 illustrates 

these parameters for a domain with two interfaces.

NOTE: Recall that 𝜕Ω may also contain additional subsets where ex

ternal surface traction forces per unit area (i.e., Neumann boundary 

conditions) or fixities (i.e., Dirichlet boundary conditions) are imposed. 

We denote these subsets by Γ𝑁 and Γ ,𝐷  respectively. If  

  

we wish to

include these in the design domain, we count them among the interfaces.

-

3.2. Preserving geometry at the interfaces

Thanks to their critical role in the assembly, component interfaces 

are only allowed to move during topology optimisation in such a way

Fig. 2. Notation for interfaces.

as to preserve their special nature — e.g., flat interfaces remain flat, 

cylindrical interfaces remain cylindrical. In this paper, we satisfy this 

requirement by ensuring that the interfaces are only allowed to move 

by rigid motions (translations and rotations) and by orthotropic scalings 

aligned with the orientation of the interface (e.g., cylindrical aperture 

supporting a revolute joint may increase in radius or length). Motions 

of this kind will affect the location and orientation parameters of the 

interfaces as well as their sizes relative to the axes of orientation, but 

will not change the nature of the interfaces. In what follows, we show 

how to define and impose these motion constraints.

Allowed motions. We state the following definitions of the allowable

motions and their infinitesimal generators. 

Translations. The one-parameter family of translations by 𝑡 ∈ R 

3 is given 

by

𝜙 

𝑡𝑟𝑎𝑛𝑠
𝜀 (𝑥) ∶= 𝑥 + 𝜀𝑡.

The infinitesimal generator of this motion is the affine vector field

Θ 

𝑡𝑟𝑎𝑛𝑠 (𝑥) ∶= 𝑡.

Without loss of generality, we can write 𝑡 = 𝑄𝑡0 for 𝑡0 ∈ R  

 

3 when an

orientation is prescribed via an orthogonal matrix 𝑄 ∈ R 

3×3. 

Rotations. The one-parameter family of rotations about a fixed point 𝑝 ∈
R   

 

3 3and an axis ℎ ∈ R through 𝑝 is given by

𝜙 

𝑟𝑜𝑡
𝜀 (𝑥) ∶= exp(𝜀A(ℎ))(𝑥 − 𝑝) + 𝑝,

where A(ℎ) is the antisymmetric matrix satisfying A(ℎ)𝑥 = ℎ × 𝑥. The 

matrix exponential can be computed using the Rodrigues formula. Note 

that ℎ is un-normalised, and thus ‖ℎ‖ gives the angular velocity of the 

rotation about the unit axis ℎ∕‖ℎ‖. The infinitesimal generator of this 

motion is the affine vector field

Θ 

𝑟𝑜𝑡 (𝑥) ∶= A(ℎ)(𝑥 − 𝑝).

Without loss of generality, we can write ℎ = 𝑄ℎ 0 

for ℎ 0 ∈ R  

 

3 when an

orientation is prescribed via an orthogonal matrix 𝑄 ∈ R 

3×3.

Orthotropic scalings. The one-parameter family of orthotropic scalings 

about a fixed point 𝑝 and by scaling factors 𝑑 ∶= (𝑑1  

, 𝑑 2 

, 𝑑 3 

) oriented 

along the columns of an orthogonal matrix 𝑄 ∈ R3×3 

          is given by

𝜙 

𝑠𝑐𝑎𝑙
𝜀 (𝑥) ∶= 𝑄 exp(𝜀𝐷)𝑄 

⊤ (𝑥 − 𝑝) + 𝑝,

where 𝐷 = 𝑑𝑖𝑎𝑔(𝑑) and the matrix exponential is just exp(𝜀𝐷) = 

𝑑𝑖𝑎𝑔(𝑒 

𝜀𝑑1  , 𝑒 

𝜀𝑑2  , 𝑒 

𝜀𝑑 3 ). The infinitesimal generator of this motion is the
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affine vector field

Θ 

𝑠𝑐𝑎𝑙 (𝑥) ∶= 𝑄𝐷𝑄 

⊤ (𝑥 − 𝑝). 

Compound motions. It is necessary to make a concrete choice for the order 

of operations of a combination of the above motions since they do not, 

in general, commute. We choose

𝜙 

𝑎𝑙𝑙𝑜𝑤𝑒𝑑
𝜀 (𝑥) ∶= 𝜙 

𝑡𝑟𝑎𝑛𝑠
𝜀 ◦𝜙 

𝑟𝑜𝑡
𝜀 ◦𝜙 

𝑠𝑐𝑎𝑙
𝜀 (𝑥) (8)

= exp(𝜀A(ℎ))𝑄 exp(𝜀𝐷)𝑄 

⊤ (𝑥 − 𝑝) + 𝑝 + 𝜀𝑡

as the allowed compound motion of each interface. The infinitesimal 

generator of this motion is the affine vector field

Θ 

𝑎𝑙𝑙𝑜𝑤𝑒𝑑
𝜀 (𝑥) ∶= 𝑡 + A(ℎ)(𝑥 − 𝑝 − 𝜀𝑡)

+ exp(𝜀A(ℎ)) 𝑄𝐷𝑄 

⊤exp(−𝜀A(ℎ))(𝑥 − 𝑝 − 𝜀𝑡). (9)

Note that unlike the infinitesimal generators of the individual transla

tions, rotations, and orthotropic scalings, this vector field is explicitly 

time-dependent. 

-

A basis for the allowed infinitesimal generators of an interface. We see

from (9) that the infinitesimal generator of the allowed compound 

motion at 𝜀 = 0 satisfies

Θ 

𝑎𝑙𝑙𝑜𝑤𝑒𝑑
𝜀=0 (𝑥) ∶= 𝑡 + A(ℎ)(𝑥 − 𝑝) + 𝑄𝐷𝑄 

⊤ (𝑥 − 𝑝), (10)

which is simply a linear combination of an infinitesimal translation field, 

an infinitesimal rotation field, and an infinitesimal orthotropic scaling 

field. Therefore, the allowed infinitesimal motions belong to a finite-

dimensional space spanned by vector fields of these kinds. We now 

construct a basis for this space near a given interface.

Let Γ  

 

be one of the interfaces, with the spatial location𝐼   parameter 

𝑝 𝐼            

 

and orientation parameter 𝑄𝐼 

∶= [𝑞𝐼,1 

, 𝑞𝐼,2 

, 𝑞𝐼,3 

]. Define the linearly
independent vector fields

𝑉 

𝑡𝑟𝑎𝑛𝑠
1 

(𝑥) ∶= 𝑞 𝐼,1, 𝑉 

𝑟𝑜𝑡
1 

(𝑥) ∶= A(𝑞 𝐼,1)(𝑥 − 𝑝 𝐼 

), 𝑉 

𝑠𝑐𝑎𝑙
1 

(𝑥) ∶= 𝑞 𝐼,1 

[𝑞 𝐼,1] 

⊤(𝑥 − 𝑝 𝐼 

),

𝑉 

𝑡𝑟𝑎𝑛𝑠
2 

(𝑥) ∶= 𝑞 𝐼,2, 𝑉 

𝑟𝑜𝑡
2 

(𝑥) ∶= A(𝑞 𝐼,2)(𝑥 − 𝑝 𝐼 

), 𝑉 

𝑠𝑐𝑎𝑙
2 

(𝑥) ∶= 𝑞 𝐼,2 

[𝑞 𝐼,2] 

⊤(𝑥 − 𝑝 𝐼 

),

𝑉 

𝑡𝑟𝑎𝑛𝑠
3 (𝑥) ∶= 𝑞 𝐼,3, 𝑉 

𝑟𝑜𝑡
3 (𝑥) ∶= A(𝑞 𝐼,2)(𝑥 − 𝑝 𝐼 

), 𝑉 

𝑠𝑐𝑎𝑙
3 (𝑥) ∶= 𝑞 𝐼,3 

[𝑞 𝐼,3] 

⊤(𝑥 − 𝑝 𝐼 

).

These vector fields form a basis for the nine-dimensional vector space 

spanned by the infinitesimal generators of all translations, rotations, 

and orthotropic scalings aligned with the orientation and location of 

the interface. 

The desired vector space of allowed motions is a subspace of this

vector space whose precise definition depends on the nature of the in

terface, since we may not always want to allow all nine dimensions 

of design freedom. For example, if the interface supports a revolute 

joint, then Γ𝐼 is a cylinder oriented along, say, the axis 𝑞 𝐼,1 

. The al

lowed motions must preserve the fact that Γ  

 

is a cylinder; thus only𝐼  

orthotropic scalings in the 𝑞 1 direction and uniform ortho𝐼,  tropic scal

ings in the {𝑞𝐼 ,2 

, 𝑞 𝐼,3} plane are allowed, while rotations about the 𝑞 𝐼,1 

axis are irrelevant. Therefore, the subspace of allowed motions in this 

case is the seven-dimensional vector space spanned by the velocity fields

𝑉 

𝑡𝑟𝑎𝑛𝑠
1 , 𝑉 𝑡𝑟𝑎𝑛𝑠

2 , 𝑉 𝑡𝑟𝑎𝑛𝑠
3 , 𝑉 𝑟𝑜𝑡

2 , 𝑉 𝑟𝑜𝑡
3 , 𝑉 𝑠𝑐𝑎𝑙

1 , and 𝑉 

𝑠𝑐𝑎𝑙
2 + 𝑉 

𝑠𝑐𝑎𝑙.3  

 

-

-

-

Allowed motion constraints on the extension velocity. Recall that in each

iteration of topology optimisation, the motion of the shape Ω is obtained 

by solving the transport Eq. (1) for the level set update with an extension 

velocity Θ 𝜀 

derived from a sensitivity calculation. We will thus achieve 

the allowable motions of each interface of Ω by imposing constraints on

Θ 𝜀 

in the vicinity of each interface. 

Let B be the narrowband of 𝜕Ω where we intend to construct the ex

tension velocity, and let N (𝑛)
𝐼 ⊆ B denote a smaller narrowband of each 

Γ(𝑛) that is small enough to be contained in𝐼   B. We can now formulate 

the allowed motion constraints as follows.

-

• First, we require that the restriction of Θ 𝜀=0  

 

to this narrowband

belongs to the vector space spanned by the allowed infinitesimal 

(𝑛
motions of Γ ) (𝑛) 𝑛)

   . Let … (
for some ≤ 9 be a basis for𝐼   𝑉 1 , , 𝑉𝑑   𝑑𝑛      

𝑛  

 

(𝑛)
the allowed infinitesimal motions near Γ  

𝐼 . Thus, there exist scalar
(𝑧 𝑛)

coefficients that1 ,… (, 𝑧 𝑛) 

 𝑛 
∈ R𝑑   so 

Θ 𝜀=0 

(𝑥) =
𝑑 𝑛
∑

𝑠=1
𝑧 

(𝑛)
𝑠 𝑉 

(𝑛)
𝑠 (𝑥) ∀ 𝑥 ∈ N 

(𝑛)
𝐼 . (11)

Each such vector can then be expressed as a linear combination 

of the infinitesimal rotation, translation, and scaling vector fields 

introduced above. 

• Second, we require that Θ 𝜀≠0 

has the form (9), where 𝑡, ℎ, and 𝑑 are

the appropriate linear combinations of the 𝑧-coefficients determined 

from (11).

These constraints now ensure that the deformation generated by Θ𝜀 
(𝑛)

 

per

forms the allowed motion near Γ  

 for𝐼  sufficiently small 𝜀 — namely 

(
until 𝜙𝜀 (𝑥) leaves N 𝑛) (𝑛)

 for𝐼  some 

 

𝑥 ∈ Γ .𝐼 

-

3.3. The constrained Hilbert space extension method

We now introduce the constrained Hilbert space extension method as 

the first step in the construction of the extension velocity that we pro-

pose to use in each iteration of level set-based topology optimisation. 

The purpose of this method is to find an update velocity that satisfies 

the constraints (11) while remaining a descent direction for the optimi-

sation objective function and enjoying the smoothing properties of the 

conventional HSE method. 

The HSE procedure is variational. The starting point for our modifica-

tion of the HSE procedure is the following important observation: the 

conventional HSE velocity associated with the shape gradient 𝑑J Ω 

of a 

shape-differentiable objective function J can be obtained by solving a 

variational problem. That is, Equation (6) defining the HSE velocity is 

the first-order optimality condition for the variational problem

minimise
1
2
⟨⟨Θ,Θ⟩⟩ 𝛾 − ∫ 𝜕Ω 

𝑑J Ω 

𝑛 𝜕Ω ⋅ Θ

over Θ ∈ 𝐻 

1
0 (B,R 

3 ).

Since the above minimisation problem is convex quadratic, the solution 

of the first-order optimality condition is the unique global minimiser. 

Adding allowed motion constraints. Our proposed method is simply to

include the constraints (11) on the extension velocity into the above 

minimisation problem. That is, we define the desired extension velocity

Θ 𝐶𝐻𝑆𝐸 

to be the solution of

minimise
1
2
⟨⟨Θ,Θ⟩⟩ 𝛾 − ∫ 𝜕Ω

𝑑J Ω 

𝑛 𝜕Ω ⋅ Θ (12a)

subject to Θ(𝑥) =
𝑑 𝑛
∑

𝑠=1
𝑧 

(𝑛)
𝑠 𝑉 

(𝑛)
𝑠 (𝑥) ∀ 𝑥 ∈ N 

(𝑛)
𝐼 and ∀ 𝑛 = 1, … 𝑁

(12b)

over Θ ∈ 𝐻 

1
0 (B,R 

3) and 𝑧 

(1)
1 ,… , 𝑧(𝑁) 

𝑑 𝑁
∈ R. 

1Since the included constraints carve out a linear subspace of 𝐻 0 (B,R
 

 

3),
the constrained minimisation problem is still convex and has a unique

global minimiser.

Equations satisfied by the C-HSE velocity. We first recast the variational

problem (12) in a more convenient form. It is clear that (12) is equivalent 

to minimising the objective function (12a) over vector fields defined on
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the smaller domain

B 

′ ∶= B ⧵ 

𝑁
⋃ 

𝑛=1
N 

(𝑛)
𝐼

with the constraints (12b) given as boundary conditions on each 𝜕N 

(𝑛)
𝐼 

. 

The minimiser in the full domain B is then just obtained by extending 

the solution to the interior of each N 

(𝑛) 

𝐼 via (12b) with the minimising 

𝑧-coefficients.

We would typically include essential boundary conditions of this form

(12b) in the definition of the space of functions over which the vari-

ational problem is posed. However, since the unknown 𝑧-coefficients 

appear in these boundary conditions, it turns out to be more conve-

nient to include them in the objective function instead via a Nitsche 

term [19]. Thus, we arrive at the equivalent variational problem for the 

C-HSE velocity

minimise 1
2Q 

( 

Θ, 𝑧(1)1 ,… , 𝑧(𝑁) 

𝑑 𝑁

)

− L 

(

Θ, 𝑧(1) 

1 

,… , 𝑧(𝑁) 

𝑑 𝑁 

)

− 

∑𝑁
𝑛=1 ∫ 𝜕N (𝑛)

𝐼

𝜕Θ
𝜕𝑛 ⋅ 

( 

Θ − 

∑ 𝑑 𝑛 

𝑠=1 𝑧 

(𝑛)
𝑠 

𝑉 

(𝑛)
𝑠

)

(13)

1over Θ ∈ 𝐻 0 (B 

′ ,R 

3) (1) (𝑁)
and

 

 𝑧1 ,… , 𝑧𝑑𝑁 ∈ R,

where

Q 

( 

Θ, 𝑧(1)1 

,… , 𝑧(𝑁) 

𝑑 𝑁

)

∶ = ∫B′
Θ ⋅ Θ + 𝛾 

2 

∫B 

′
𝐷Θ ∶ 𝐷Θ

+
𝑁 

∑ 

𝑛=1

𝑑 𝑛 

∑

𝑠,𝑡=1
𝑧 

(𝑛)
𝑠 𝑧 

(𝑛)
𝑡 ∫ N (𝑛)

𝐼

(

𝑉 (𝑛)
𝑠 ⋅ 𝑉 

(𝑛)
𝑡 + 𝛾 

2 𝐷𝑉 

(𝑛)
𝑠 ∶ 𝐷𝑉 

(𝑛)
𝑡

) 

,

L 

(

Θ, 𝑧(1)1 

,… , 𝑧(𝑁) 

𝑑 𝑁

) 

∶= ∫ 𝜕Ω∩B′ 

𝑑J Ω 

𝑛 𝜕Ω ⋅ Θ +
𝑁
∑ 

𝑛=1

𝑑 𝑛
∑

𝑠=1
𝑧 

(𝑛)
𝑠 ∫ 𝜕Ω∩N (𝑛)

𝐼

𝑑J Ω 

𝑛 𝜕Ω ⋅ 𝑉 

(𝑛)
𝑠

are, respectively, positive-definite quadratic and linear functionals

    Θ ∈ 𝐻 

1 ′acting on both functions 0 (B ,R 

3 ) as well as the 𝑧-coefficients. 

We can now derive the weak and strong forms of the first-order opti
1mality conditions satisfied by minimising Θ ∈ 𝐻 B′ 3 as well as the0 (  ,R )    

𝑧-coefficients in the usual way. For brevity, we present the weak form 

in 

-

Appendix A. The strong form consists of the following algebraic and 

partial differential equations:

Θ − 𝛾 

2 ΔΘ = 𝐺 in B 

′, 

Θ = 0 on Γ 0 

,

Θ = 

𝑑 𝑛
∑

𝑠=1
𝑧 

(𝑛)
𝑠 𝑉 

(𝑛)
𝑠 on 𝜕N 

(𝑛)
𝐼 for 𝑛 = 1, … , 𝑁, 

𝜕Θ
𝜕𝑛 

= 0 on 𝜕B ⧵ 

( 

Γ0 ∪ 𝜕N 

(1)
𝐼 ∪ ⋯ ∪ 𝜕N 

(𝑁) 

𝐼

) 

,

(14a)

together with

𝑑 𝑛
∑ 

𝑡=1
𝐾 

(𝑛)
𝑠𝑡 𝑧 

(𝑛)
𝑡 + ∫ 𝜕N (𝑛)

𝐼

𝜕Θ
𝜕𝑛

⋅ 𝑉 

(𝑛)
𝑠 = 𝐺 

(𝑛)
𝑠 for 𝑠 = 1, … , 𝑑 𝑛 

and 𝑛 = 1, … , 𝑁.

(14b)

In the above equations,

𝐾 

(𝑛)
𝑠𝑡 

∶= ∫ N (𝑛)
𝐼

(

𝑉 (𝑛)
𝑠 ⋅ 𝑉 

(𝑛)
𝑡 + 𝛾 

2 𝐷𝑉 

(𝑛) 

𝑠 ∶ 𝐷𝑉 

(𝑛)
𝑡

) 

,

𝐺 

(𝑛)
𝑠 ∶= ∫ 𝜕Ω∩N (𝑛)

𝐼

𝑑J Ω 

𝑛 𝜕Ω ⋅ 𝑉 

(𝑛)
𝑠 

, 

and 𝐺 is the distribution defined by its action on test functions via

∫ B′ 

𝐺 ⋅ 𝛿Θ ∶= ∫ 𝜕Ω∩B′ 

𝑑J Ω 

𝑛 𝜕Ω ⋅ 𝛿Θ ∀ 𝛿Θ ∈ 𝐻 

1
0 (B 

′ ,R 

3 ).

If we now compare these equations with those satisfied by the un-

constrained HSE velocity (7) we see that the C-HSE velocity satisfies

the same elliptic partial differential Eq. (14a) but with new boundary 

conditions depending on the 𝑧-coefficients on each 𝜕N 

(𝑛)
𝐼 . A unique

solution to this equation exists for any choice of 𝑧-coefficients and ex-

hibits the expected smoothing properties. The 𝑧-coefficients can then be 

determined uniquely via the integral conditions (14b). For details on 

how we discretise and solve (14) using the finite element method, see 

Appendix B.

The C-HSE velocity yields a descent direction. Let Θ𝐶 and𝐻𝑆𝐸  

(1) (
 

𝑧1 ,… , 𝑧 𝑁) 

be solution𝑑  the  of the C-HSE equations. Substitute these and
𝑁 

Θ ∶= Θ ( )𝛿    and𝐶𝐻𝑆𝐸  𝛿𝑧 𝑛
 

 𝑠 ∶= (
 𝑧 𝑛) 

 into𝑠  the weak Eq. (A.19). Thanks to the

boundary conditions satisfied by Θ 𝐶𝐻𝑆𝐸 

on each 𝜕N 

(𝑛)
𝐼 , the constraint

terms vanish, and the remaining terms collapse by definition. Thus, we 

obtain

0 = ⟨⟨Θ 𝐶𝐻𝑆𝐸 

,Θ 𝐶𝐻𝑆𝐸⟩⟩ 𝛾 − ∫ 𝜕Ω 

𝑑J Ω 

𝑛 𝜕Ω 

⋅ Θ 𝐶𝐻𝑆𝐸 , (15) 

where we view Θ as a function defined on B, but equal to
∑

𝐶 𝐻𝑆𝐸          

 𝑑𝑛  
( )

 

𝑠=1 𝑧
𝑛 (
𝑠 𝑉 𝑛) 𝑛

 on𝑠   N ( )
each

 

𝐼 . Equation (15) implies that −Θ 𝐶𝐻𝑆𝐸 

is a

descent direction for J at Ω. 

Conclusion. The first step in the construction of the extension velocity

used in each iteration of level set-based topology optimisation is to let

Θ =0 

∶= −Θ i.e., the 

 

, negative𝜀  C-HSE velocity𝐶𝐻𝑆𝐸   defined in the pre

vious paragraph. As a result, we obtain both a descent direction for the 

optimisation objective function and a velocity that satisfies the infinites

imal motion constraints (

-

-

11) in the neighbourhood of each interface by 

construction.

3.4. Time-dependence of the extension velocity

We now turn to the second step of the construction of the extension

velocity used in each iteration of level set-based topology optimisation.

This is to define Θ for𝜀   

 

𝜀 ≠ 0 in such a way that we obtain the al

lowed macroscopic motions of the interfaces, i.e., the combination of

translation, rotation, and scaling of the form (

-

8), at least for sufficiently

small 𝜀.
Recall that the desired motion will occur if the infinitesimal genera

tor has the form (9) near each interface. We achieve this as follows. For
(𝑡 𝑛) )

each interface, let
 (𝑛) (𝑛

   , ℎ , and 𝑑  

 be the unique translation, rotation,𝐼 𝐼 𝐼  

(𝑛)
and scaling parameters determined

 (𝑛) 

 from the coefficients 𝑧1 ,… , 𝑧 to𝑑 𝑛 

cause (

-

11
(

) to match the desired form inside N 𝑛) ( )
 at𝐼  𝜀 𝑎𝑙𝑙𝑜𝑤𝑒𝑑, 𝑛

 = 0. Let Θ𝜀 
(

denote the matching time-dependent vector field. Let𝜒 𝑛)
𝐼 ∶ B → R be 

(𝑛)
a smooth, positive cut-off function that equals one on N  

         𝐼 and vanishes
(𝑛)

outside a slightly
 

 larger narrowband of Γ . Then, we define𝐼

Θ 𝜀 

∶= Θ 𝐶𝐻𝑆𝐸 

+ 

𝑁
∑ 

𝑛=1
𝜒 (𝑛)
𝐼

(

Θ𝑎𝑙𝑙𝑜𝑤𝑒𝑑,(𝑛)
𝜀 − Θ 𝐶𝐻𝑆𝐸 

) 

, (16) 

where Θ𝐶 𝐻𝑆𝐸 

is the solution of (12). The above definition completes 

our construction of the interface-preserving extension velocity.

Thanks to our construction, the extension velocity given by (16) is 

(
explicitly time-dependent only within the support of each 𝜒 𝑛)

,𝐼  and coin

cides with the infinitesimal generator of the desired compound motion 

N (𝑛)
inside a slightly smaller subset of

 

 𝐼 . Furthermore, it is continuous at 

𝜀 = 0 because Θ(𝑛) 

 = Θ (𝑛)
  

 

inside the ,𝜀  interface N=0 𝐶  region𝐻𝑆𝐸 𝐼  which
(𝑛)

is the support of 𝜒 .𝐼  Therefore, the solution of the transport equation

with time-dependent infinitesimal generator Θ𝜀  

will produce a contin

uous evolution of the level set function everywhere and generate the 

desired motion near each interface, at least for sufficiently small 𝜀. 

-

-

NOTE: It is not always necessary to carry out this step. This is because

for certain combinations of vector subspaces of allowed motions and 

interface geometries, the time-independent vector field (11) integrates 

into a one-parameter family of motions that preserves the interface ge-

ometry, although it does not explicitly have the sequential form (8).
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Therefore, in such a case, no special definition for 𝜀 > 0 needs to be 

made. In particular, if the allowed motions consist of translations and 

rotations only, or translations and scalings only, then it is possible to in-

tegrate the time-independent vector field to create the desired motion. 

When scalings and rotations are combined, however, it is necessary to be 

more careful since the non-commutativity of these operations can lead 

to undesired shearing when the time-independent vector field is used. 

We will not analyse this phenomenon further here, since that would take 

us too far afield. 

3.5. A caveat on topology changes

It is important to note that the use of the linear transport equation 

to update the level set function with respect to a background time-

dependent velocity field precludes topology changes because the evolv-

ing level sets are all diffeomorphic to each other under the deformation 

generated by this velocity field. One can view this as a limitation of our 

method, because the ability to induce topology changes is seen as critical 

for obtaining “true” optimised geometry that is useful from a designer’s 

perspective, rather than local optima of the objective function. 

In this paper, we have decided not to address this limitation be-

cause our goal is simply to demonstrate that a level set update with 

a well-chosen velocity field preserves the nature of the interfaces while 

allowing their spatial location and scale to be optimised. Nevertheless, 

we suggest here a more elaborate procedure for integrating the C-HSE 

velocity that does not preclude topology changes outside the interface 

regions. 

Topology changes in standard topology optimisation arise because

the level set is updated with respect to an adaptive velocity field — one 

that remains normal to the evolving level sets while having a prescribed 

speed derived from sensitivity analysis. With this in mind, we suggest 

a small modification of (16) to create an adaptive velocity outside the 

interface regions while maintaining the required velocity near the in

terfaces. Let 𝑛𝜀 ∶= ∇𝐹 unit𝜀∕‖∇𝐹 ‖𝜀  be the   

 

normal vector field of the

level sets, and let Θ⟂
 ∶= ⟨Θ𝐶𝐻𝑆𝐸 𝐶 ⟩ be the normal component of𝐻𝑆𝐸 , 𝑛 𝜀      

 

Θ propose𝐶𝐻𝑆  

. Then, we𝐸  

-

Θ 

𝑚𝑜𝑑𝑖𝑓 𝑖𝑒𝑑
𝜀 ∶= Θ⟂

𝐶𝐻𝑆𝐸 𝑛 𝜀 +
𝑁
∑ 

=1
𝜒 (𝑛)
𝐼

(

Θ𝑎𝑙𝑙𝑜𝑤𝑒𝑑,(𝑛)
𝜀 − Θ⟂

𝐶𝐻𝑆𝐸 𝑛 𝜀
) 

.
𝑛

If we now substitute the modified velocity into the transport equation 

for the evolving level set field 𝐹𝜀 , we obtain

𝜕𝐹 𝜀
𝜕𝜀

+ Θ 

⟂
𝐶𝐻𝑆𝐸‖∇𝐹 𝜀‖ +

𝑁
∑ 

𝑛=1
𝜒 (𝑛)
𝐼

⟨(

Θ 

𝑎𝑙𝑙𝑜𝑤𝑒𝑑,(𝑛)
𝜀 − Θ⟂

𝐶𝐻𝑆𝐸 𝑛 𝜀
)

,∇𝐹𝜀
⟩ 

= 0 

𝐹 0 = 𝐹 .

We see that outside of the interface regions, all the cut-off functions 

vanish, and we recover the level set update of standard topology optimi
⟂sation with prescribed speed equal to Θ𝐶 .𝐻𝑆𝐸  This transitions smoothly

until we are inside any of the interface regions, where one cut-off func

tion is identically equal to one. There, we have the level set update via 

the transport equation with an interface-preserving velocity field. We 

will test this modified update procedure in future work. 

-

-

4. Application to topology optimisation 

4.1. A representative topology optimisation problem

In this section, we apply the shape update procedure we have de-

veloped to a collection of archetypal topology optimisation problems. 

Although our shape update is eventually meant to be used to optimise 

one or more components belonging to an assembly of multiple com-

ponents interacting with each other through interfaces that support 

mechanical joints, we restrict ourselves for the moment to a single-

component context, where the boundary of the shape to be designed 

has one or more interfaces of a specified nature. This allows us to

demonstrate the utility of our update procedure while avoiding the 

additional complications of the multiple-component context, e.g., full-

assembly simulation and the associated sensitivity analysis, and multiple 

co-evolving level set functions. Nevertheless, we attempt to choose 

topology optimisation scenarios that are as representative as possible 

of the multiple-component context. 

Problem statement. We now state a common formulation for the collec

tion of topology optimisation problems that we solve below. We will find 

an optimal shape from an admissible class of shapes, where a shape Ω 

Ω Γ(1) (
is deemed admissible if 𝜕  contains interfaces  𝐼 ,… ,Γ 𝑁)

.𝐼  The geom

etry of these interfaces is specified in advance, parameterized by their 

location, orientation in space, and scale. Each interface is either des

ignable or non-designable, and only the designable ones will have their 

parameter values determined through optimisation. 

-

-

-

The optimal shape and optimal interface parameter values are deter-

mined by minimising the elastic compliance with respect to a single set of 

external loads and fixities. We also subject the optimal shape to an equal-

ity constraint on its volume. We solve this equality-constrained topology 

optimisation problem using the augmented Lagrangian algorithm [20] 

(a common approach in level set-based topology optimisation), where 

the shape is updated in each inner iteration of this algorithm with our 

shape update procedure applied to the augmented Lagrangian shape 

function.

The elastic compliance is defined as follows. Let Γ𝑙 denote𝑜𝑎𝑑  the 

union of all the interfaces of Ω where loads are applied. We denote these 

loads collectively by 

3the load distribution per unit area 𝑔 ∶ Γ  

 

 

→ R .𝑙𝑜𝑎𝑑
Let Γ 

 

fixities 

 

denote the union of all the interfaces of Ω where are𝑓𝑖𝑥  

applied. Let Γ𝑓 𝑟𝑒𝑒 ∶= 𝜕Ω  

  

⧵ (Γ𝑙 𝑜𝑎𝑑 

∪ Γ 𝑓      

 

denote of𝑖𝑥 

) the remainder the

boundary. Additionally, we suppose that a body force distribution per 

unit volume 𝑓 ∶ Ω → R 

3 acts on Ω. The elastic compliance of a shape Ω 

with respect to this loading condition is given by

J 𝑐𝑜𝑚𝑝(Ω) ∶= ∫ Ω
𝜎(𝑢 Ω) ∶ 𝑒(𝑢 Ω 

), 

where 𝑢 Ω 

is the elastic response of Ω under these loads, 𝑒(𝑢 Ω 

) is the 

associated strain tensor, and 𝜎(𝑢Ω ) is the associated stress tensor.  

 

The

vector field 𝑢Ω  

satisfies the linear elastic equation

−div(𝜎(𝑢 Ω)) = 𝑓 in Ω,

𝑛 ⋅ 𝜎(𝑢 Ω 

) = 𝑔 on Γ 𝑙𝑜𝑎𝑑 ,

𝑛 ⋅ 𝜎(𝑢 Ω) = 0 on Γ 𝑓 𝑟𝑒𝑒 

,

𝑢 Ω 

= 0 on Γ 𝑓 𝑖𝑥 

,

(17)

where 𝑛 is the outward-pointing unit normal vector field of 𝜕Ω. 

4.2. Sensitivity analysis

As mentioned in Section 2.2, the sensitivity of the elastic compliance 

with respect to a deformation Ω 𝜀 

generated by a vector field Θ 𝜀 

has the 

form

𝐷J 𝑐𝑜𝑚𝑝,Ω 

(Θ 𝜀=0) ∶= 

𝑑
𝑑𝜀 

J 𝑐𝑜𝑚𝑝(Ω 𝜀) 

|

|

| 

|𝜀=0
= ∫ 𝜕Ω

𝑑J 𝑐𝑜𝑚𝑝,Ω 

𝑛 𝜕Ω ⋅ Θ 𝜀=0 

, (18)

where 𝑑J 𝑐𝑜𝑚𝑝,Ω is the shape gradient of the elastic compliance with re-

spect to boundary variations. We must use (18) in order to compute 

the terms appearing in (B.21) for the right-hand side of the C-HSE 

Eqs. (B.22). 

The formula for the shape gradient away from the interfaces sup-

porting loads and fixities is well-known and can readily be found in the 

literature (e.g., [4]), namely

𝑑J 𝑐𝑜𝑚𝑝,Ω = −𝜎(𝑢 Ω 

) ∶ 𝑒(𝑢 Ω 

) + 2 𝑓 ⋅ 𝑢 Ω 

on Γ 𝑓 𝑟𝑒𝑒 

. 

(0)
We use this formula to compute the 𝐺𝛼 source terms of (B.21). On the 

other hand, the formula for the shape gradient on the interfaces sup-

porting loads and fixities when these are allowed to deform under the
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action of Θ 𝜀 

is more complicated. First, one must be precise about what 

a load applied to a deforming interface means and include this in the 

calculation of the shape derivative. Second, one must take into account 

the singularities that appear at the curve of overlap between the free 

boundary and the interfaces where the fixities are applied [9]. We have 

decided to side-step these difficulties by computing the 𝐺 

(𝑛) using finite-

differencing. That is, for each deformation generated by the allowed 

infinitesimal motions for each interface, we approximate the derivative 

with respect to 𝜀 appearing in (18) by a difference quotient with suit-

ably small 𝜀. In our test cases, the number of interfaces is small, so this 

approach is not too onerous; but it is, of course, not optimal. For the 

moment, however, it serves the purpose of demonstrating our velocity-

constrained shape updates. We will replace the finite-differencing with 

an approach suggested in [9] (i.e., the volumetric shape derivative 

formula) in future work.

4.3. Results

In this section, we demonstrate the C-HSE method on three repre-

sentative problems in 3D: an L-bracket with an aperture, a cantilever, 

and the rocker component of the vehicle suspension system discussed 

in the introduction. These problems demonstrate the various geomet-

ric constraints that can be imposed on distinct regions of the domain, 

including loaded or fixed interfaces, with free-form optimisation in the 

rest of the domain.

4.3.1. Implementation details

Here, we note additional implementation details that, while they are 

not directly related to our novel contributions, have an important effect 

on the subsequent results presented here.

Meshing. Each time we need to evaluate the compliance of a new shape,

we regenerate the mesh from the signed distance function representing 

the shape. This occurs for each new shape generation but also for each 

iteration of any line searches and for any finite difference computations. 

To generate a volume mesh for the component, we first generate a sur-

face mesh from the signed distance function using OpenVDB [18]. We 

then use geogram [7] to remesh the surface mesh, including mesh refine-

ment in the regions of loads or supports (this helps reduce the variance 

in the compliance due to meshing). Finally, we employ geogram again 

to generate the volume mesh from the refined surface mesh.

Timestep selection. Each time we generate a velocity field in order to 

update the shape, we need to decide on a timestep. There are a few 

mechanisms that inform this decision: first, at the start of each inner loop 

of the augmented Lagrangian (i.e., when the augmented Lagrangian pa-

rameters are updated), we perform a line search [20] with six iterations 

to determine an optimal timestep for that iteration. For subsequent iter-

ations, we take the timestep value from the previous iteration, increase 

it by a small factor, and then apply it to the current iteration. Finally, 

in a procedure known as back-tracking, if the Lagrangian has increased

after a shape update, we restore the component shape to the state from 

before the update, reduce the timestep, and update the shape again with 

the smaller timestep.

Smoothing parameter selection. The smoothing parameter 𝛾 is the fore-

most hyperparameter for the C-HSE method, controlling the amount 

of smoothing applied to the velocity field. We note that higher values 

of smoothing (to a certain extent) engender faster convergence, while 

lower values of 𝛾 lead to slightly lower objective function values at the 

end of optimisation. The smoothing parameter values for the following 

problems were selected heuristically.

Topology change. One interesting numerical artefact produced by our 

implementation is that it does produce topology changes in the zero-

level set of the evolving level set function, contrary to what we expect 

from theory. This is evident in the results that we will present below. 

We speculate that the reason for this is the effective numerical dissipa-

tion present in the first-order finite-difference scheme of the transport 

equation, which allows the solution procedure to mimic the behaviour 

of the non-linear Hamilton-Jacobi equation of standard level set-based 

topology optimisation with respect to topology change. For the moment, 

we benefit from this artefact in practice, since it allows us to avoid the 

additional complexity described in Section 3.5. Nevertheless, we intend 

to investigate this artefact more thoroughly in future work.

4.3.2. L-bracket with an aperture

The initial geometry of the L-bracket is shown in Fig. 3. A load is ap-

plied to the face indicated by the green circle (in the direction indicated 

by the green arrow), and a fixed boundary condition is imposed on the 

two red surfaces. The blue circles represent constraint regions, each with 

different imposed geometric constraints. The constraint region labelled 

N 1 

is allowed to scale and translate horizontally, while N 2 

is allowed to 

scale and translate vertically. The region N 3 

is allowed to translate in-

plane. Finally, the region marked “KO” is defined as a keep-out (i.e., the 

component may not overlap with this region). We minimise the com-

pliance of the shape under the defined load, with a volume constraint 

ensuring that the volume of our final component does not exceed 20 % of 

the initial volume. For this problem with a characteristic length of 140, 

the smoothing parameter 𝛾 

2 was set to 500 (the effect of this parameter 

depends on the size of the problem).

The evolution of the shape throughout the optimisation is shown in 

Fig. 4, and the final shape is shown in Fig. 5. Fig. 6 shows the conver-

gence of the Lagrangian for this problem. This problem demonstrates 

some key features: first, our ability to very closely maintain the shape of 

the constrained regions (the loaded face Γ N 1 

remained perfectly cylin-

drical); second, the simultaneous scaling and translation of constraint 

regions; third, our ability to optimise for the position and size of the fix-

ities. We remark that despite the symmetry of the setup for this problem, 

the optimised shape (Fig. 5) is non-symmetric. While this was mildly un-

expected, the non-symmetry seems to aid in minimising the compliance,

Fig. 3. The initial geometry for the L-bracket problem, with all boundary conditions and constraint regions labelled.
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Fig. 4. The L-bracket at various iterations during the optimisation.

Fig. 5. The L-bracket after optimisation. Subplot (a) overlays the initial geometry in green.

Fig. 6. Convergence plot showing the different contributions to the Lagrangian 

for the L-bracket. The values are smoothed by a moving average with a window 

size of 5. Note that the contribution of the volume constraint converges to zero, 

indicating that the constraint is satisfied.

and we expect that there is an equally optimal shape that can be found 

by reflecting the shape in Fig. 5 about the plane defined by the applied 

force vector and the pin-hole axis.

4.3.3. Cantilever

The initial geometry of the cantilever is shown in Fig. 7. A down-

ward load is applied to the face indicated by the green line, and fixed 

boundary conditions are imposed on the red lines. The blue contours 

indicate constraint regions, with region N 3 

being allowed to translate 

vertically, while regions N 1 

and N 2 

are frozen (i.e., are not allowed to 

change). Notice that the initial geometry and position of the loaded re-

gion are deliberately asymmetric. We minimise the compliance of the 

shape under the defined load, with a volume constraint ensuring that 

the volume of our final component does not exceed 30 % of the initial

volume. For this problem with a characteristic length of 80, the smooth-

ing parameter 𝛾 

2 was set to 4000. This is comparatively larger than the 

smoothing parameter for the other two problems; we chose 𝛾 

2 to be large 

to help avoid the uncontrolled hole generation/removal discussed in the 

following paragraph.

The evolution of the shape throughout the optimisation is shown in 

Fig. 8, and the final shape is shown in Fig. 9. Fig. 10 shows the conver-

gence of the Lagrangian for this problem. This problem demonstrates 

our ability to optimise for the load interface location (region N 3 

) and 

also demonstrates that we can reproduce a theoretical cantilever re-

sult: a Michell truss, albeit a very simple one, similar to those found 

in [1,12,28]. We make a cautionary note here: the changes in topology 

(i.e., the addition/removal of holes) are due to numerical dissipation, as 

discussed in Section 4.3.1, and thus we do not have suitable methods 

of controlling these topology changes. This uncontrolled hole genera-

tion/removal leads to slow convergence, which could explain the high 

number of iterations required here.

4.3.4. Vehicle suspension rocker

The initial geometry of the suspension rocker is shown in Fig. 11. 

Loads are applied to the green circles (representing pin joints that con-

nect to the rest of the suspension assembly) in the direction of the green 

arrows with their relative magnitude represented by the arrow length. 

Note that the F N3 

force has a component that is in the out-of-plane di-

rection, which cannot be seen in Fig. 11. A fixed boundary condition is 

imposed on the red line. The blue contours indicate constraint regions, 

with region N 1 

being allowed to translate in-plane, while regions N 2 

and 

N 4 

are frozen. Constraint region N 3 

only allows for rotation of the re-

gion about an axis such that the interface (another pin joint) can align 

with the applied force (the axis of rotation and the direction of the force 

are more obvious in the results in Fig. 13). We again minimise the com-

pliance of the shape under the defined load, with a volume constraint 

ensuring that the volume of our final component does not exceed 70 % 

of the initial volume. For this problem with a characteristic length of 

175, the smoothing parameter 𝛾 

2 was set to 1000.

The evolution of the shape throughout the optimisation is shown 

in Fig. 12, and the final shape is shown in Fig. 13. Fig. 14 shows
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Fig. 7. The initial geometry for the cantilever problem, with all boundary conditions and constraint regions labelled.

Fig. 8. The cantilever at various iterations during the optimisation.

Fig. 9. The cantilever after optimisation. Subplot (a) overlays the initial geometry in green.

Fig. 10. Convergence plot showing the different contributions to the Lagrangian 

for the cantilever. The values are smoothed by a moving average with a window 

size of 5. Note the different scale for the y-axes of the two curves. Also, the contri-

bution of the volume constraint converges to zero, indicating that the constraint 

is satisfied.

the convergence of the Lagrangian for this problem. This problem also 

demonstrates our ability to optimise interface regions, including their 

position (as in region N 1 

) and orientation (as in region N 3 

). In particular,

the constraint region N 3 

rotated to more-optimally align with the applied

force, as depicted in Fig. 13.

5. Limitations and future work

The applications presented in the previous section show that our

level set update procedure can be used within a level set-based topology 

algorithm to generate an optimal shape with interface regions having

optimal location, orientation, and scale. While carrying out this work,

a number of limitations have become apparent, some of which we now

highlight.

Topology change. As discussed in earlier sections of the text, the level set 

update transport Eq. (1) cannot change the topology of the freely evolv-

ing part of the shape boundary in theory. However, since topology does 

change in practice due to numerical dissipation, this does not seem to 

be a practical limitation in the examples we have studied. Nevertheless, 

we have proposed a theoretical solution to this problem in Section 3.5 

which we intend to investigate in future work.

Fine control. We have found instances where the behaviour of the evolv-

ing shape near the interfaces can be quite delicate, leading to a lack of 

robustness in the convergence of the topology optimisation procedure. 

For example, in some cases it can be difficult to prevent the evolving
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Fig. 11. The initial geometry for the rocker problem, with all boundary conditions and constraint regions labelled.

Fig. 12. The suspension rocker at various iterations during the optimisation.

Fig. 13. The suspension rocker after optimisation. The green arrow represents the direction of the applied force acting on Γ N1 

. Subplot (a) overlays the initial geometry 

in green.

constrained region from merging into the evolving geometry in the free 

region or into another evolving constrained region, when this is the be-

haviour that is “desired” by the sensitivity analysis. Further research 

is needed to determine the most lightweight and graceful way of au-

tomatically detecting and handling situations such as these when they 

arise.

Smoothness of the evolving geometry. It is sometimes possible to observe

a kink (a.k.a., discontinuity in the tangent planes) arise and grow in 

the evolving shape boundary at the location where its constrained re-

gions overlap with its free regions. This occurs because the C-HSE 

procedure solves a second-order PDE for the update velocity. We es-

sentially prescribe Dirichlet boundary conditions where the constrained 

and free regions overlap, thereby ensuring continuity of the update ve-

locity across the overlap. Consequently, we cannot expect the derivative 

of the update velocity across the overlap to be continuous as well. In 

practice, however, this effect is small and usually most apparent in the 

earlier iterations of topology optimisation. Later iterations tend to cause 

the geometry to become smoother as it converges towards local opti-

mality. Nevertheless, it is possible to overcome this problem fully in 

theory by considering a stronger smoothing inner product in the HSE 

formulation. For example, we could consider a second-order smoothing

energy that penalises the 𝐿 

2 norm of the HSE field along with its first 

two derivatives. In this case, the associated fourth-order PDE allows both 

the update velocity and its first derivatives to be continuous across the 

overlap between the constrained and free regions. Such an approach is 

investigated in [26], where it is implemented in a lightweight manner 

using a mixed finite element method.

Computation time. Both the standard HSE procedure and our modifica-

tion, the C-HSE procedure, require that an additional PDE be solved 

for the update velocity in each iteration of topology optimisation. These 

procedures can thus become burdensome if their computation time nears 

that of other computationally heavy steps in the topology optimisation 

method, e.g., the solution of the linear elasticity equation used to carry 

out the sensitivity analysis. However, these PDEs are typically solved in 

a much smaller domain than the elasticity equation (in a narrowband 

of the shape boundary rather than in the shape itself). In the case of the 

standard HSE procedure, which solves a scalar PDE in the narrowband, 

the computational expense is deemed acceptable. The C-HSE procedure, 

on the other hand, solves a vector PDE in a large subset of the nar-

rowband and can therefore require up to three times as many degrees of 

freedom as the standard HSE procedure. The system matrix of the C-HSE 

equation is thus up to three times larger, making the computation time
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Fig. 14. Convergence plot showing the different contributions to the Lagrangian 

for the rocker. The “adjusted” compliance contribution is computed by subtract-

ing the minimum value of the compliance Lagrangian contribution. The values 

are then smoothed by a moving average with a window size of 5. Note the use 

of a logarithmic scale for the y-axis. As with the other examples, the contribu-

tion of the volume constraint converges to zero, indicating that the constraint is 

satisfied.

correspondingly longer. Despite its increased size, we find that the com-

putational expense of the elasticity equation remains the bottleneck of 

the topology optimisation method. We leave the investigation of meth-

ods for accelerating the solution procedure of the C-HSE equations to 

future work.

Smoothing parameter selection and update. From our observations on the

effect of 𝛾 on the optimisation (see Section 4.3.1), we expect that a non-

constant 𝛾 value could prove beneficial. Thus, as an avenue of future 

work, we look to develop an automated 𝛾 update procedure, in order 

to achieve fast convergence and lower final objective function values. 

We would also benefit from an automated way of selecting the (initial) 

value of 𝛾.

Interface sensitivities. As previously discussed, in this work, we employ

finite differencing to compute the shape gradient on the interfaces 

(i.e., the 𝐺 

(𝑛) terms). In future work, we plan to explore a volumet-

ric sensitivity analysis [9] to solve for these shape gradients more 

efficiently.

Extension to assemblies. In addition to transcending the limitations listed

above, a more significant body of future work concerns the extension 

and application of our work to the multi-component setting. We remind 

the reader that the inspiration and intended application of our veloc-

ity update is for the co-design of one or more structural components of 

an assembly of components, such as the vehicle suspension system of 

Fig. 1. To this end, it will be necessary to add the following ingredi-

ents to our methodology. First, we must represent multiple designable 

components using separate level set functions that align appropriately 

along their interfaces. Second, we must compute sensitivity informa-

tion from a full-assembly simulation, where load cases are prescribed 

at the external interfaces of the assembly (e.g., the tire and the chas-

sis for the vehicle suspension system) and propagated throughout the 

assembly as design-dependent reaction loads at the interfaces between 

the assembly components. This new sensitivity formula will have to re-

place the right-hand side of our C-HSE method. Once this is done, the 

C-HSE update velocity can be used to update all level set functions si-

multaneously in a conflict-free manner since the integrated velocity field 

acts like a one-parameter family of diffeomorphisms of the background 

domain containing all geometry.

6. Conclusion

In this paper, we have developed a level set-based shape update 

procedure for shapes whose boundaries contain interfaces that must pre-

serve their nature in the course of topology optimisation. We achieve 

this by incorporating translation, rotation, and scaling constraints in the 

interface regions into a novel HSE procedure for the level set update 

velocity in each iteration of the topology optimisation method. This pro-

cedure yields an interface-preserving update velocity that is a descent 

direction for the optimisation objective function. Consequently, the free-

form part of the shape boundary, as well as the location, orientation, and 

scale of the interface regions can be optimised.

Finally, we note that, as with most topology optimisation for-

mulations, the solutions obtained with the proposed method are not 

guaranteed to be unique. Multiple locally optimal configurations may 

satisfy the objective and constraints, and the final design can depend on 

factors such as the initial geometry and the smoothing parameter. The 

focus of this paper has been to introduce and demonstrate the C-HSE 

framework; a comprehensive exploration of the solution space, includ-

ing the use of multiple initialisations or stochastic search strategies, is a 

valuable direction for future work.
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Appendix A. Weak form of the C-HSE equations

By equating the variation of the objective in (13) to zero for all vari

Θ ∈ 1 (B′ 3) (𝑛)
ations 𝛿   𝐻  ,R  and all0   variations 𝛿𝑧 𝑠 ∈ R, we obtain the weak

form of the C-HSE equations:

-

0 = ∫B′ 

Θ ⋅ 𝛿Θ + 𝛾 

2 

∫ B 

′
𝐷Θ ∶ 𝐷𝛿Θ

+
𝑁 

∑ 

𝑛=1

𝑑 𝑛 

∑

𝑠,𝑡=1
𝛿𝑧 

(𝑛)
𝑠 𝑧 

(𝑛)
𝑡 ∫ N 

(𝑛)
𝐼

(

𝑉 

(𝑛)
𝑠 ⋅ 𝑉 

(𝑛)
𝑡 + 𝛾 

2 𝐷𝑉 (𝑛)
𝑠 ∶ 𝐷𝑉 

(𝑛)
𝑡

)

−
𝑁
∑ 

𝑛=1
∫ 𝜕N (𝑛)

𝐼

𝜕𝛿Θ
𝜕𝑛

⋅ 

( 

Θ −
𝑑 𝑛
∑

𝑠=1
𝑧 

(𝑛)
𝑠 𝑉 

(𝑛)
𝑠

)

−
𝑁
∑ 

𝑛=1
∫ 𝜕N (𝑛)

𝐼

𝜕Θ
𝜕𝑛 

⋅ 

( 

𝛿Θ −
𝑑 𝑛
∑

𝑠=1
𝛿𝑧 

(𝑛)
𝑠 𝑉 

(𝑛)
𝑠

)

− ∫𝜕Ω∩B′
𝑑J Ω 𝑛 𝜕Ω 

⋅ 𝛿Θ −
𝑁
∑ 

𝑛=1

𝑑 𝑛
∑

𝑠=1
𝛿𝑧 

(𝑛)
𝑠 ∫ 𝜕Ω∩N (𝑛)

𝐼

𝑑J Ω 

𝑛 𝜕Ω ⋅ 𝑉 

(𝑛)
𝑠 

.

(A.19) 

Appendix B. Numerical implementation of the level set update

Constrained Hilbert space extension. The C-HSE procedure can be imple-

mented quite straightforwardly using a finite element approach. First,
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we describe the discrete versions of B and its relevant subsets. For sim

plicity, we will use the same notation as before for these objects. In every 

iteration of topology optimisation, we use the level set function of the 

current shape Ω to select a narrowband B of a fixed small size surround

ing 𝜕Ω consisting of cells from the same uniform background grid used 

for the discretisation of the level set function and transport equation. We 

excise small internal neighbourhoods B consisting of all grid cells suffi

Γ(𝑛) (𝑛)
ciently close to each interface region  . We denote these by N𝐼 𝐼 , and

we denote the remaining region by B′ 

 . The cell boundaries belonging to

𝜕B 

′ adjacent to the non-design region are denoted by Γ0 . 

-

-

-

Next, we introduce finite element shape functions {𝜙 𝑖  

 

∶ 𝑖 ∈ 

𝑛𝑜𝑑𝑒𝑠(B′
 )} for 

′all cells in B . Here, we use the notation 𝑛𝑜𝑑𝑒𝑠(∗) for the

set of 

′nodes contained in any simplicial subset of B  

 . Without loss of 

generality, we can assume multilinear shape functions so that nodes co

incide with the vertices of the background grid. Let 𝑒 𝛼 

for 𝛼 = 1, 2, 3 be

the standard basis vectors and let 𝑥𝑖 ′for 𝑖 ∈ 𝑛𝑜𝑑𝑒𝑠(B ) be the node loca

tions. We now introduce a finite element representation for the extension 

velocity in B′ 

 that explicitly includes the allowed motion
( )

 constraints on 

the 𝜕N 𝑛
𝐼 and the Dirichlet condition on Γ0 . We propose

-

-

Θ ∶= 

∑

𝑖∈𝑛𝑜𝑑𝑒𝑠(B 

′⧵𝜕𝐵 

′ )

3
∑ 

𝛼=1
Θ 𝑖𝛼 

𝜙 𝑖 

𝑒 𝛼 +
𝑁
∑ 

𝑛=1

𝑑 𝑛
∑

𝑠=1

⎛

⎜

⎜

⎝

∑

𝑖∈𝑛𝑜𝑑𝑒𝑠(𝜕N (𝑛)
𝐼 )

3
∑

𝛼=1
𝑧 

(𝑛)
𝑠 [𝑉 

(𝑛)
𝑠 (𝑥 𝑖 

)] 𝛼𝜙𝑖𝑒𝛼
⎞

⎟

⎟

⎠

.

(B.20)

Finally, we derive the discrete version of the weak Eqs. (A.19) that 

we must solve for the coefficients Θ 𝑖𝛼 and 𝑧 

(𝑛)
𝑠 . To do this, we insert

the representation (B.20) for both Θ and 𝛿Θ into (A.19) (or rather, its 

precursor

⟨⟨Θ, 𝛿Θ⟩⟩ 𝛾 = ∫ 𝜕Ω
𝑑J Ω𝑛 𝜕Ω 

⋅ 𝛿Θ,

which holds when both Θ and 𝛿Θ satisfy the allowed motion con

straints.) After some work, the result is a positive-definite system of 

linear equations. To express these equations compactly, we introduce 

the following notation. For each 𝛼 = 1, 2, 3 let Θ ∶= [… Θ …]⊤ ∈ R 

𝐼
𝛼 𝑖𝛼

 𝐼 B′ 

       ⧵ 𝜕𝐵 

′
  

where is the number of nodes in  . For each 𝑛 =
[

 1, … , 𝑁 let
]

 

𝑧 

( ⊤𝑛)  

 ∶= … (𝑧 𝑛)
  …

 

 ∈ R 

𝑑𝑛 
 𝐼 

( )where 𝑛
𝑠

 
(

is the number of nodes in 𝜕N 𝑛)
𝐼 .

 

Let

-

𝐾 𝑖𝑗 ∶= ∫ B 

′ ⧵𝜕B 

′

(

𝜙𝑖 

𝜙 𝑗 + 𝛾∇𝜙 𝑖 

⋅ ∇𝜙 𝑗
)

be the relevant integrals of the finite element shape functions. We 

partition this data into a collection of matrices:

𝐾 

(00) ∶=

⎡

⎢

⎢

⎢

⎣

⋮
⋯ 𝐾 𝑖𝑗 for 𝑖, 𝑗 ∈ 𝑛𝑜𝑑𝑒𝑠(B 

′ ⧵ 𝜕B 

′ ) ⋯
⋮

⎤ 

⎥ 

⎥ 

⎥ 

⎦

∈ R 

𝐼×𝐼 ,

𝐾 

(0 𝑛) ∶=

⎡

⎢

⎢

⎢

⎣ 

⋮
⋯ 𝐾 𝑖𝑗 for 𝑖 ∈ 𝑛𝑜𝑑𝑒𝑠(B 

′ ⧵ 𝜕B 

′)and 𝑗 ∈ 𝑛𝑜𝑑𝑒𝑠(𝜕N (𝑛)
𝐼 ) ⋯

⋮

⎤ 

⎥ 

⎥ 

⎥ 

⎦

∈ R 

𝐼×𝐼 

(𝑛)
,

𝐾 

(𝑛𝑛) ∶=

⎡ 

⎢ 

⎢ 

⎢ 

⎣

⋮
⋯ 𝐾 𝑖𝑗 for 𝑖, 𝑗 ∈ 𝑛𝑜𝑑𝑒𝑠(𝜕N (𝑛)

𝐼 ) ⋯
⋮

⎤ 

⎥ 

⎥ 

⎥ 

⎦

∈ R 

𝐼 

(𝑛) ×𝐼 

(𝑛)
.

′
Note that there are no matrices of the form

 

  

 𝐾 

(𝑛𝑛 ) for 𝑛 ≠ 𝑛′ since the 

interface regions are disjoint. Define the matrices of nodal values of the 

allowed motion fields

𝑉 

(𝑛)
𝛼 ∶=

⎡ 

⎢ 

⎢ 

⎣

⋮ 

⋯ 𝑉 

(𝑛)
𝑠 (𝑥 𝑖)for 𝑖 ∈ 𝑛𝑜𝑑𝑒𝑠(𝜕N (𝑛)

𝐼 )and 𝑠 = 1, … , 𝑑 𝑛 

⋯
⋮

⎤ 

⎥ 

⎥ 

⎦

∈ R 

𝐼 

(𝑛) ×𝑑 𝑛 .

Finally, define the source terms

𝐺 

(0)
𝛼 ∶= 

[ 

⋯ ∫ 𝜕Ω
𝑑J Ω 

[𝑛 𝜕Ω ⋅ 𝑒 𝛼 

𝜙 𝑖 

for 𝑖 ∈ 𝑛𝑜𝑑𝑒𝑠(B 

′ ⧵ 𝜕B 

′ ) ⋯ 

] ⊤
∈ R 

𝐼 ,

𝐺 

(𝑛) ∶= 

[ 

⋯ ∫ 𝜕Ω
𝑑J Ω 

𝑛 𝜕Ω ⋅ 𝑉 

(𝑛)
𝑠 for 𝑠 = 1, … , 𝑑 𝑛 

⋯ 

] ⊤ 

∈ R 

𝑑 𝑛 .

(B.21)

We can now express the discrete version of the weak Eqs. (A.19) that 

we must solve for the nodal vectors Θ 𝛼 

and the 𝑧-coefficients in the 

following block-matrix form:

𝐾 

(00) Θ 𝛼 + 

∑

𝑛
𝐾 

(0 𝑛) 𝑉 

(𝑛) 

𝛼 𝑧 

(𝑛) = 𝐺 

(0)
𝛼 

for 𝛼 = 1, 2, 3

∑

𝛼

[

𝑉 

(𝑛)
𝛼

] ⊤ 

[ 

𝐾 

(0 𝑛) 

] ⊤Θ 𝛼 + 

∑

𝛼

[

𝑉 

(𝑛)
𝛼

]⊤ 𝐾 

(𝑛𝑛) 𝑉 

(𝑛) 

𝛼 𝑧 

(𝑛) = 𝐺 

(𝑛) for 𝑛 = 1, … , 𝑁.

(B.22)

The system of Eqs. (B.22) can be assembled using standard finite-

element methods (e.g., element-wise integration of shape functions and 

source terms), and it can be solved using any standard linear solver. We 

note that the total number of degrees of freedom of this system is equal 

to 3𝐼 + 

∑ 𝑁 

𝑛=1 

𝑑 𝑛, which is typically significantly smaller than the number

of degrees of freedom of the finite element discretisation used for the 

elasticity equations in the shape Ω since B is a small narrowband of 𝜕Ω.

Transport equation. We implement the time-dependent transport 

equation for the update of the level set function using the straight-

forward first-order upwind finite-difference scheme described in [24] 

on a fixed background grid. We simply modify this scheme by up-

dating the velocity at each time step according to (16). In principle, 

one might want to improve the scheme to higher-order accuracy in 

order to prevent unwanted numerical drifting of the solution in the 

constrained regions, ensuring that the allowed motion occurs exactly. 

However, we have found that first-order accuracy is sufficient for our 

purposes.

Data availability

No data was used for the research described in the article. 
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