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Figure 1: The proposed scope of our AI-assisted material selection workflow. Our prototype translates wall assembly sketches
into graphs and supports sustainable material choices aligned with the architect’s design intent.

Abstract
We present an AI-assisted workflow that supports architects in
designing wall assemblies using sustainable materials. Material se-
lection in architecture is a complex process involving multiple data
points and trade-offs across environmental performance, cost, and
constructability. Making this process more efficient is essential for
encouraging sustainable design practices. Our approach uses artifi-
cial intelligence and large language models to streamline aspects
of material analysis and information management. The workflow
integrates into standard architectural practice by translating wall
assembly sketches into graph representations that reflect compo-
nents and their relationships. Through an interactive interface with
graph visualisation, architects can explore material options, review
properties and substitute components in line with their design in-
tent. We contribute a prototype workflow and report findings from
a preliminary study on the integration of AI tools in early design
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stages. The study highlights benefits such as reduced decision effort,
increased confidence, and improved access to material information.

CCS Concepts
• Human-centered computing → Interactive systems and
tools; Visualization application domains; • Social and profes-
sional topics → Sustainability; • Computing methodologies →
Artificial intelligence.
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1 Introduction
The Architecture, Engineering, and Construction (AEC) industry
contributes significantly to global carbon emissions, with embodied
carbon projected to be nearly half of all emissions by 2050 [3, 9, 20].
Unlike operational carbon, which is emitted during the use of a
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building and is variable depending on how a building is used, em-
bodied carbon is inherent in thematerials and processes used during
its construction, which means that material selection plays the most
critical role in achieving lower carbon emissions for sustainable
architecture [4, 16]. Despite increasing pressure to reduce carbon
emissions, the adoption of low-carbon materials remains a chal-
lenge. Architects and building designers struggle with fragmented
data, limited expertise, and balancing complex requirements such as
cost, availability, aesthetics, performance, and sustainability [12, 19].
Architects often default to familiar materials and overlook low-
carbon alternatives. However, the implementation of low-carbon
materials in construction is hindered by a global shortage of the
expertise needed to specify and apply them [19]. The AEC industry
currently lacks effective tools to help architects select materials
based on design and performance needs.

We explore the use of artificial intelligence (AI) for material
selection, especially in wall assemblies. We introduce a novel AI-
assisted workflow developed with architecture domain experts,
offering material recommendations tailored to project goals and
current market options. We studied 11 professional architects using
our AI-assisted prototype to gain practical insights into choosing
low-carbon materials in design scenarios. We collected feedback
through questionnaires on themes like work demands, usability,
decision-making support, and design flexibility. This research pro-
vides insights into architects’ perceptions and interactions with the
prototype. Our contributions include:

• We present a novel AI-assisted workflow to assist architects
during the development of wall assembly designs, and pro-
vides material options evaluated against project goals (see
Figure 1).

• We identify professional architects’ typical workflows in
architectural design and material selection (see Figure 5).

• We highlight lessons learned regarding the practical integra-
tion of AI tools in architectural design workflows in regard
to (1) reducing effort, (2) building trust, and (3) navigating
information.

2 Background and Related Work
In the AEC industry, material selection is a critical factor in build-
ing performance, cost, and sustainability [22]. The process begins
with gathering project requirements, such as client preferences,
budget, and code compliance [11], followed by architects coordi-
nating and developing design documents that propose materials.
They use software tools to evaluate material properties and envi-
ronmental impact, often relying on pre-designed assemblies to save
resources [21]. Balancing cost, aesthetics, performance, feasibility,
and sustainability is particularly challenging when working with
unfamiliar materials [19]. While AI-driven material selection has
been explored in manufacturing [13] and domain-specific sustain-
able agents [23], the AEC industry presents unique demands due to
factors like aesthetics, cost, availability, and familiarity with the ma-
terials [13]. To address these challenges, we propose an AI-assisted
workflow that simplifies material selection. Our research focuses
on building wall assemblies, where architects have the flexibility to
explore novel materials that may impact sustainability [18]. Wall

Figure 2: Wall assemblies are modeled as graphs, with nodes
holding entity attributes and edges capturing relationships
like adjacency.

assemblies can also be a precursor for scaling to other building
parts like floors and roofs [14].

Data visualizations have long been used to support decision-
making tasks by transforming complex datasets into intuitive and
actionable insights [7]. They help decision-makers evaluate choices
by presenting data that highlights relationships, trends, and trade-
offs. For instance, in the software release planning domain, Aseniero
et al. used a modified Sankey diagram and Parallel sets to illustrate
the flow of resources like budget and time allocation into software
features, allowing planners to track how resources can potentially
be used, enabling comparisons between different solutions and facil-
itating informed decisions [6]. By simplifying complex information
and emphasizing key differences, these visual tools empower users
to analyse options effectively and select optimal outcomes. While
prior work has applied AI to isolated tasks such as material property
prediction or sustainability scoring, little research combines these
algorithms with user-facing, interactive tools that fit architects’
day-to-day workflows. Our study closes this gap by integrating
retrieval-augmented LLM recommendations with a novel graph-
based visualisation, enabling architects to explore, verify, and adapt
sustainable wall-assembly options in a single interface. Thus, we
assert that AI tools and data visualization could augment complex
AEC workflows like sustainable material selection.

3 Graph-Based AI-Assisted Design Workflow
Application

We present a novel AI-assisted workflow designed to support archi-
tects in finding, evaluating, and validating appropriate materials
for building assembly. The workflow begins when architects define
high-level sustainability goals and provide initial wall assembly
sketches. For this study we used Vision-Language Models (VLMs),
e.g. GPT-4o [10], to extract data from architectural drawings and
transform them into computable Graph Representations (GR). We
constructed a GR schema consisting of nodes (materials or lay-
ers) and edges (relationships such as adjacency), as illustrated in
Figure 2. To our knowledge, this is the first instance of visualiz-
ing architectural wall assemblies and related material information
through this novel graph-based approach.
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Figure 3: Architects begin by entering design intent (a) and selecting or uploading a wall assembly drawing (b). The assembly
view (c) displays layers and materials, with their properties shown in (d). The graph view (e) visualises component relationships,
and node details such as GWP and fire rating appear in (f). Performance metrics are shown in (g), with alternative material
suggestions in (h).

The workflow further leverages Retrieval-Augmented Genera-
tion (RAG) 1 to enable LLMs to effectively incorporate external
knowledge for domain-specific purpose, integrating real-world
2050 Materials database [1] into a specialised Materials Knowledge
Graph (mKG). We use two RAG strategies with LLMs, vector-based
and graph-based framework [8, 17], to quickly identify relevant
sustainable materials. The retrieved material data is then ranked
based on suitability and relevance. Each recommended material
includes detailed descriptions, explanations, uncertainty metrics,
and direct URL links to supplier documentation and certification
details as shown in Figure 3.

The workflow maintains a Human-in-the-loop approach, users
can interactively refine their material search queries by specify-
ing assembly parts and target project metrics. The AI system then
demonstrates how alternative materials impact overall performance
metrics. Once suitable materials are identified, architects can incor-
porate them into the assemblies and compare metrics between the
new and original designs. In our workflow, architects can easily
compare new assemblies against original designs and quickly eval-
uate alternative options, significantly simplifying and enhancing
the sustainable design decision-making process.

1RAG is a technique that improves LLMs’ output by integrating external knowledge
from databases or other sources [17].

4 Preliminary Study
4.1 Participants
We conducted a preliminary study with 11 professional architects
to investigate their typical material selection workflows and ex-
plore how our AI-assisted prototype might influence their practices.
Participants were recruited through an online screening survey
targeting architecture designers with experience in material selec-
tion. The survey received 43 responses, from which we chose 11
participants ensuring diversity in expertise, gender, and age groups.
All participants had at least two years of experience in architectural
design and were familiar with the development process of new
building assemblies and its required material selection practices
(see Figure 4).

Figure 4: Figure summarizing our participant demographics.
Expertise is measured in years of work in the AEC industry.

This study received institutional ethics approval. All participants
provided written informed consent, were free to withdraw at any
time, and their data were stored and reported in anonymised form
in compliance with GDPR and ACM research-ethics guidelines.

569



DIS ’25 Companion, July 05–09, 2025, Funchal, Portugal Zhong, et al.

Figure 5: Comparison of the counts of participant responses relating to the high-level design task and material selection task.
The step tags are ordered by their associated step IDs, highlighting their relative frequencies in the dataset.

4.2 Study Procedure & Data Analysis
Each participant took part in a 1-hour remote study conducted via
virtual conferencing (Zoom), comparing typical and AI-assisted
workflows through structured design tasks. The session began with
a baseline task (20 mins), where participants described their typical
design process under a design scenario in a think-aloud session
(5 mins), followed by a practical material selection scenario using
their typical workflow (15 mins). This scenario was presented on a
virtual mural tool (Miro board), simulating a real-world situation
where they needed to balance performance, aesthetics, and sustain-
ability criteria to select materials for a wall assembly. Afterwards,
participants evaluated their typical workflow via a questionnaire
assessing trust, mental, physical, and temporal demand, as well as
effort and frustration using a 5-point Likert scale.

Next, we introduced and demonstrated key features of our AI-
assisted tool, such as automated material suggestions, performance
comparisons, and a graph-based representation interface. Partici-
pants then repeated the design task using the AI-assisted workflow
(20 mins), followed by completing a second questionnaire. This
questionnaire included the previous measures plus additional ques-
tions to assess the tool’s usability and their perception of the graph
view. The session concluded with a semi-structured interview (5
mins) to gather qualitative insights.

Data from both phases were analysed quantitatively to assess
perceptions of traditional versus AI-assisted workflows. Qualita-
tive data from interviews were thematically analysed to explore
participants’ experiences, focusing on usability, and opportunities
for integrating AI and graph representations/visualization into ar-
chitectural design practices.

5 Results
We present our findings in three main sections: Participants’ typical
workflow, overall participants’ perception across different work-
flows, and overall feedback.

5.1 Identified Typical Workflows
We first identified the participants’ typical workflow illustrated in
Figure 5. We compare the counts of participant responses relating
to the high-level design task and material selection task. The analy-
sis of the participant workflows revealed distinct emphases in the
design and material selection procedures. Steps associated with con-
ceptual and preparatory stages, such as “Site Analysis” and “Concept
Design”, were predominantly reported in design workflows, while
tasks like “Simulation Analysis” and “Expert Consultation” were
more frequent in material selection processes. A detailed workflow
description can be found in the appendix, and we highlighted the
steps that can be powered by AI tools.

5.2 Workflows Comparison
We analysed user experience and graph representation insights,
comparing participant perceptions between Group A (n=5, <8 years’
experience) and Group B (n=6, ≥8 years’ experience). Color gradi-
ents, ranging from -2 to 2, represent the scores for each metric, with
blue indicating high scores and red denoting low scores. The scores
are averaged for the two participant groups to highlight variations
in perception and experience.

As shown in Figure 6, both groups generally viewed the AI-
assisted workflow as reducing the temporal demand, effort required,
and frustration levels when compared to the Typical Workflow. No-
tably, experienced architects in Group B reported significantly lower
mental and temporal demand scores with the AI tools, highlighting
their potential to reduce cognitive and time-related demand.
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Figure 6: Heat-map of mean Likert-scale responses for early-career (Group A, n = 5) and expert (Group B, n = 6) architects. The
diverging colour scale ranges from −2 (strong disagreement, red) to +2 (strong agreement, blue). Each row is a survey item
phrased as “I [ verb / object ]”, e.g., “I trust the output.”

The UI was particularly well-received by both groups, scoring
high on ease of understanding, output usefulness and future adop-
tion, which indicates its potential to boost productivity among
architects. In contrast, feedback on the proposed graph representa-
tion was mixed. Group B found the graph clarity to be satisfactory,
suggesting that more experienced users adapt well to innovative
data visualizations. However, Group B’s lower scores indicate a
need for simpler, more straightforward graph designs that empha-
size clarity over complexity. Both groups gave moderate scores for
comprehensiveness, pointing to a potential for more detailed or
context-rich graph content.

5.3 Qualitative Analysis and Findings
We conducted a thematic qualitative analysis on our participant
feedback, using a transcription analysis software tool (Dovetail)
to auto-transcribe the video recordings of each participant and
tag relevant statements using open coding. Four of the authors
performed the coding independently and iteratively reconvened
to discuss the codes and achieve agreement. We present four high-
level emergent themes (E.T.) that we observed.

E.T.1 Material Selection Complexity. Participants highlighted
the complexity and importance of the architectural design
process. Key facets included detailed site analysis, design de-
velopment, and expert consultations. An early career respon-
dent noted, “We need to brainstorm the project and conduct
surveys on the area to anticipate future developments.” (P08)
While AI integration was seen as beneficial for providing
comprehensive data, significant effort was still needed to
research alternative designs and ensure compliance with
local standards. One participant remarked, “we must con-
sider safety... consult with experts to choose environmentally
friendly materials.” (P05).

E.T.2 Workflow Demands and Verification. The design work-
flow demands significant effort and time, being both com-
prehensive and mentally taxing. An early career participant

stated, “mentally exhausting” (P03). Material selection, writ-
ing specifications, and stakeholder coordination were par-
ticularly challenging, with verification of materials adding
to the workload. An experienced architect noted, “Writing
specifications is one of the most time-consuming tasks.” (P07).
Despite these challenges, The AI-assisted workflow’s ability
to provide detailed verification data was highly valued. An
early career respondent remarked, “A tool that can measure
and identify the most cost-effective material is very helpful.”
(P02). However, managing and verifying the extensive data
remained mentally demanding, highlighting the need for
reliable and comprehensive information for accuracy and
compliance.

E.T.3 Uncertainty and Trust. Participants expressed concerns
about the trustworthiness of AI recommendations and de-
sired transparency “there might be underlying factors influ-
encing the outputs .. we need complete transparency.” (P10).
Managing large volumes of information added to these con-
cerns. “I would like to experiment with it further to see the
accuracy of its outputs.” (P11).

E.T.4 Interface Usability. The AI-assisted workflow’s interface
received mixed reviews. Participants appreciated detailed
data visualization but found the interface challenging to
navigate. “The information is available, but the presentation
is confusing.” (P06). Suggestions included simplifying the
interface and organizing data intuitively. “The graph contains
a lot of information. I wish it could be easily broken down into
parts.” (P07).

6 Discussion and Future Work
In this work, we introduced a novel AI-assisted workflow for mate-
rial selection in wall assembly, followed by a mixed-method study
involving 11 architectural designers. Based on a preliminary analy-
sis of our findings, we found several key lessons about integrating
AI tools to support material selection workflows. Survey results
indicate that while our AI-assisted workflow offers significant ben-
efits in terms of detailed insights and comprehensive data, some
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areas require improvement. The mental and temporal demands of
the process, the need for greater transparency in AI-assisted rec-
ommendations, and the interface’s usability are key concerns that
need to be addressed.

Reducing EffortBy centralizingmaterial data into highly query-
able formats such as Graphs and associating that data to an archi-
tect’s construction documentation, our findings suggest that we
can reduce the time it takes to consider different material options
while architects design assemblies (??, ??). Furthermore, by utiliz-
ing LLMs, Knowledge Graphs, and AI-agent techniques to find and
evaluate material options for an architect’s project goals, our re-
sults show the reduction of mental demand needed to consider new
material options. We find that combining these techniques reduces
the effort to develop higher-performing, lower-carbon assemblies
compared to the typical architect workflow.
Recommendation: Additional example data of code-compliant
assemblies are needed for the AI-assisted workflow to compare
and recommend how to bring novel designs into building code
compliance.

Building Trust Trust in AI-assisted recommendations is a major
concern among participants (??, ??) and it has been a main focus
in recent research on human-AI interaction and decision-making
systems [2, 5, 15]. The need for greater transparency and explain-
ability in how the AI system selects and evaluates materials was
frequently expressed. Participants emphasized the importance of
reliable and comprehensive information to ensure accuracy and
compliance, particularly when managing large volumes of data.
Recommendation: Provide explanations for how the AI system
selects and evaluates materials, including details on algorithms
and data sources used. Offer a comprehensive view of the material
properties and performance metrics to easily compare different
options. Allow users to trace back the data to its source, offering a
way to explore and verify information. Incorporate ways for users
to report discrepancies or inaccuracies in the AI recommendations.

Navigating Information Looking at the emergent themes of
??, ?? and ??, we observed that presenting the wall assembly data
in a graph representation may be challenging to our participants
initially, but once learned, it can be beneficial to see more informa-
tion at-a-glance. Making sustainability metrics more salient in the
visualization (e.g., the node size) also enabled our participants to
assess certain materials and find alternatives quickly.
Recommendation: Explore transitions between novel and fa-
miliar data visualization representations. For example, the force-
directed graph in our prototype for the wall assembly can transition
into a more familiar layout, such as a linear wall assembly layout or
a tree layout. Future research can also explore the design and study
of novel representations that specifically highlight sustainability
metrics to learn about their effects on designing for sustainability.

6.1 Future Work and Limitations
Future work will concentrate on refining the UI prototype to im-
prove usability, interactivity and on rigorously evaluating the re-
liability of the overall workflow. We will also explore alternative
visualization and presentation layouts to support a wider range
of decision-making scenarios. Finally, conducting further studies

with larger and more diverse participant groups will provide deeper
insights and improve the generalisability of the findings.

As the workflow relies on LLMs, there is an inherent risk of hallu-
cinated or outdated content. We mitigate this risk through RAG an-
chored to a curated materials database and by surfacing provenance
links for every recommendation. Future versions will incorporate
automatic uncertainty estimates andmandatory human-in-the-loop
verification before any specification is adopted.

7 Conclusion
This study has demonstrated that integrating AI-assisted work-
flows can enhance the material selection process in architectural
design, supporting the hypothesis that AI tools can reduce cog-
nitive load and improve decision-making efficiency based on the
sample group in this study. By examining participants’ responses
to typical and AI-assisted workflows, our research highlights the
importance of transparency, data verification, and user interface
usability in building trust and acceptance of AI-assisted recom-
mendations. While the AI-assisted workflow showed promise in
reducing the time and mental effort required for material selection,
participants underscored the need for greater explainability and
accuracy to enhance trust. Enhancing these aspects would likely
lead to greater acceptance and more effective use of ai-assisted
workflows like the one used in this study in broader design applica-
tions among both early-career and experienced architects. Future
work should involve expanding participant diversity and advancing
the scope of the AI-assisted workflow. Development should focus
on more extensive recommender systems and visualisations on
uncertainty associated with metrics associated with sustainable
architecture. Overall, our findings underscore AI’s transformative
potential on architectural workflows to accelerate sustainable de-
sign practices and most importantly, the openness of professionals
at all levels to new approaches to design.
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