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ABSTRACT

Product recalls provide valuable insights into potential risks and hazards within the engineering design
process, yet their full potential remains underutilized. In this study, we curate data from the United
States Consumer Product Safety Commission (CPSC) recalls database to develop a multimodal
dataset, RECALL-MM, that informs data-driven risk assessment using historical information, and
augment it using generative methods. Patterns in the dataset highlight specific areas where improved
safety measures could have significant impact. We extend our analysis by demonstrating interactive
clustering maps that embed all recalls into a shared latent space based on recall descriptions and
product names. Leveraging these data-driven tools, we explore three case studies to demonstrate the
dataset’s utility in identifying product risks and guiding safer design decisions. The first two case
studies illustrate how designers can visualize patterns across recalled products and situate new product
ideas within the broader recall landscape to proactively anticipate hazards. In the third case study,
we extend our approach by employing a large language model (LLM) to predict potential hazards
based solely on product images. This demonstrates the model’s ability to leverage visual context
to identify risk factors, revealing strong alignment with historical recall data across many hazard
categories. However, the analysis also highlights areas where hazard prediction remains challenging,
underscoring the importance of risk awareness throughout the design process. Collectively, this work
aims to bridge the gap between historical recall data and future product safety, presenting a scalable,
data-driven approach to safer engineering design.

1 Introduction

Risk analysis is a necessary step in the product development process. Engineers and designers are encouraged to predict
potential hazards using traditional six-sigma approaches to assess potential failure modes [1]. Nonetheless, consumer
products are often recalled due to design and manufacturing related hazards, posing a risk of injury and sometimes
death [2]. As such, we see an opportunity to learn from recalled products to observe what products fail, and how the
failures occur, ultimately providing engineers and designers historical information of existing failure modes. This study
leverages the United States Consumer Product Safety Commission (CPSC) recalls database to serve as a benchmark for
novel computational risk prediction approaches presented herein. We curate a dataset of 6,874 recalls spanning dates
between the years 2000 and 2024, augmenting the retrieved database information with new descriptors created using a
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large language model (LLM). Notably, these recalls account for over 546 million individual product SKUs reported as
affected over the past two decades, underscoring the vast scale and real-world impact of product safety failure. An
example of preprocessed recall entry can be found in Appendix A Table 3. We highlight the use of the dataset and
present how it could support risk identification in the design process.

Our contributions include: (1) the development of RECALL-MM, a curated, multimodal dataset of recalled consumer
products, augmented through LLM-generated classifications and visual descriptors, (2) the demonstration of computa-
tional methods for embedding and visualizing recall data to uncover patterns in product failures, supported by two case
studies illustrating how these methods can aid risk identification, and (3) the application of an LLM to predict potential
product hazards based solely on visual descriptions, highlighting both the strengths and limitations of automated hazard
assessment. Collectively, this work aims to improve product safety, anticipate design failures, and support data-driven
decision-making in engineering design.

To support further development and evaluation of our dataset, we make the RECALL-MM dataset and accompanying
experimental code publicly available on GitHub1.

2 Related Work

Over the last decade, several large design datasets have been curated and released to support data-driven design efforts
for product design and other design tasks. The classes of objects collected, sample size, and modality of the data are the
main differentiators between datasets in this field.

Shapenet [3], the ABC Dataset [4], DeepCAD [5], and the Fusion 360 Gallery dataset [6] are among the largest datasets
that contain geometry data and class labels for individual parts and whole assemblies. The datasets have been widely
used for design automation and geometry generation tasks, and have also supported other work around ancillary design
tasks such as materials selection [7]. Other smaller datasets have also been curated around more specific classes
of objects, such as car bodies, mechanical components, and bicycles [8–10]. While these datasets provide valuable
structured information on product features, making them a useful starting point for analysis, they also come with
limitations, including incorrect or missing semantic information, limited number of object classes, and lack of design
context, intent, and criteria, which limits their utility for comprehensive risk assessment.

Other design datasets have focused on different modalities, such as hand-drawn sketches [11,12], or textual descriptions
of designs [13–16]. Although these datasets focus more on design rationale, describing the features and aesthetics of
the design solutions, they do not explicitly consider design feasibility, and some are limited by the number of object
classes and data quality.

A few multimodal design datasets have been published, built around graphic design [17], design requirement docu-
ments [18], and descriptions of design changes [19]. These datasets combine textual descriptions, geometry, images,
and design requirements in various combinations to support design tasks such as editing 3D geometry, interpreting
design requirements, and style classification.

The multimodal dataset collected in this work differs from prior datasets as it provides textual descriptions of designs,
images, and recall information related to a failure mode of the product over a wide range of product classes.

2.1 Data-Driven Risk Analysis

Product recalls have been used to investigate trends in consumer product safety, with a prevailing focus on children’s
toys [20–23]. These studies similarly leverage the CPSC database, along with the global recalls dataset from the
Organisation for Economic Co-operation and Development (OECD) [24]. Wai and Uttama [23] present a series of
machine learning approaches for predicting a binary classification of children’s toy safety, showcasing the potential
for data-driven hazard prediction. Our study expands on this work by investigating trends across multiple product
categories, moving beyond a single domain focus.

The automotive industry has also seen a shift towards data-driven design for predictive maintenance and hazard
prevention. Yorulmus et al. [25] present machine learning approaches for predicting brake defects from vehicles
passing quality assurance checkpoints, yet exhibiting high rates of customer complaints. Similarly, [26] demonstrated a
multi-label transfer learning approach by implementing a series of pretrained Convolutional Neural Networks (CNNs)
to predict the binary failure status of multiple engine components. Both studies rely on failure data to improve future
design of automotive components, demonstrating the effectiveness of leveraging data for failure mitigation and design
improvement.

1https://github.com/dianabolanos/RECALL-MM
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Figure 1: Process overview of translating database information into nine distinct data fields.

2.2 Hazard Identification in Design

The field of risk analysis has been extensively studied and continues to evolve within various organizational and
engineering domains. A fundamental objective of risk analysis in engineering design is to proactively identify and
mitigate hazards before they manifest as failures or safety incidents. Failure Mode and Effects Analysis (FMEA) is
among the most widely adopted methodologies employed by organizations to structure systematic risk assessments,
prioritize potential hazards, and implement preventive actions [27–29]. First developed in the 1960s by the aerospace
industry [30], FMEAs now serve as an industry standard tool across various applications, including automotive design,
aerospace engineering, and product development, demonstrating its versatility in supporting product reliability and
safety. More recent advancements in FMEA methodologies incorporate computational approaches, such as fuzzy logic,
machine learning, and integrated decision-making frameworks, enhancing traditional FMEA practices by addressing
uncertainties and subjectivity inherent in risk scoring [31]. These improvements continue to reinforce the importance of
hazard identification and risk mitigation in complex engineering designs. We further posit that reviewing historical data
can expand the results of risk analysis activities.

3 Methods

We focus this section on detailing the steps used to clean and augment the CPSC database into a multimodal dataset
used throughout the study. Then, we describe the computational methods used to embed this dataset into a vectorized
representation, allowing for deeper analysis and visualization. Finally, we introduce the methodology for leveraging an
LLM to predict hazards based on visual product information.

3.1 Dataset

The dataset used in this analysis is a curated subset of the US CPSC recalls database [32]. To ensure consistency
and feasibility for analysis, recalls were filtered based on API accessibility, the presence of product images, and the
timeframe of 2000 to 2024. This filtering process resulted in a dataset comprising 6,874 recall entries. While this
represents only a portion of all CPSC recalls, it remains sufficiently comprehensive and reflects broader trends observed
in publicly available aggregate data [24, 32].

Each entry in the dataset includes essential recall attributes such as hazard classifications, product categories, remedy
types, historical recall dates, and an associated product image. The raw CPSC data lacked labeled classifications for
each entry. To address this, we leveraged generative models, specifically GPT-4o [33], to enrich and structure the data.
Figure 1 illustrates which fields were directly extracted from the CPSC database and which were augmented using an
LLM.

The LLM Modified fields–recall_description and product_name–were refined using GPT-4o to remove brand references
and retain generic descriptions. Additionally, we label the visual_product_description field as LLM Generated, as it
was generated entirely by prompting GPT-4o to describe the product based on its associated image. For classification
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tasks, GPT-4o assigned each recall to a product category, hazard category, and remedy type, selecting from predefined
lists. We label this as LLM Categorized. Hazard and remedy categories were aligned with CPSC’s own labels, with
definitions provided in Appendix B (Tables 4 and 5). Since the CPSC does not offer standardized product categories, we
developed an 11-category scheme based on domain understanding, ensuring it broadly covers the landscape of recalled
products while maintaining consistency with OECD terminology [24].

During data cleaning, all records were standardized to a predefined schema, ensuring consistent representation of
attributes such as product description, hazard type, and remedy details. GPT-4o outputs were validated against this
schema, with type and value constraints applied to ensure reliability. Each record retains its original recall ID, preserving
traceability to the source data and supporting future reference or verification.

3.2 Recall Space Exploration and Visualization

3.2.1 Embedding

Product descriptors, specifically recall_description and product_name, were embedded into a numerical latent space
using the all-MiniLM-L6-v2 model from Sentence-BERT [34]. Sentence-BERT is a pre-trained model that generates
fixed-length dense vector representations optimized for capturing semantic similarity between text inputs. We selected
the all-MiniLM-L6-v2 model as it offers an effective balance between model size, computational efficiency, and
embedding quality, making it well-suited for large-scale analyses without sacrificing performance.

3.2.2 Dimensionality Reduction for Visualization

To visualize relationships among products and recall reasons, we applied dimensionality reduction techniques. Specif-
ically, we employed the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm, chosen for its strength in
preserving local structure and effectively capturing complex, non-linear relationships in high-dimensional data [35].
Compared to linear methods such as Principal Component Analysis (PCA) [36], which primarily maintain global
variance, t-SNE excels at revealing dense clusters and neighborhood groupings, which are paramount features for iden-
tifying semantically similar products and localized recall patterns. Product embeddings obtained via Sentence-BERT
were projected from their original vector space into two and three-dimensional coordinates. The resulting visual maps
(Fig. 5 and Fig. 6) enable exploration of recall clusters, offering insight into product similarities and hazard trends.
While other methods like UMAP [37] could also be considered, we prioritized t-SNE for its well-established use in
exploratory visualizations where fine-grained local structure is of primary interest.

3.3 LLM-Based Hazard Prediction

In addition to computational exploration of the recall data, we evaluate the feasibility of using LLMs to predict potential
hazards directly from product images. Specifically, we focus on the visual_product_description field, which contains a
textual description of each product image generated by GPT-4o.

To perform hazard prediction, we prompt an LLM to analyze the textual description of the image and output all
applicable hazard classifications. The model selects hazard labels from a predefined set of ten hazard categories
(Appendix B, Table 4), ensuring consistency with existing CPSC classifications. The full prompt used for LLM
prediction is provided:

You are a product safety expert. Identify all potential hazards for the
given product. Provide output in valid JSON format only, structured as:

{
‘product’: {product_description},
‘predicted_hazards’: [List of all applicable hazards]

}

The predicted_hazards field must only contain hazards from this set:
{all_hazards}. Do not leave any predicted_hazards fields empty. If
multiple hazards apply, include all relevant ones. No explanations -
return JSON only.

Outputs are returned in a strict JSON format, listing the product description and the predicted hazards. The prompt
enforces that the model must not leave any hazard fields empty, encouraging comprehensive identification of potential
risks.
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Evaluation Metric

To quantify the model’s performance, we introduce a Relaxed Accuracy (RA) metric:

δi =

{
1, if gi ∈ Pi

0, otherwise
(1)

Relaxed Accuracy (RA) =
1

N

N∑
i=1

δi (2)

where

• N = Total number of products per hazard class.

• gi = Single ground truth hazard classification for product i.

• Pi = Set of predicted hazard classifications for product i.

• δi = Indicator function that equals 1 if the ground truth hazard gi is present in the predicted set Pi, and 0
otherwise.

The RA metric accounts for cases where the LLM predicts multiple hazards, but the recall dataset provides only one
ground truth hazard per entry. As such, the metric does not penalize overprediction, reflecting the real-world possibility
of multiple concurrent hazards.

4 Results and Discussion

To evaluate the reliability of the curated and augmented dataset, we begin by validating the LLM-generated categoriza-
tions against human-annotated ground truths, ensuring consistency across product, hazard, and remedy classifications.
Following this, we analyze aggregate trends within the dataset, examining prevalent hazards, product categories, and
remedy actions over time. Building on these observations, we then present three case studies to illustrate different
approaches for leveraging the dataset in risk identification and design decision-making. The first two case studies
employ computational methods, embedding recall data into a shared latent space to explore product relationships and
potential risks. The third case study investigates the feasibility of using LLMs to predict potential hazards based solely
on visual context.

4.1 Human Evaluation of Dataset Categorizations

To validate the reliability of the LLM categorizations, we compare them against ground truth labels derived from
three independent human annotators. Each annotator performed 100 classifications for each task, amounting to 900
annotations. To establish a ground truth, we employed majority voting across the three annotators’ labels for each
classification task (product, hazard, and remedies). We assessed inter-rater reliability by evaluating Fleiss’s Kappa,
which yielded coefficients of 0.71 for product classification, 0.80 for hazard classification, and 0.85 for remedies
classification. These scores indicate substantial to almost perfect agreement, based on standard interpretation thresholds.
Given this high level of consistency, majority voting was deemed appropriate to consolidate the annotations. Items
where no majority agreement was reached (5 for product, 4 for hazard, and 0 for remedy) were excluded from further
analysis to maintain the integrity of the ground truth labels.

With the ground truths labels established, we now compare against the LLM categorizations. Using Cohen’s Kappa, we
observed almost perfect agreement across all three classification tasks, with coefficients of 0.82 for product classification,
0.91 for hazard classification, and 0.90 for remedies classification. These strong agreement levels indicate that the
LLM’s predictions align closely with human judgment, achieving a level of consistency comparable to expert annotators.
Given these results, we are confident in the robustness and accuracy of the LLM-generated outputs and proceed to use
them for subsequent analyses in this paper.

4.2 Analysis of Recall Classifications

To analyze patterns in product recalls, we first aggregated the dataset across four dimensions: hazard classifications,
product categories, remedy classifications, and recall year. These aggregations are visualized in Fig. 2, allowing us to
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Figure 2: Data metrics from 6,874 recalls spanning 2000 - 2024 recall dates.

identify prevalent hazards, frequently recalled product types, common industry remedies, and temporal trends in recall
activity.

Additionally, to explore relationships between product categories and associated hazards, we generated a hazard-product
co-occurrence heatmap (Fig. 3). This visualization highlights where certain hazards are disproportionately concentrated
within specific product types, offering insight into recurring failure modes and industry-specific safety concerns.

Examining hazard classification, fire, falling and choking emerged as the most prevalent hazards, suggesting a need for
improved foresight in anticipating these failure modes. Focusing on fire, we also see from Fig. 3 that the strongest
correlations come from electrical and home_appliances. This aligns with existing literature indicating heightened risks
of household fires due to electrical failures in sockets, plugs, and wiring, as opposed to householder carelessness [38].

Within product classification, the high frequency of recalls in home_appliances and toys_children indicates particular
vulnerability to hazards faced within the average US household, indicating the pressing need for safer design of products
intended for vulnerable or high-use demographics. A study conducted by Anwar [39] also relied on the CPSC database
to examine the harms resulting from high recalls in the toy industry. This study found that while most toys were
manufactured in China, a vast quantity of toys were designed in the US, leading to harms related to choking and lead
poisoning as primary concerns. This analysis aligns with our findings, emphasizing the importance of stronger safety
precautions when designing consumer products. Interestingly, the heatmap also shows lower recall frequencies for
categories such as tools_hardware and outdoor_equipment, suggesting a possibility of heightened risk awareness and
more conservative design practices within these industries.

The prevalence of refund as a remedial action indicates a preference towards immediate consumer safety, likely chosen
when repairs or replacements are insufficient for risk mitigation. The substantial use of repair and replace remedies
further suggests a widespread industry practice of addressing safety concerns through corrective product interventions
rather than solely financial compensation. Kubler et al. [40] conducted a study to observe the effect of product recalls
on brand loyalty. Results found that consumers valued transparency and convenient handling of the recalled product.

The temporal analysis revealed an apparent peak in recall incidents around 2005, followed by a general downward trend
with fluctuations thereafter. This trend may reflect enhanced regulatory interventions, evolving industry standards, or
changes in manufacturing practices and quality control measures. Notably, the recent uptick observed post-2020 signals
the potential effects of disruptions in supply chains due to global events.

Taken together, these results emphasize key areas for improved product safety. Recalls in categories such as
home_appliances, electrical, and toys_children underscore the need for more proactive hazard anticipation during
product design. Furthermore, the correlation patterns revealed by the heatmap suggest potential value in cross-domain
learning: designers may benefit from examining hazard trends in adjacent product sectors to better anticipate potential
risks.
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Figure 3: Correlation matrix of hazards and product classifications.

4.2.1 Case Study 1: 2D Latent Space of Recall Descriptions

In this case study, we examine the embedding space of the recall_description field to explore how textual recall data can
reveal underlying patterns beyond predefined hazard classifications. We specifically chose to embed recall_description
to augment and challenge existing groupings, offering an opportunity to uncover nuanced relationships within the
dataset. Figure 4 presents a latent space representation of all 6,874 recall_description texts, revealing natural clusters
that broadly correspond to different product categories.

To illustrate how product domains influence the structure of this space, we highlight two specific examples in Fig. 5.
In Fig. 5a, we focus on the product categories electrical (black) and clothing_accessories (gray). Here, we observe
minimal overlap in the embedding space, reflecting distinct recall descriptions and associated hazards. For example,
recalls within the electrical category predominantly reference fire hazards, resulting in a more cohesive clustering
pattern. In contrast, the clothing_accessories category exhibits multiple distinct clusters, reflecting a wider variety
of recall reasons, such as choking hazards due to detachable components. This divergence underscores how certain
domains exhibit unique, domain-specific risks, while others exhibit larger diversity in risk possibilities.

Table 1: Recall description diversity of each product category as measured by Convex Hull area in 2D scaled embedding
space.

Category Normalized Area
TOYS_CHILDREN 11.848
SPORTS_RECREATION 11.009
TRANSPORTATION 10.486
HOME_APPLIANCES 10.169
TOOLS_HARDWARE 9.776
OUTDOOR_EQUIPMENT 9.485
BABY_PRODUCTS 9.219
FURNITURE 9.111
OTHER 8.872
CLOTHING_ACCESSORIES 8.712
ELECTRICAL 6.688
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Figure 4: Embedding space of recall descriptions labeled by product categories.

a) b)

Snaps on the jacket can detach,

posing a choking hazard to young

children.

The recalled amplifier’s wiring can 

overheat, posing a fire hazard.

The boots can release from

the binding unexpectedly, 

posing a fall hazard to the user.

Incorrect screw provided for

assembly, leading to potential

risk of child falling or entrapment.

Figure 5: a) Embedded recall descriptions of electrical (black) and clothing_accessories (gray). b) Embedded recall
descriptions of baby_products (blue) and sports_recreation (purple). Descriptions are denoted for each example,
showcasing distant (a) and near (b) recall descriptions across different product categories.

Figure 5b highlights a case where recall descriptions from different domains show considerable overlap. Specifically,
the categories baby_products and sports_recreation share similarities in recall descriptions, often referencing issues
related to unsecured assembly constraints that pose risks of falling or entrapment. Despite the differing nature of these
product types, the commonality in risk profiles suggests valuable cross-domain learning opportunities. Designers
working in either space could benefit from studying hazards in the other, enabling a more comprehensive approach to
safety.

To quantitatively contextualize these findings, we calculate the spread of recall descriptions for each product category
using Convex Hull analysis. Table 1 reports the normalized areas for each category, offering a metric for the diversity of
recall descriptions. This approach, informed by prior work on diversity metrics in embedding spaces [41], enables a
comparative assessment of risk variability across categories. Notably, the toys_children category exhibits the largest
normalized area, indicating a wide range of distinct hazards associated with children’s products. This reinforces the
need for cautious safety considerations in the design of children’s toys.
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Figure 6: 3D embedding space of product name colored by hazard class. An example is shown identifying similarities
between a new product and existing products with recall information provided.

4.2.2 Case Study 2: 3D Latent Space of Product Name

We demonstrate the potential to move beyond passive data exploration by developing an interactive visualization tool
that situates new product ideas within the context of historical recall data (see Fig. 6). This visualization embeds all
product descriptors—specifically product_name—into a shared three-dimensional latent space using t-SNE. When a
designer inputs a new product concept, the system embeds the input text into the same space and projects it alongside
past recalled products. We chose to embed product_name as it typically conveys precise, yet high-level semantic
information, making it particularly suitable for early-stage ideation.

For instance, an engineering team might propose a product idea described simply as “a bike suspension made of
aluminum alloy” without fully developed specifications. This tool allows them to position that idea within the landscape
of similar historical recalls, providing insight into neighboring products and their associated hazard classifications.
By visualizing these relationships interactively, designers can proactively identify potential risks, explore relevant
precedents, and make more informed design decisions. Ultimately, this integration of recall data into the early design
process supports safer, more responsible product development.

4.2.3 Case Study 3: LLM Hazard Prediction

In the third case study, we evaluate the ability of LLMs to predict potential hazards based solely on a product’s text
description of the image. Using the approach detailed in Section 3.3, the LLM analyzes the visual_product_description
field and outputs hazard classifications drawn from the predefined list of categories.

The aggregated frequencies of the LLM-predicted hazard classes are shown in Fig. 7. The predicted patterns align
closely with actual recall distributions across both product and hazard categories, as seen in Fig. 3.

To assess predictive performance, we compute the RA metric across all hazard classes. The per-class RA scores are
summarized in Table 2. The results indicate strong predictive capabilities in several hazard categories, with particularly
high RA scores observed for choking (0.93) and crash (0.91) hazards. Conversely, the poisoning hazard class yields the
lowest RA score of 0.32.

Further examination of Fig. 7 reveals that the model rarely predicts poisoning hazards for products such as children’s
toys. However, cross-referencing with actual recall data (Fig. 3) shows a substantial number of poisoning-related recalls,
particularly within the children’s toys category. This discrepancy highlights a critical limitation: certain hazards, like
poisoning, may not be visually apparent and thus are underrepresented in LLM predictions. The model’s difficulty in
predicting non-visible hazards mirrors how consumers often rely on visual inspection to assess product safety. This
highlights a critical need for both transparent hazard communication and proactive design strategies that address risks
not readily apparent through appearance alone, particularly in preventing latent hazards such as poisoning.
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Figure 7: Heatmap showing correlations between LLM predicted product and hazard recalls.

5 Dataset Use Cases and Future Applications for Engineering Design

There are several promising avenues to extend and apply this work. First, augmenting the CPSC dataset with globally
recalled product data, such as the OECD Global Recalls Portal [24], would allow for a more comprehensive cross-
national analysis. This could reveal broader patterns in product failures and facilitate comparative studies across
regulatory environments and cultural contexts.

Additionally, while the methods presented demonstrate feasibility in organizing and classifying recall data, validating
their effectiveness in real-world design and safety processes remains an open opportunity. Future studies could engage
with industry practitioners to assess how historical recall data—structured and augmented as shown here—can be
integrated into existing risk analysis workflows. Specifically, measuring where practitioners derive value would provide
actionable insights.

The multimodal nature of the dataset could also support additional work with visual language models (VLMs). VLMs
could be used to predict a product’s hazard and recall risk, similar to Case Study 3 but with additional visual cues from
the product’s image. Future studies could determine whether visual or textual cues provide stronger signals for this task.

Table 2: Accuracy per class and overall relaxed accuracy.
Hazard Classification Relaxed Accuracy
BURN 0.59
CHOKING 0.91
CRASH 0.93
CUTS 0.65
FALLING 0.85
FIRE 0.74
H.R.E. 0.74
IMPACT 0.87
OTHER 0.46
POISONING 0.32
S.E.M. 0.49
Overall Relaxed Accuracy 0.73
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Beyond retrospective analysis, there is potential to apply this dataset and classification pipeline proactively. For instance,
integrating recall-informed hazard classifications into early-stage product requirement generation may improve safety
considerations from the outset. This could involve coupling the dataset with LLM generated user requirements [42] to
ensure risk factors identified in past recalls are embedded into design requirements.

The dataset can further support developing detailed user personas based on specific recall incidents and hazard types
(integrating into works such as [42]). By examining product recalls through the lens of potential user interactions,
designers could construct user personas representative of individuals most likely to encounter or exacerbate certain
hazards. For example, examining products recalled due to choking hazards might inform the creation of personas
representing families with young children or elderly individuals with limited mobility, allowing designers to conduct
roleplay analysis and proactively consider how different user behaviors and demographics might interact with products
to induce hazardous situations.

Although it was not used in this work, the remedy_classification metadata included in the dataset could be used to train
a model useful to design practitioners in determining an appropriate solution once a recall-level hazard has been found.

Further, future work could explore embedding additional multimodal fields, such as the visual_product_description,
into a unified vector space. Doing so would support more detailed similarity analyses, helping designers quickly
identify potential risks based on visual and textual product features. Investigating the downstream implications of these
embeddings – such as their application in automated hazard detection or AI-augmented design tools – presents another
valuable research direction.

Ultimately, by refining these methods and integrating them into decision-making pipelines, this research could contribute
to addressing future challenges in product safety, thereby encouraging a practice of proactive, data-driven risk mitigation
in product design and development.

6 Conclusion

This work demonstrates the feasibility and value of leveraging historical product recall data to identify potential
hazards in consumer products. By analyzing recall records, we aim to provide designers and engineers with actionable
insights into common failure modes and safety risks, ultimately informing safer and more robust product development.
Specifically, we advocate for the integration of publicly available datasets into the early stages of the design process,
where risk identification is often most critical yet under-informed.

One of the key challenges in early-stage design is anticipating latent hazards that may not be immediately apparent.
Through three distinct case studies, we illustrate the utility of computational and LLM-driven methods for interacting
with the dataset. These case studies highlight different modalities of engagement: analyzing textual recall descriptions,
embedding product names for similarity assessment, and predicting potential hazards from images. These studies
demonstrate approaches for understanding not only what products fail, but how those failures manifest.

By integrating historical recall data into the design process, we present a scalable and data-driven approach to improve
product safety, anticipate failure modes, and support risk-informed decision-making. This research lays the groundwork
for future efforts aimed at embedding recall-informed analyses into design workflows, ultimately fostering a culture of
proactive, data-supported risk mitigation in engineering design.
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Appendix A

Table 3: Example of a recall entry from the curated dataset.

Field Value

recall_number 14259

recall_date 2014-08-20

recall_description The length adjustment buckles release unexpectedly, causing the item
being stored to fall and injure people nearby.

product_name Kayak and watersports storage hanger

product_quantity 10,000

remedies Consumers should stop using the recalled storage hangers and return
them to the place of purchase for a full refund or replacement.

visual_product_description

The product consists of a pair of straps made from blue and black fabric,
each approximately 1 inch wide and 84 inches long when unbuckled.
They feature plastic snap buckles for length adjustment and plastic-
coated steel S-hooks for hanging.

product_classification SPORTS_RECREATION

hazard_classification FALLING

remedies_classification REPLACE

product_image

14
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Appendix B

Table 4: Hazard classifications and definitions.

Hazard Classification Definition

Fire Use of the product may lead to a fire or the product violates federal fabric
flammability regulations.

Burn Use of the product may lead to experiencing burns.

Heat-Related Explosion (H.R.E.) The product may explode unintentionally.

Falling Use of the product may cause an unintentional fall.

Poisoning Use of the product may lead to poisoning.

Crash Use of the product may lead to an unintentional crash.

Choking Use of the product may lead to choking, or the product violates federal
toy safety standards, or the product violates federal children clothing
standards (drawstrings).

Cuts Use of the product may lead to unintentional cuts and/or lacerations.

Safety Equipment Malfunction (S.E.M.) The safety product does not operate as intended and use of the product
may lead to injury or death.

Impact Use of the product may lead to an unintentional impact that may cause
injury or death.

Table 5: Remedy classifications and definitions.

Remedy Classification Definition

Refund A customer may receive a full or partial refund, or gift card for the
recalled product.

Repair The company is offering a repair to the recalled product.

Replace The company is offering a replacement for the recalled product in the
form of a new product or other products of similar value.

Dispose The product should be thrown out or recycled.

New Instructions (N.I.) The company will issue new instructions on how the customer can make
the recalled product safe.

Remedy No Longer Available
(R.N.L.A.)

The recalled product should be thrown out or recycled.
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