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ABSTRACT

Large-scale 3D generative models require substantial computational resources yet
often fall short in capturing fine details and complex geometries at high resolu-
tions. We attribute this limitation to the inefficiency of current representations,
which lack the compactness required to model the generative models effectively.
To address this, we introduce a novel approach called Wavelet Latent Diffusion,
or Wal.a, that encodes 3D shapes into a wavelet-based, compact latent encodings.
Specifically, we compress a 256 signed distance field into a 123 x 4 latent grid,
achieving an impressive 2,427x compression ratio with minimal loss of detail.
This high level of compression allows our method to efficiently train large-scale
generative networks without increasing the inference time. Our models, both con-
ditional and unconditional, contain approximately one billion parameters and suc-
cessfully generate high-quality 3D shapes at 256> resolution. Moreover, WalLa
offers rapid inference, producing shapes within two to four seconds depending
on the condition, despite the model’s scale. We demonstrate state-of-the-art per-
formance across multiple datasets, with significant improvements in generation
quality, diversity, and computational efficiency. We open-source our code and,
to the best of our knowledge, release the largest pretrained 3D generative models
across different modalities: https://github.com/AutodeskAlLab/Wal a.

Input

| "A detailed bust of a ;
i man with a military |
' uniform, showcasing
1his profile and attire.":

Figure 1: We propose a new 3D generative model, called Wal.a, that can generate shapes from
conditions such as sketches, text, single-view images, low-resolution voxels, point clouds & depth-
maps.
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1 INTRODUCTION

Training generative models on large-scale 3D data presents significant challenges. The cubic nature
of 3D data drastically increases the number of input variables the model must handle, far exceeding
the complexity found in image and natural language tasks. This complexity is further compounded
by storage and streaming issues. Training such large models often requires cloud services, which
makes the process expensive for high-resolution 3D datasets as these datasets take up considerable
space and are slow to stream during training. Additionally, unlike other data types, 3D shapes can
be represented in various ways, such as voxels, point clouds, meshes, and implicit functions. Each
representation presents different trade-offs between quality and compactness. Determining which
representation best balances high fidelity with compactness for efficient training and generation
remains an open challenge. Finally, 3D representations often exhibit complex hierarchical structures
with details at multiple scales, making it challenging for a generative model to capture both global
structure and fine-grained details simultaneously.

To address these challenges, current state-of-the-art methods for large generative models typically
employ three main strategies. The first strategy involves using low-resolution representations, such
as sparse point clouds (Nichol et al.| [2022c; Jun & Nichol} 2023b), low-polygon meshes (Chen
et al., [2024b), or coarse grids (Cheng et al., 2023} |Sanghi et al.l [2023b). While these approaches
reduce computational complexity, they are limited in their ability to model the full distribution of
3D shapes, struggle to capture intricate details, and often lead to lossy representations. The second
approach represents 3D shapes through a collection of 2D images (Yan et al.,|2024a) or incorporates
images (Hong et al.,|2023}; [Li et al.,|2023a; |Liu et al., 2024} Xu et al., |2023bj} |Siddiqui et al., 2024;
Bensadoun et al.,|2024) into the training loss. However, this method suffers from long training times
due to the need for rendering and can fail to capture internal details of 3D shapes, as it primarily
focuses on external appearances. The third strategy introduces more compactness into the input
representations (Hui et al.||2024; Zhou et al.;|2024; |Ren et al.| [2024; |Yariv et al.| 2024} Xiong et al.|
2024} Zhang et al., [2024])) to reduce the number of variables the generative model must handle. While
these representations can be sparse (Ren et al., 2024; |Yariv et al., |2024; Xiong et al., [2024)), they
are often irregular or discrete in nature making it challenging to be modeled via neural networks
and can still be relatively large compared to image or natural language data (Hui et al.,|2024; |Zhou
et al.| 2024)), thus making it difficult to scale the model parameters efficiently.

One prominent compact input representation is wavelet-based representation, which includes Neural
Wavelet (Hu1 et al.l [2022), UDiFF (Zhou et al.l 2024}, and wavelet-tree frameworks (Hui et al.,
2024). These methods utilize wavelet transforms and their inverses to seamlessly convert between
wavelet spaces and high-resolution truncated signed distance function (TSDF) representations. They
offer several key advantages: data can be easily compressed by discarding selected coefficients with
minimal loss of detail, and the interrelationships between coefficients facilitate efficient storage,
streaming, and processing of large-scale 3D datasets compared to directly using TSDFs (Hui et al.}
2024). However, despite these benefits, wavelet-based representations remain substantially large,
especially when scaling up for large-scale generative models. For example, a 256 TSDF can be
represented as a wavelet-tree of size 46° x 64 (Hui et al.,[2024)), which is equivalent to a 1440 x 1440
RGB image. Scaling within this space continues to pose significant challenges.

In this work, we build upon the wavelet representation described above and introduce the Wavelet
Latent Diffusion (WaLa) framework. This framework further compresses the wavelet representation
to obtain compact latent encodings without significant information loss, thereby efficiently enabling
us to scale a diffusion-based generative model within this space. Starting with a truncated signed
distance function (TSDF) of a shape, we first convert it into 3D wavelet tree representation as in |Hui
et al.|(2024). Then, we train a convolution-based VQ-VAE model with adaptive sampling loss and
balanced fine-tuning to compress a 256 TSDF into a 123 x 4 grid, achieving a remarkable 2, 427 x
compression ratio while maintaining an impressive reconstruction without a significant loss of detail.
For example, as shown in Table an Intersection over Union (IOU) of 0.978 is achieved on the GSO
dataset. Compared to other representations, this approach requires fewer input variables for the
generative model while retaining high reconstruction accuracy. Consequently, the generative model
does not need to model local details and can focus on capturing the global structure. Moreover, by
significantly reducing the number of input variables that the generative model must handle due to
this compression, we enable the training of large-scale 3D generative models with up to a billion
parameters, producing highly detailed and diverse shapes. Wal.a also supports controlled generation
through multiple input modalities without adding significant inductive biases, making the framework
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Figure 2: Wal.a generates 3D shapes across various input modalities (see appendix for more)



flexible and adaptable beyond single-view 3D reconstruction tasks. As a result, our model generates
3D shapes with complex geometry, plausible structures, intricate topologies, and smooth surfaces.
This is demonstrated in Figures[[|and 2] where high-quality 3D meshes can be obtained by applying
marching cubes to the SDF generated from different input modalities such as text, sketch, low-
resolution voxel, point cloud, single-view, and multi-view images.

In summary, we make the following contributions:

* We introduce a Wavelet Latent Diffusion (Wala) framework that tackles the dimensional
and computational challenges of 3D generation with impressive compression while maxi-
mizing fidelity.

* Our large billion-parameter model generates high-quality 3D shapes within two to four
seconds, significantly outperforming state-of-the-art benchmarks in 3D shape generation.

* Our model demonstrates exceptional versatility, accepting diverse input modalities such as
single/multi-view images, voxels, point clouds, depth data, sketches, and textual descrip-
tions (see Figure [T]and [2), making it applicable to a wide range of 3D modeling tasks.

* To foster reproducibility and stimulate further research in this domain, we release what
we believe is, to the best of our knowledge, the largest 3D generative model to date that
works across various input modalities, comprising approximately one billion parameters.
The model is available at https://github.com/AutodeskAILab/WalL.a.

Table 1: 3D representations compared on GSO dataset (Downs et al., |2022): Intersection over
Union (IoU) for accuracy & number of input variables for generative models to evaluate complexity.
Representation | IoU | Number of Input Variables
Ground-truth SDF (256°) 1.0 16,777,216 (~ 64MB)

Point Cloud (Nichol et al.|[2022a) 0.8642 12,288 (~ 0.05MB)
Latent Vectors (Jun & Nichol![2023a) | 0.8576 1,048,576 (~ 4MB)

Coarse Component (Hui et al.|[2022) | 0.9531 97,336 (~ 0.4MB)
Wavelet tree (Hui et al.|[2024) 0.9956 1,129,528 (~ 4.3MB)
WaLa | 0.9780 | 6,912 (~ 0.03MB)

2 RELATED WORK

Neural Shape Representations. Several representations have been explored for Deep learning for
3D data. Initially, volumetric methods using 3D convolutional networks were employed (Wu et al.,
2015 [Maturana & Scherer}, 2015)), but they were limited by resolution and efficiency. The field then
advanced to multi-view CNNs that apply 2D processing to rendered views (Su et al., 2015} |Q1 et al.}
2016), and further explored sparse point cloud representations with networks like PointNet and its
successors (Qi et al., [2017azb; [Wang et al., 2019). Additionally, neural implicit representations for
compact, continuous modeling were developed (Park et al., 2019; [Mescheder et al., [2019; |Chen &
Zhang, [2019). Explicit mesh-based and boundary representations (BREP) have gained attention,
enhancing both discriminative and generative capabilities in CAD-related applications (Hanocka
et al.,|2019;|Chen et al., [2024b; Jayaraman et al., [2021} |[Lambourne et al., 2021). Recently, wavelet
representations (Hui et al.| 2022} Zhou et al., 2024; Hui et al., 2024) have become popular. Wavelet
decompositions of SDF signals enable tractable modeling of high-resolution shapes. In this work,
we extend the previous research by addressing the dimensional and computational hurdles of 3D
generation. Our novel techniques for efficient shape processing enable high-quality 3D generation
at scale, accommodating datasets with millions of shapes.

3D Generative Models. 3D generative models have evolved rapidly, initially dominated by Gen-
erative Adversarial Networks (GANs) (Goodfellow et al., 2014; |Wu et al., 2016). Subsequent ad-
vancements integrated differentiable rendering with GANs, utilizing multi-view losses for enhanced
fidelity (Chan et al., |2022). Parallel developments explored normalizing flows (Yang et al., 2019;
Klokov et al., [2020; Sanghi et al., [2022)) and Variational Autoencoders (VAEs) (Mo et al., [2019).
Additionally, autoregressive models also gained traction for their sequential generation capabili-
ties (Cheng et al., [2022; [Nash et al.l 2020; |Sun et al., [2020; [Mittal et al., 2022; |Yan et al., 2022;
Zhang et al.| 2022} Sanghi et al.| 2023a). The recent success of diffusion models in image gen-
eration has sparked a great interest in their application to 3D contexts. Most current approaches
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employ a two-stage process: first, a Vector-Quantized VAE (VQ-VAE) on 3D representations such
as triplanes (Shue et al.| [2023bj |Chou et al.l [2023; |[Peng et al.| [2020; Reddy et al., [2024; |Siddiqui
et al., 2024} |Chen et al.| [2022} |Gao et al.| [2022b; [Shue et al., [2023a), implicit forms (Zhang et al.,
2023a; |L1 et al., 2023b}, |Cheng et al.l |2023), or point clouds (Jun & Nichol, 2023a; Zeng et al.,
2022) is trained, and then, diffusion models are applied to the resulting latent space. Incorporating
autoencoders to process latent spaces allow for the generation of complex representations like point
clouds (Jun & Nichol, 2023a; Zeng et al.| [2022)) and implicit forms (Zhang et al., 2023a; |L1 et al.}
2023bj; |Cheng et al.| 2023} Zhang et al., [2024). Direct training of diffusion models on 3D represen-
tations, though less explored, has shown promise for point clouds (Nichol et al.| [2022a}; [Zhou et al.
20215 |Luo & Hu, |2021; Nakayama et al., [2023)), voxels (Zheng et al.l 2023, occupancy (Ren et al.,
2024)), and neural wavelet coefficients (Hui et al.l 2022; [Liu et al.l [2023d; [Hui et al., [2024)). Our
work advances this frontier by bridging the gap between compact representation and high-fidelity
generation.

Conditional 3D Models. Two primary paradigms dominate conditional 3D generative models, each
with its own approach to 3D content creation. The first paradigm ingeniously repurposes large-scale
2D conditional image generators, such as (Rombach et al.| 2022a) or Imagen (Saharia et al.,|2022),
for 3D synthesis. This approach employs a differentiable renderer to project 3D shapes into 2D
images, enabling comparison with target images or alignment with text-to-image model distributions
(Jain et al.} 2022; |Michel et al., [2022; |Poole et al.| [2022). Initially focused on text-to-3D generation,
this method has expanded to accommodate various input modalities, including single and multi-
view images (Deng et al,, 2023 [Melas-Kyriazi et al., 2023; |Xu et al., 2022; |Liu et al., 2023c;
Deitke et al., |2023} |Qian et al., [2023} |Shi et al., 2023; Wang et al., 2023} [Liu et al., |2023b), and
even sketches (Mikaeili et al.l [2023). This approach, while novel, is limited by its computational
demands. An alternative paradigm uses dedicated conditional 3D generative models trained on either
paired datasets or through zero-shot learning. These paired models show adaptability to various
input conditions, ranging from point clouds (Zhang et al., 2022} 2023b) and images (Zhang et al.,
2022; Nichol et al.,2022a; |Jun & Nichol,2023a; |Zhang et al.,|2023bj |Chen et al.,[2024a; Tang et al.}
20245 |Li et al.| |2023a; | Xu et al.l 2024} Zhang et al., 2024; [Siddiqui et al.| 2024} Bensadoun et al.,
2024)) to low-resolution voxels (Chen et al., [2021;2023b), sketches (Lun et al., 2017} |Guillard et al.,
20215 |Gao et al. 2022a; |Kong et al., [2022)), and textual descriptions (Nichol et al., 2022a; Jun &
Nicholl [2023a; [Ren et al., |2024; Yariv et al., |2024). Concurrently, zero-shot methods have gained
traction, particularly in text-to-3D (Sanghi et al.,2022};/2023a} Liu et al.| |2022; | Xu et al.|,[2023a} [ Yan
et al.,|2024b) and sketch-to-3D applications (Sanghi et al.,2023b)), showcasing the potential for more
flexible and generalizable 3D generation. We expand on the second paired paradigm, developing a
large-scale paired conditional generative model for 3D shapes. This approach enables fast generation
without per-instance optimization, supports diverse inputs, and facilitates unconditional generation
and zero-shot tasks like shape completion.

3 METHOD

Training generative models on large-scale 3D data is challenging because of the data’s complexity
and size. This has driven the creation of compact representations like neural wavelets, facilitating
efficient neural network training. To represent a 3D shape with wavelets, it is first converted into a
Truncated Signed Distance Function (TSDF) grid. A wavelet transform is then applied to decompose
this TSDF grid into coarse coefficients (Cy) and detail coefficients at various levels (Dg, D1, D5).
Various wavelet transforms, such as Haar, biorthogonal, or Meyer wavelets, can be employed. Most
current methods utilize the biorthogonal wavelet transform (Hui et al., 2022; [Zhou et al.| 2024;
Hui et al.l |2024). The coarse coefficients primarily capture the essential shape information, while
the detail coefficients represent high-frequency details. To compress this representation, different
filtering schemes can be applied to remove certain coefficients, though this involves a trade-off in
reconstruction quality. In the neural wavelet representation (Hui et al., [2022), all detail coefficients
are discarded during the training of the generative model and a regression network is used to predict
the missing detail coefficients Dj. In contrast, the wavelet-tree representation (Hui et al.| [2024)
retains all coarse coefficients (Cy), discards the third level of detail coefficients (D-), and selectively
keeps the most significant coefficients from Dy along with their corresponding details in D; using
a subband coefficient filtering scheme. The neural wavelet representation, while modeling a smaller
number of input variables, has lower reconstruction quality than the wavelet-tree representation,
making latter a more attractive option.
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Figure 3: Overview of the Wala network architecture and 2-stage training process and inference
method. Top Left: Stage 1 autoencoder training, compressing diffusible wavelet tree (W) shape
representation into a compact latent space. Top Right: Conditional/unconditional diffusion training.
Bottom: Inference pipeline, illustrating sampling from the trained diffusion model and decoding the
sampled latent into a Wavelet Tree (W), then into a mesh.

Building upon these efficient wavelet representations, our method requires a large collection of 3D

shapes. Let S = {(W,,, @n)}n 1> denote a dataset of N 3D shapes such that each shape S,, € S
is represented by a diffusible wavelet tree representation W,, (Hui et all and an optional

associated condition ©,,. The representation WW,, € R%6°*64 is obtained by converting a TSDF of
resolution 2562. Depending on the conditional generative model, the condition ©,, can be a single-
view image, multi-view images, a voxel representation, a point cloud, or multi-view depth maps,
and may be omitted if the model is unconditional or when training the vector-quantized autoencoder
(VQ-VAE). Training our model comprises two stages: First, we train a convolution-based VQ-VAE
to encode the diffusible wavelet tree representation into a more compact grid latent space Z using
the adaptive sampling loss. At this stage, to further enhance reconstruction accuracy, we fine-tune
the VQ-VAE using a simple approach we call balanced fine-tuning. This VQ-VAE encodes a latent
grid Z,, € R12°%4 for each shape S,, € S. In the second stage, we train a diffusion-based generative
model on this latent grid Z,, that can be conditioned on a sequence of condition vectors derived from
one of the aforementioned conditions. During inference, we initiate with a completely noisy latent
vector and employ the conditional generative network to denoise it progressively through the inverse
diffusion process, utilizing classifier-free guidance. The two-step process is detailed in Figure [3]and
is also explained next.

3.1 STAGE 1: WAVELET VQ-VAE

Our primary objective is to compress the diffusible wavelet tree representation
into a compact latent space without significant loss of fidelity, thereby facilitating the training of
a generative model directly on this latent space. Decoupling compression from generation allows
for efficient scaling of a large generative model within the latent space. To this end, we employ a
convolution-based VQ-VAE, known for producing sharper reconstructions and mitigating issues like
posterior collapse (Van Den Oord et all, 2017;[Razavi et al.,[2019; [Baykal et al.} 2024). Specifically,
the encoder Enc(-) maps the input W, to a latent representation Z,, = Enc(W,,), which is then
quantized as VQ(Z,,) via a vector quantization layer and decoded by Dec(-) to reconstruct the
shape W/ = Dec(VQ(Z,)). By integrating the vector quantization layer with the decoder, as in




(Rombach et al.| 2022b), we ensure that the generative model is trained on pre-quantized latent
codes. This approach leverages the robustness of the quantization layer to small perturbations by
mapping generated codes to the nearest embeddings in a codebook after generation. Empirical
results confirm the effectiveness of this strategy, see Ablation Section[C.4]

To train the VQ-VAE, we employ a combination of three losses: a reconstruction loss to ensure
fidelity between the original and reconstructed shapes, a codebook loss to encourage the code-
book embeddings to adapt to the distribution of encoder outputs, and a commitment loss to align
the encoder’s outputs closely with the codebook embeddings. We apply a reconstruction loss
Lrec(W,,, W), during which we adopt a adaptive sampling loss strategy (Hui et al.,[2024) to focus
more effectively on high-magnitude detail coefficients (i.e., Dy and D) while still considering the
others. Since most detail coefficients are low in magnitude and contribute minimally to the overall
shape quality, this approach identifies the significance of these coefficients in each subband based
on their magnitude relative to the largest coefficient, forming a set Py of important coordinates.
By structuring the training loss to emphasize these crucial coefficients and incorporating random
sampling of less important ones, the model efficiently concentrates on key information without ne-
glecting finer details. This is formalized in the equation below:

Lrec = Luse(Co, Cp) + % > [Luse(D[P], D'[Po)) + Lwiss (R(D[Fy]), R(D'[Fg)))] (1)
De{Dy,D1}

In this context, Lysg(X,Y") denotes the mean squared error between X and Y. The coefficients
Co, Dy, D; extracted from W, represent the coarse and detail components, respectively, while their
reconstructed counterparts C(), D{), D} are derived from the reconstructed W, . The notation D[F,]
refers to the coefficients in D at the positions specified by the set Py, with P} being its complement.
The function R(D|[P(]) randomly selects coefficients from D[P]] such that the number of selected
coefficients equals |Py|. By balancing the number of coefficients in the last two terms of the loss
function, we emphasize critical information while regularizing less significant coefficients through
random sampling. This approach is also empirically validated in Ablation Section

Our model is initially trained on 10 million samples collected from 19 different datasets (see Section
for details). However, we observed that a substantial portion of this data is skewed towards
simple CAD objects, introducing a bias in the training process. This imbalance can cause the model
to underperform on more complex or less-represented 3D shapes. To address this issue, we fine-tune
the converged VQ-VAE model using an equal number of samples from each of the 19 datasets —
a process we call balanced fine-tuning. This approach ensures that the model is exposed uniformly
to the diverse range of shapes and complexities present across all datasets, thereby reducing the
bias introduced by the initial imbalance. Empirically, we find that balanced fine-tuning enhances
reconstruction results across datasets, as demonstrated in our ablation study (Section @])

3.2 STAGE 2: LATENT DIFFUSION MODEL

In the second stage, we train a large-scale generative model with billions of parameters on the latent
grid, either as an unconditioned model to capture the data distribution or conditioned on diverse
modalities ©,, (e.g., point clouds, voxels, images). We use a diffusion model within the Denoising
Diffusion Probabilistic Models (DDPM) framework (Ho et al., 2020), modeling the generative
process as a Markov chain with two phases.

First, the forward diffusion process gradually adds Gaussian noise to the initial latent code Z° over
T steps, resulting in Z1 ~ N(0,I). Then, the reverse denoising process employs a generator
network , conditioned on ©,,, to systematically remove the noise and reconstruct Z2. The generator
predicts the original latent code Z{) from any intermediate noisy latent codes Z!, at time step ¢, using
fo(ZE,t,0,) ~ Z9, and is optimized using a mean-squared error loss:

L= Ef, [HfG(Z:L?tv en) - ZSHQ]

Here, Z! is obtained by adding Gaussian noise ¢ to Z0 at time step ¢ using a cosine noise sched-
ule (Dhariwal & Nichol, 2021). The condition ©,, is a latent set of vectors derived from various
conditioning modalities, injected into the U-ViT generator (Hoogeboom et all [2023) by using



cross-attention and by modulating the normalization parameters in the ResNet and cross-attention
layers, as described in |Esser et al.| (2024). This is achieved via condition encoders for different
modalities. During training, we apply a small dropout to the condition to implement classifier-free
guidance during inference. In the case of unconditional generation, no conditioning is applied. For
most input conditions (point clouds, voxels, images, multi-view images, and multi-view depth) we
directly train a different conditional generative model for each condition, while for the conditioning
on sketch and the single-depth, we take the image-conditioned generative model and fine-tune it
with synthetic sketch data and depth data, respectively. For text-to-3D, we fine-tune MVDream (Xu
et al.} 2023b) to generate six multi-view depth images, as this provides better reconstruction than
multi-view images (see experiments in Section [4.2.3), and then use our model during inference.
Further details are provided in the appendix.

3.3 INFERENCE

At test time, we begin with a randomly generated noisy latent encoding Z! ~ A(0,I) and itera-
tively denoise it to reconstruct the original latent code Z{ through the reverse diffusion process, as
described in DDPM (Ho et al.| [2020). For conditional generation, we apply classifier-free guidance
(Ho & Salimans| [2022) by interpolating between the unconditional and conditional denoising pre-
dictions, steering the generation process toward the desired output. This approach allows for greater
control over the quality-diversity trade-off. Once the final latent code Z? is obtained, we use the
pre-trained decoder network of the VQ-VAE from [3.1]to generate the final 3D shape in the wavelet
form. Subsequently, we apply the inverse wavelet transform to obtain the final 3D shape as an TSDF
that can further be converted to a mesh using marching cubes. Notably, we can generate multiple
samples for the same conditional input by using different initializations of the noisy latent grid.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Datasets. Our training data consists of over 10 million 3D shapes, assembled from 19 pub-
licly available datasets, including ModelNet Vishwanath et al.| (2009), ShapeNet |(Chang et al.
(2015)), SMPL |Loper et al.| (2015), Thingi10K [Zhou & Jacobson|(2016), SMAL [Zuffi et al.| (2017,
COMA Ranjan et al.[(2018), House3D |Wu et al.| (2018)), ABC|Koch et al.| (2019)), Fusion 360 |Willis
et al.| (2021), 3D-FUTURE |Fu et al.| (2021)), BuildingNet [Selvaraju et al.| (2021), DeformingTh-
ings4D |Li et al.| (2021), FG3D [Liu et al.| (2021), Toys4K [Stojanov et al.| (2021), ABO |Collins et al.
(2022), Infinigen Raistrick et al.[(2023), Objaverse Deitke et al.[(2023), and two subsets of Objaver-
seXL |Deitke et al.|(2023) (Thingiverse and GitHub). These individual datasets target specific object
categories: for instance, CAD models (ABC and Fusion 360), furniture (ShapeNet, 3D-FUTURE,
ModelNet, FG3D, ABO), human figures (SMPL and DeformingThings4D), animals (SMAL and
Infinigen), plants (Infinigen), faces (COMA), and houses (BuildingNet, House3D). Additionally,
Objaverse and ObjaverseXL cover a broader range of generic objects sourced from the internet,
covering the aforementioned categories and other diverse objects. Following Hui et al.| (2024), each
of these 19 datasets was split into two parts for data preparation: 98% of the shapes were allocated
for training, and the remaining 2% for testing. The final training and testing sets were created by
merging the corresponding portions from each sub-dataset. Note that we use the entire testing dataset
solely for autoencoder reconstruction validation. We also apply a 90-degree rotation augmentation
along each axis, doing the same for the corresponding conditions (point clouds, voxels). We also
create a balanced training set across these 19 datasets by sampling 10,000 shapes from each. If a
dataset contains fewer than 10,000 shapes, we duplicate the data until the target size is reached.

Training Details. For optimization and training, we use the Adam optimizer |Kingma & Ba|(2014)
with a learning rate of 0.0001 and a gradient clipping value of 1. For VQ-VAE training, we use
a batch size of 256 with 1024 codebook embeddings of dimension 4. We train the network until
convergence and then fine-tune the VQ-VAE using a more balanced dataset until it converges again.
For the base generative model, we use a batch size of 64 and train it for 2 to 4 million iterations
for each modality. Each generative model is trained on a single HI00 GPU per condition. We train
our model on six conditions: point clouds with 2,500 points, voxels at 16 resolution, single-view
RGB, multi-view RGB with 4 views, multi-view depth with 4 views, and multi-view depth with 6
views. We also fine-tune the single-view model with synthetic sketch data and single-depth data to
obtain two more conditions. Additionally, we train an unconditional model beyond these. Finally,
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Figure 4: Qualitative comparison with other methods for single-view (top-left), multi-view (top-
right), voxels (bottom-left), and point cloud (bottom-right) conditional input modalities. Hui et al.
202%); He & Wang]| (2024)); [Tochilkin et al.| (2024); Xu et al.| (2024); Tang et al.| (2024); [Chen et al.
2024b); Nichol et al.| (2022¢))
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we train a large single-view RGB model with 1.4 billion parameters, which we call the Wal.a Large
model, using 8 H100 GPUs and a batch size of 256. Once this model has converged, we fine-tune
it with depth data, using the same number of GPUs and batch size, to obtain the Wala Depth Large
model.

Evaluations Dataset. We perform qualitative and quantitative evaluation of our method on Google
Scanned Objects (GSO) (Downs et al [2022) and MAS validation data Impor-
tantly, Google Scanned Objects (GSO) is not a part of the dataset detailed in Section H4.1|used to
train our model. Consequently, evaluating on Google Scanned Objects (GSO) data assesses the
cross-domain generalization of our method. We include all validation objects from the GSO dataset
to ensure a broad evaluation. The MAS validation data is an unseen test set consisting of 50 ran-
domly selected shapes from each of the 19 large-scale datasets mentioned in Section 1] This
ensures that validation data contains all the subcategories like CAD models, human figures, faces,
houses, and others, thereby enabling a comprehensive evaluation. We present three metrics for each
method on both datasets, the metrics being: (i) Light Field Distance (LFD) which
evaluates how alike two 3D models appear when viewed from multiple angles, (ii) Intersection over
Union (IoU) ratio, which compares the intersection volume to the total volume of two voxelized
3D objects, and (iii) Chamfer Distance (CD), which measures the similarity between two shapes
based on the minimum distance between corresponding points on their surfaces. Note that among
these three metrics, for generated shapes that are not aligned (that can occur during generation from
conditions such as single images), the most reliable metric is LFD as it is rotation invariant.

4.2 EXPERIMENTS

We conducted a comprehensive study across various modalities, quantitatively evaluating our
method against baselines using four distinct input types: point clouds (Section {.2.1), vox-
els (Section [#.2.2), single-view images, and multi-view images (Section #.2.3). For qualita-
tive analysis, we present the results of all our models, showcasing visual outcomes in Figure
[[] and Figure [2] and provide additional examples in the appendix as well as on our website:
https://autodeskailab.github.io/WaLaProject. We also report a detailed ablation study in the ap-
pendix.
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Table 2: Quantitative comparison between different methods of point cloud to mesh generation.
We present LFD, IOU and CD metrics. Our method, WaLa, outperforms the other methods on both
GSO and MAS Validation datasets.

Method

GSO Dataset MAS Dataset
LFD | ToU 1 CD| | LFD| IoU 1 CD |

Poisson surface reconstruction (Kazhdan et al., 2006) 3306.66 0.3838 0.0055 4565.56 0.2258 0.0085

Point-E SDF model (Nichol et al.|[2022c) 2301.96  0.6006  0.0037 | 4378.51 0.4899  0.0158
MeshAnything (Chen et al.||2024b) 2228.62  0.3731 0.0064 | 2892.13  0.3378  0.0091
Make-A-Shape (Hui et al.|[2024) 227492 0.7769  0.0019 | 1857.84  0.7595  0.0036
WaLa(Ours) 1114.01  0.9389  0.0011 | 1467.55 0.8625  0.0014

Table 3: Quantitative evaluation on lower resolution voxel data (163 resolution) to mesh generation
task. Our method, WaLa, surpasses traditional Nearest neighbour and Trilinear upsampling as well
as data-centric method like Make-a-Shape.

GSO Dataset MAS Dataset
LFD | ToU 1 CD | \ LFD | IoU 1 CDh |

Nearest Neighbour Interpolation | 5158.63 0.1773  0.0225 | 5401.12  0.1724  0.0217

Method

Trilinear Interpolation 4666.85 0.1902 0.0361 | 4599.97 0.1935 0.0371
Make-A-Shape (Hui et al.,[2024) | 1913.69 0.7682 0.0029 | 2566.22  0.6631  0.0051
WaLa(Ours) 1544.67 0.8285 0.0020 | 1874.41 0.75739  0.0020

4.2.1 POINT CLOUD-TO-MESH

In this study, we aim to evaluate the generation of a mesh from an input point cloud containing 2,500
points. We present qualitative results of this task in the bottom right of Figure []and in rows 1-2 of
Figure 2} To quantitatively assess WaLa’s performance, we compare it against both traditional and
data-driven techniques, as shown in Table [2| For the traditional approach, we benchmark against
Poisson surface reconstruction, which uses heuristic methods to create smooth meshes from point
clouds. For Poisson reconstruction, we need normals, so we estimate them using the five nearest
neighbors via O3D (Zhou et al.,|2018)). After performing Poisson surface reconstruction, we remove
vertices whose density values fall below the 20th percentile to avoid spurious faces. Additionally,
we evaluate our method alongside data-driven generative models such as Point-E (Nichol et al.,
2022b), MeshAnything (Chen et al.| [2024b), and Make-A-Shape (Hui et al., 2024). For Point-
E (Nichol et al.| [2022b)), we utilize its SDF network to estimate the distance field from the point
cloud. We also compare our method with MeshAnything (Chen et al., 2024b), a recent transformer-
based neural network designed for meshing point clouds. In this case, we use 2,500 input points and
follow their hyperparameters and procedure. Finally, we compare against Make-A-Shape (Hui et al.,
2024), which also generates meshes conditioned on point clouds and has its model open-sourced.

The quantitative results in Table [2| demonstrate that our method significantly outperforms existing
point cloud to mesh generation techniques on both the GSO and MAS validation datasets. These
results are despite us not needing normals as in Poisson reconstruction and MeshAnything. Our
method can also scale well with data compared to methods like MeshAnything which do not scale
well with large face counts. Moreover, our method does not require many surface points to recon-
struct a 3D shape, whereas methods like MeshAnything require 8k points (as mentioned in their
work) and Point-E requires 4k points. Qualitatively, our method also outperforms the baselines,
as shown in the bottom right of Figure 4] and creates smoother shapes with complex geometry, as
demonstrated in rows 1-2 of Figure

4.2.2 VOXEL-TO-MESH

In this experiment, we evaluate our proposed method, Wala, against several baseline approaches
for generating 3D shapes from low-resolution voxels with a resolution of 163. Quantitative results
are presented in Table [3] while qualitative comparisons are illustrated in the bottom left of Fig-
ure 4] and in rows 3 and 4 of Figure 2] We evaluate using the GSO and MAS datasets. As detailed
in Table |3} WaLa is benchmarked against traditional upsampling techniques (nearest neighbor and
trilinear interpolation) and a data-driven approach, Make-A-Shape (Hui et al., 2024)). For the tra-
ditional upsampling baselines, we apply nearest neighbor and trilinear interpolation methods to the
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Table 4: Comparison between different methods on Image-to-3D task (Top) and Multiview-to-
3D task (Bottom). Quantitative evaluation shows that our single-view model excels the baselines,
achieving the highest IoU and lowest LFD metrics. Our multi-view model further enhances perfor-
mance by incorporating additional information. RGB 4, Depth 4, and Depth 6 represents condition-
ing using RGB images from 4 different views, and depth estimates from 4 and 6 views respectively.
Inference time is measured on A100 GPU.

Method ‘ Inference GSO Dataset MAS Val Dataset

Timel LFD | ToU 1 CD | \ LFD | IoU 1 CD |
Point-E (Nichol et al.||2022a) ~31 Sec 5018.73 0.1948 0.02231 6181.97 0.2154 0.03536
Shap-E (Jun & Nichol, [2023a) ~6 Sec 3824.48 0.3488 0.01905 | 4858.92 0.2656 0.02480
z One-2-3-45 (Liu et al.}[2023a) ~45 Sec 4397.18 0.4159 0.04422 | 5094.11 0.2900 0.04036
e OpenLRM (He & Wang| 2024) ~5 Sec 3198.28 0.5748 0.01303 | 4348.20 0.4091 0.01668
%’n TripoSR(Tochilkin et al.|[2024) ~1 Sec 3750.65 0.4524 0.01388 | 4551.29 0.3521 0.03339
5 InstantMesh(Xu et al.|[2024) ~10 Sec 3833.20 0.4587 0.03275 | 5339.98 0.2809 0.05730
LGM(Tang et al.[[2024) ~37 Sec 4391.68 0.3488 0.05483 | 5701.92 0.2368 0.07276
Make-A-Shape(Hui et al.||2024) ~2 Sec 3406.61 0.5004 0.01748 | 4071.33 0.4285 0.01851
WaLa (RGB) ~2.5 Sec 2509.20 0.6154 0.02150 | 2920.74 0.6056 0.01530
WalLa Large (RGB) ~2.6 Sec 2473.35 0.5984 0.02175 | 2562.70 0.6610 0.00575
WalLa (depth) ~2.5 Sec 2172.52 0.6927 0.01301 | 2544.56 0.6358 0.01213
WaLa Large (depth) ~ 2.6 Sec | 2076.50 0.7043 0.01344 | 2322.75 0.6758 0.00756
" InstantMesh(Xu et al.}[2024) ~1.5 Sec 3009.19 0.5579 0.01560 | 4001.09 0.4074 0.02855
S LGM(Tang et al.|[2024) ~35 Sec 1772.98 0.6842 0.00783 | 2712.30 0.5418 0.00867
= Make-A-Shape(Hui et al.}[2024) ~2 Sec 1890.85 0.7460 0.00337 | 2217.25 0.6707 0.00350
% WaLa(RGB 4) ~2.5 Sec 1260.64 0.8500 0.00182 1540.22 0.8175 0.00208
s WaLa(Depth 4) ~2.5 Sec 118539  0.87884  0.00164 1417.40  0.83313  0.00160
WaLa(Depth 6) ~4 Sec 1122.61 091245  0.00125 | 1358.82  0.85986  0.00129

163 voxel grids, followed by the marching cubes algorithm (Lorensen & Cline, [1998) to generate
the corresponding meshes. In contrast, the data-driven method utilizes the pre-trained voxel-to-mesh
model provided by Make-A-Shape.

The results in Table [3|demonstrate that Wala consistently outperforms all baseline methods across
various metrics and datasets. Notably, our approach achieves significantly lower LFD and CD val-
ues, alongside higher IoU scores, compared to both traditional and data-driven techniques. These
quantitative findings suggest that Wala not only effectively upsamples 3D shapes to higher resolu-
tions but also produces smoother surfaces and higher-quality meshes by accurately filling in missing
details. This holds true even for ambiguous shapes (see Figure [2} third row, columns 3—4) and those
with disjoint components (see Figure[2] fourth row, columns 3—4). Furthermore, qualitative assess-
ments in Figure f] corroborate our quantitative results, demonstrating that WaLa reconstructs finer
geometric features and more precise details than both traditional interpolation methods and existing
data-driven approaches.

4.2.3 IMAGE-TO-MESH

In this section, we compare Wal.a with other state-of-the-art image-to-3D generative models, focus-
ing on both single-view and multi-view scenarios. In the single-view setting, our model generates
3D shapes from a single input image or depth map. For multi-view generation, we utilize four RGB
images or four to six depth images along with their corresponding camera parameters. This ap-
proach allows us to evaluate the model’s performance under varying conditions, demonstrating the
versatility and effectiveness of our generative model in different image-to-3D generation contexts.
Qualitative results for single-view RGB are shown in the top left of Figure[dand in rows 5-6 of Fig-
ure[2] Conversely, qualitative results for multi-view RGB are displayed in the top right of Figure []
and in rows 7-8 of Figure[2] Additional details and results can be found in the appendix and on
our website. Our quantitative results, which assess both quality and inference time on the GSO and
MAS validation datasets, are presented in Table {i] with the Image-to-3D task results at the top and
the multiview-to-3D task at the bottom. We attempted to perform an extensive comparison; how-
ever, this proved challenging as many methods are not available as open-source implementations or
utilize subsets of the GSO dataset for which the sample lists are not publicly available (Zhang et al.,
2024; Siddiqui et al.| 2024} Bensadoun et al.| |2024). Consequently, we chose to use the entire GSO
dataset and run open-source models whose code is available for both GSO and MAS.

As demonstrated in Table 4 our method consistently outperforms other 3D generation techniques
across both tasks. For the single image-to-3D task, our base RGB model surpasses all baseline
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methods by a wide margin on most metrics, except for OpenL.RM on the CD metric within the GSO
dataset. We believe this exception is primarily due to CD’s sensitivity to rotation, as many gener-
ated shapes may not be perfectly aligned with the ground truth. In contrast, the LFD, which is a
rotation-invariant metric, clearly shows significant improvement from Wal.a as compared to LRM.
Another noteworthy observation is that the Wal.a Large model significantly outperforms the Wala
Base model on the MAS test set but does not show a notable improvement on the GSO dataset.
This outcome is expected since we trained on the MAS training set, indicating that increasing the
number of parameters may not necessarily enhance generalization to the GSO dataset. Additionally,
the single-depth model outperforms the RGB base model, which is intuitive as depth maps provide
more comprehensive information about the 3D structure. Finally, it is important to highlight that
our model either outperforms or is comparable to most methods in terms of inference time while
delivering significantly better quality. A similar trend is observed in the multi-view image-to-3D
task, where our model significantly outperforms baseline methods in quality while maintaining sim-
ilar or better inference times. Another interesting observation is that increasing the number of depth
map images improves performance, which again intuitively makes sense as we have more shape
information.

Qualitatively, our method generates 3D shapes with complex geometry (see Figure [2] row 8, col-
umn 7-8), multiple disjoint components (see Figure[2} row 6, column 3-4), and intrinsic geometric
features (see Figure 2] row 5, column 3-4). Additionally, it produces diverse shapes across vari-
ous object categories, including organic forms (see Figure 2} row 5, column 5-6) and CAD models
(see Figure[2| row 7 column 1-2). Furthermore, our multi-view model outperforms the single-view
model, which is intuitively expected due to the additional information provided by multiple perspec-
tives. Our method also visually surpasses other baselines, as demonstrated in Figure ] by capturing
more details and creating more complex geometries. We also apply our multi-view approach to text-
to-3D generation, as shown in Figure[2] rows 11-12. For these experiments, we utilize the six-view
depth model, which achieves the best reconstruction performance. Additionally, we present visual
sketch-to-3D results in Figure 2| rows 9-10. The sketch-to-3D models are obtained by fine-tuning
the image-to-mesh model with synthetic sketch data. We also fine-tune the image-to-mesh model
with single-view depth data and present visual results in Figure[2], rows 13—-14. Further details about
these models are provided in the appendix.

5 CONCLUSION

In this work, we introduce Wavelet Latent Diffusion (WalLa), a novel approach to 3D generation that
tackles the challenges of high-dimensional data representation and computational efficiency. Our
method compresses 3D shapes into a wavelet-based latent space, enabling highly efficient compres-
sion while preserving intricate details. Wala marks a significant leap forward in 3D shape gener-
ation, with our billion-parameter model capable of generating high-quality shapes in just 2—4 sec-
onds, outperforming current state-of-the-art methods. Its versatility allows it to handle diverse input
modalities, including single and multi-view images, voxels, point clouds, depth maps, sketches, and
text descriptions, making it adaptable to a wide range of 3D modeling tasks. We believe WaL a sets a
new benchmark in 3D generative modeling by combining efficiency, speed, and flexibility. Finally,
we release our code and model across multiple modalities to promote further research and support
reproducibility within the community.
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A ADDITIONAL RESULTS AND DETAILS

For more visual results and detailed information about our model, please visit https:
//autodeskailab.github.io/WaLaProject. The code is available at https://
github.com/AutodeskAILab/Wala.

B ARCHITECTURE DETAILS

In the first stage, we train a convolution-based VQ-VAE using a codebook size of 1024 with a di-
mension of 4. We downsample the input wavelet tree representation to a 123 x 4 latent space. Our
generative model operates within this latent space by utilizing the U-ViT architecture [Hoogeboom
et al.| (2023), incorporating two notable modifications. Firstly, we do not perform any additional
downsampling since our latent space is already quite small. Instead, the model comprises multi-
ple ResNet blocks followed by attention blocks, and then more ResNet blocks at the end, with a
skip connection from the initial ResNet block. The attention blocks include both self-attention and
cross-attention mechanisms, as described in (Chen et al.,[2023a). Secondly, we modulate the layer
normalization parameters in both the ResNet and attention layers, following the approach detailed
in (Esser et al.,[2024). This tailored architecture enables our generative model to effectively operate
within the compact latent space, enhancing both performance and efficiency.

In this section, we describe the details of the various conditions utilized in our model:

1. Point Cloud Model: During training, we randomly select 2,500 points from the pre-
computed point cloud dataset, which was generated from our large-scale dataset comprising
10 million shapes. These points are encoded into feature vectors using the PointNet encoder
Qi et al.[(2017a). To aggregate these feature vectors into condition latent vectors, we apply
attention pooling as described in |Lee et al.| (2019). This process converts the individual
points into a latent set vector. Finally, we pass this latent set vector through additional
Multi-Layer Perceptron (MLP) layers to obtain the final condition latent vectors.

2. Voxel 163 Model: For voxel-based conditions, we employ a ResNet-based convolutional
encoder to process the 163 voxel grid. After applying multiple ResNet layers, the voxel
volume is downsampled to reduce its dimensionality to 83. This downsampled volume is
then processed with additional ResNet layers, ultimately resulting in the conditional latent
vectors. This approach leverages the spatial hierarchy captured by the ResNet architecture
to effectively encode volumetric data.

3. Single View Image Model: Our dataset consists of a predetermined set of views for each
object. During training, we randomly select one view from this set. The selected view is
then processed by the DINO v2 encoder (Oquab et al.,[2023) to extract feature representa-
tions. The encoder’s output serves as the conditional latent vectors, encapsulating the visual
information from the single view. It is important to note that we do not train the DINO v2
encoder; instead, we freeze its weights and utilize only the conditional latent vectors.

4. Single View Depth Model: We begin by selecting a checkpoint from a pre-trained Single
View Image Model once it has converged and initialize the depth conditioned generative
model using the same architecture described in the single-view section. We then fine-tune
the model using pre-computed depth data. Throughout this process, we utilize the DINO
v2 encoder (Oquab et al., [2023) to obtain the conditional latent vectors while keeping the
encoder’s weights frozen.

5. Sketch Model: We initialize the model using the architecture described in the single-view
section. After the base model converges, we fine-tune it with sketch data. This fine-tuning
process involves training the model on sketch representations to adapt the latent vectors,
enabling them to capture the abstract and simplified features characteristic of sketches. As
in previous cases, the DINO v2 encoder (Oquab et al.,|2023)) remains frozen. Further details
about the sketch data are provided in Appendix [D]

6. Multi-View Image/Depth Model: For multi-view scenarios, we select four viewpoints for
the multi-view RGB image model and use configurations with four and six views for the
multi-view depth model. These views are carefully chosen from pre-defined angles to en-
sure comprehensive coverage of the object. Each view is independently processed through
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the DINO v2 encoder (Oquab et al.| |2023)), generating a latent vector for each viewpoint.
The latent vectors from all views are then concatenated sequentially, forming a final con-
ditional latent representation structured as a sequence of latent vectors with dimensions
corresponding to the number of views and the condition vector size. This approach effec-
tively integrates information from multiple perspectives. It’s also important to note that we
keep the DINO v2 encoder frozen in this setup.

7. Text to 3D Model: In this case, we use the six-view multi-view depth model for 3D gen-
eration and the MVDream model for six-view generation from text. The MVDream model
is fine-tuned using six-view depth maps, and details are provided in Appendix [E]

8. Uncondtional Model: For the unconditional model, we use the base U-ViT architecture
without any conditioning. We only use time to modulate the normalization parameters of
the network. Additionally, we do not apply classifier-free guidance.

C ABLATION STUDIES

C.1 VQ-VAE ADAPTIVE SAMPLING LOSS ANALYSIS

In this section, we evaluate the importance of adaptive sampling loss by training two autoencoder
models for up to 200,000 iterations: one incorporating the adaptive sampling loss and one without
it. The results are presented in the first two rows of Table[5]. We use Intersection over Union (IoU)
and Mean Squared Error (MSE) to measure the average reconstruction quality across all data points.
Additionally, we introduce D-IoU and D-MSE metrics, which assess the average reconstruction
performance by weighting each dataset equally. This approach ensures that any data imbalance is
appropriately addressed during evaluation.

As shown in the table, even after approximately 200,000 iterations, the model utilizing adaptive sam-
pling loss significantly outperforms the one without it. Specifically, the adaptive sampling loss leads
to higher IoU and lower MSE values, indicating more accurate and reliable reconstructions. These
results clearly demonstrate the substantial benefits of using adaptive sampling loss in enhancing the
performance and robustness of autoencoder models.

C.2 VQ-VAE ANALYSIS AND FINETUNING ANALYSIS

In this section, we examine the benefits of performing balanced fine-tuning, as described in the main
section of the paper. We conduct an ablation study to determine the optimal amount of finetuning
data required per dataset to achieve the best results. The results are presented in the rows following
the first two in Table[6], utilizing the metrics described above.

Our observations indicate that even a small amount of fine-tuning data improves the IoU and MSE.
Specifically, incorporating as few as 2,500 samples per dataset leads to noticeable enhancements in
reconstruction accuracy. However, we found that increasing the finetuning data to 10,000 samples
per dataset provides optimal performance. At this level, both IOU and Mean Squared Error (MSE)
metrics reach their best values, demonstrating the effectiveness of balanced fine-tuning in enhancing
model performance.

Moreover, the D-IoU and D-MSE metrics confirm that using 10,000 samples per dataset effectively
mitigates data imbalance to a certain degree. Based on these findings, all subsequent results in this
study are based on using 10,000 finetuning samples per dataset. We believe that an interesting area
for future work is to improve data curation to further enhance reconstruction accuracy.

C.3 ARCHITECTURE ANALYSIS OF GENERATIVE MODEL

In this section, we conduct an extensive study on the architectural design choices of the generative
model. Given the high computational cost of training large-scale generative models, we implement
early stopping after 400,000 iterations. The results are presented in Table []. First, we examine
the importance of the hidden dimension in the attention layer. It is clearly observed that increasing
the dimension enhances performance. A similar trend is noted when additional layers of attention

'Results for the first two rows are based on 200k iterations.
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Table 5: Ablation study on adaptive sampling as well finetuning of the VQ-VAE model.
Sampling Loss ‘ Amount of finetune data ‘ 10U 1 MSE | D-IOUT D-MSE |

N - 0.91597  0.00270 0.91597 0.00270
Ye - 0.92619  0.00136 0.91754 0.00229
Yes - 0.95479  0.00090 0.94093 0.00169
Yes 2500 0.95966  0.00078 0.94808 0.00149
Yes 5000 0.95873  0.00078 0.94793 0.00149
Yes 10000 0.95979  0.00078 0.94820 0.00148
Yes 20000 0.95707  0.00079 0.94659 0.00150

Table 6: Ablation study on the generative model design choices.

Architecture ‘ hidden dim ‘ No. of layers ‘ post or pre ‘ LFD | IoU 1 CDh |
U-VIT 384 32 pre 1523.74  0.8211  0.001544
U-VIT 768 32 pre 1618.73  0.7966  0.001540
U-VIT 1152 8 pre 1596.88  0.8020  0.001561
U-VIT 1152 16 pre 1521.81  0.8237  0.001573
U-VIT 1152 32 pre 1507.43  0.8199  0.001482

DiT 1152 32 pre 1527.16  0.8145  0.001602
U-VIT 1152 32 post 1576.07  0.8176  0.001695

blocks are incorporated. Although the improvement is not pronounced, it is important to mention
that these observations are based on only 400,000 iterations. Finally, we compare the DiT (Peebles
& Xie, |2023) architecture to the U-ViT architecture (Hoogeboom et al., 2023) and find that U-ViT
outperforms DiT. This comparison highlights the superior performance of the U-ViT architecture in
our generative model framework.

C.4 PRE-QUANT VS POST-QUANT
In this section, we compare whether it is better to apply the generative model to the grid before or

after quantization. We conduct this comparison over 400,000 iterations. The results are shown in
Table[6] These results indicate that pre-quantization performs better.

D SKETCH DATA GENERATION

rrrEl -

Figure 5: The 6 different sketch types. From left to right: Grease Pencil, Canny, HED,
HED+potrace, HED+scribble, CLIPaasso, and a depth map for reference. Mesh taken from (Fu
et al.,[2021).

We generate sketches using 6 different techniques. In the first technique, we use Blender to perform
non-photorealistic rendering of the meshes using a Grease Pencil Line Art modifier. The modi-
fier is configured to use a line thickness of 2 with a crease threshold of 140°. Since disconnected
faces can cause spurious lines using this method, we automatically merge vertices by distance us-
ing a threshold of le-6 before rendering. The second technique takes previously generated depth
maps and produces sketches using Canny edge detection. We apply the Canny edge filter built into
imagemagick using a value of 1 for both the blur radius and sigma and a value of 5% for both the
low and high threshold. We then clean the output by running it through the pot race program with
the flags ——turdsize=10 and ——opttolerance=1. The third technique uses HED (Xie &
Tu, [2015) in its default configuration, also on depth maps. The fourth technique applies potrace
on top of default HED, and the fifth applies HED’s scribble” filter instead. The sixth and final
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technique uses CLIPasso (Vinker et al., [2022)) on previously rendered color images. We configure
CLIPasso to use 16 paths, a width of 0.875, and up to 2,000 iterations, with early stopping if the
difference in loss is less than le-5.

Figure 6: The 8 different views for which sketches were generated. Images created using the Grease
Pencil technique on a mesh taken from [Fu et al.|(2021). The CLIPasso technique was only used on
the first, fifth, and sixth views from the left.

For the first 5 techniques, sketches are generated from a total of 8 views: the 4 views used for multi-
view to 3D, plus views from the front, right side, left side, and back. For CLIPasso we only generate
sketches from the front, right side, and left back. Additionally, we only generate sketches from a
subset of the 10 million shapes which we constructed by taking up to 10,000 shapes from each of
the 20 datasets.

During training we augment the sketches by adding random translation, rotation, and scale in order
to improve the model’s over-sensitivity to line thickness and padding. We also add random positional
noise to the shapes in the SVG drawings produced by CLIPasso and potrace. Finally, we add a
non-affine cage transformation by dividing the image into 9 squares of equal size. We treat the four
corners of the central square as control points and move each one independently, warping the image.

E TEXT-TO-3D DETAILS

The dataset used for this part contains 330,000 objects, comprising 3D-FUTURE, House3D, Toy4K,
ShapeNet-v2, and a filtered subset of Objaverse datasets (filtered by (Kant et al.,|2024)). We began
by generating captions for this dataset using the Internvl 2.0 model (Chen et al.| [2024c). For each
object, we provided the model with four renderings and created two versions of captions by applying
two distinct prompts. These initial captions were then augmented using LLaMA 3.1 (Dubey et al.,
2024)) to enhance their diversity and richness.

Next, we fine-tuned the Stable Diffusion model, initializing it with weights from MVDream (Shi
et al., 2023). Utilizing the depth map-text paired data we had collected, we generated six depth
maps for each object. To ensure consistency, we identified a uniform cropping box around each
object across all depth maps and applied this cropping uniformly to all 6 images. Following the
MVDream methodology, we resized the cropped images to 256x256 pixels and employed bfloat16
precision for processing.

During the inference phase, we input text prompts to generate six corresponding depth maps. These
depth maps were then used to condition our multi-view depth model, which successfully generated
the 3D shape of each object.

F MODEL SIZES

Table[7|lists the number of parameters for each of our models.

G SCALE AND TIMESTEPS FOR DIFFERENT MODELS

Table [§] lists the classifier-free guidance scales and timesteps used in this paper. These parameters
were determined through an extensive grid search on the MAS dataset’s validation set. We find
that, for most conditions, fewer than 10 timesteps are sufficient, except for the unconditional model.
This finding aligns with the results from Make-A-Shape (Hui et al., [2024), indicating that if the
conditioning information is substantial, the diffusion model requires very few timesteps to generate
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Table 7: Number of Parameters for Different Models

Method Number of Parameters
Autoencoder Model 12.9 million
Uncondition Model 1.1 billion
Single View Model 956 million
Single View Model Large 1.4 billion
Depth View Model 956 million
Depth View Model Large 1.4 billion
Pointcloud Model 966.7 million
Multi View Model (Depth and Image) 956 million
6 view Depth Model 898 million
Voxel Model 906.9 million
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Figure 7: This figure presents more results from the text-to-3D generation task. Each row corre-
sponds to a unique text prompt, with the resulting 3D renderings highlighting the model’s capability
to produce detailed and varied shapes from these inputs.

the 3D shape. This is particularly evident in the unconditional setting, where, lacking any shape
information hint, the best results are obtained using 1000 timesteps.

Table 8: Classifier free scale and timestep used in the paper

Model Scale | Timestep
Voxel 1.5 5
Pointcloud 1.3 8
Single-View RGB 1.8 5
Single-View Depth 1.8 5
Multi-View RGB 1.3 5
Multi-View Depth 1.3 5
6 Multi-View Depth 1.5 10

Unconditional - 1000

H MORE VISUAL RESULTS

In Figure[7] we present additional text-to-3D generation results, showcasing the diversity and qual-
ity of outputs produced by our model. Each result highlights the model’s ability to capture various
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object details and structures based solely on text prompts. In Figure [§] and Figure O we illustrate
the variety in generation for each caption. For each given caption, we display four different gener-
ated outputs, demonstrating the model’s capacity to create diverse yet semantically consistent results
based on the same input description. These figures collectively emphasize the robustness and versa-
tility of our approach in generating 3D content from textual inputs.

I CONTRIBUTIONS

Aditya Sanghi: I am the lead author of this paper and contributed significantly to its development. I
was responsible for formulating the main research idea, overseeing the dataset generation, and con-
ducting experiments across various modalities. In addition to leading the research team, I coordi-
nated the integration of different sections, ensured cohesion among contributors, and provided guid-
ance throughout the writing process. I also contributed to the drafting and editing of the manuscript
and played a key role in creating the figures and visualizations included in the paper.

Aliasghar Khani: In this paper, I contributed by using vision-language models (VLMs) and large
language models (LLMs) to generate captions for over 10 million 3D objects based on their four
renderings. I also trained the text-to-multi-view depth generation model utilizing a subset of our
dataset. Additionally, I helped create key figures, specifically figures 2, 7, 8, and 9, which visualize
and support the paper’s findings.

Pradyumna Reddy: Drafting and refining the paper(Introduction, Related Work, Results), along with
assistance with visualizations(Fig 4. Single-View and Multi-View), ensuring clear and concise com-
munication. Running multiple baselines (Tab 1. Poisson Surface Reconstruction. Tab 2. Nearest
Neighbour Interpolation and Trilinear Interpolation. Tab 3. Single-View, Multi-View InstantMesh
and LGM) for quantitative evaluation with current state of the art models. Designing and imple-
menting the project website to enable sharing of a large number of results for each conditioning
variable. Active participation in research discussions, focusing on strategies to improve the model’s
resource efficiency.

Arianna Rampini: Implemented fine-tuning for MVDream, later used in text-to-3D applications.
Ran baselines (OpenLRM, TripoSR, Point-E) and computed metrics for quantitative evaluation
against state-of-the-art models (Tables 2,3,4). Contributed to presenting the work through paper
writing (Image to 3D), proof-reading, and figures creation (Fig 2, 4).

Derek Cheung: Researched and implemented techniques for generating synthetic sketches. Per-
formed fine-tuning experiments using sketches; improved lack of robustness in earlier models by
adding additional sketch styles and sketch augmentations. Rewrote data processing scripts to per-
form sketch generation. Demonstrated that fine-tuning on a balanced subset of the 10m dataset was
effective for sketch-to-3d; wrote code for creating and managing balanced dataset subsets. Rewrote
distributed inference and evaluation scripts.

Kamal Rahimi Malekshan: In this project, I contributed by creating the infrastructure for large-scale
training and data processing, ensuring smooth workflows. I also prepared the code for release, re-
solving key issues related to data preprocessing and post-processing. My work focused on enabling
efficient model training and large-scale data handling.

Kanika Madan: Contributed towards running of multiple baselines for comparisons with the relevant
state of the art methods (Table 1: MeshAnything with different point cloud resolutions, Make-A-
Shape; Table 2: Make-A-Shape). Helped with creating the figures (Fig 1, 2, 4, 7, 8 and 9), as well
as helped with paper writing and proof-reading.

Hooman Shayani: Co-managed the project alongside Aditya, contributed to writing the paper, and
developed Figure 3. Guided the project throughout its development, including idea generation and
strategic planning. Collaborated with Derek on sketch generation and provided valuable feedback
on various techniques and methodologies. Furthermore, assisted in testing and validating the models
and was heavily involved in the code and model releases.

27



"a crown"

Na COW"

"a cartoony
santa claus"

"a bag"

"a cup cake"

"a flower"

"a flamingo"

"an octopus"

"a pumpkin"

Figure 8: Here, for each caption, four different 3D variations are displayed. This figure emphasizes
the model’s flexibility in generating multiple distinct outputs for the same text description while
maintaining thematic consistency.
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Figure 9: Here, for each caption, four different 3D variations are displayed. This figure emphasizes
the model’s flexibility in generating multiple distinct outputs for the same text description while
maintaining thematic consistency.
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