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Summary. In automotive engineering, designing for optimal vehicle dynamics is challenging
due to the complexities involved in analysing the behaviour of a multibody system. Typically,
a simplified set of dynamics equations for only the key bodies of the vehicle such as the chas-
sis and wheels are formulated while reducing their degrees of freedom. In contrast, one could
employ high-fidelity multibody dynamics simulation and include more intricate details such as
the individual suspension components while considering full degrees of freedom for all bodies;
however, this is more computationally demanding. Also, for gradient-based design optimiza-
tion, computing adjoints for different objective functions can be more challenging for the latter
approach, and often not feasible if an existing multibody dynamics solver is used.

We propose a mixed-fidelity multidisciplinary approach, in which a simplified set of dynamics
equations are used to model the whole vehicle while incorporating a high-fidelity multibody sus-
pension module as an additional coupled discipline. We then employ MAUD (modular analysis
and unified derivatives) to combine analytical derivatives based on the dynamics equations and
finite differences obtained using an existing multibody solver. Also, we use a collocation method
for time integration, which solves for both the system trajectory and optimal design variables
simultaneously. The benefits of our approach are shown in an experiment conducted to find opti-
mal vehicle parameters that optimize ride comfort and driving performance considering vertical
vehicle dynamics.

1 INTRODUCTION

Optimal design of complex systems, such as aircraft, automobiles, and buildings, requires
considering multiple subsystems that interact with each other. To solve such problems, multi-
disciplinary design optimization (MDQO) methods have been developed where the computational
module for each subsystem can be modeled as a discipline and numerical techniques are em-
ployed to handle their interactions while computing the system-level gradients that are used to
find optimal design parameters with respect to some objective value [I5], [, I1]. Due to the
complexities and computational time involved in such methods, low-fidelity discipline models
are preferred when performing system-level MDO [6]. For example, when optimizing a wind
turbine system that involves the computation of forces applied on the rotor, one could employ
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the blade element momentum theory [10] instead of performing a high-fidelity computational
fluid dynamics analysis over the whole wind turbine to obtain the forces.

In many applications, however, some particular subsystem may warrant employing a high-
fidelity model to compute its behaviour. For example in vehicle dynamics, while a suspension
system could be represented using a simple mass-spring-damper model, it will not capture the
behavioural differences between different types of suspension designs, e.g., a double-wishbone
design vs. a MacPherson design. Not being able to capture such details may lead to inaccurate
estimation of the overall system behaviour and subsequently sub-optimal design solutions.

In order to address this challenge, we propose a mixed-fidelity MDO approach, using the ve-
hicle dynamics optimization problem as our case study. We employ low-fidelity vehicle dynamics
equations that are typically used to model the overall behaviour of the vehicle, while incorporat-
ing suspension-wheel models using a high-fidelity multi-body dynamics solver. We demonstrate
our approach with an experiment that compares the simulation results between the low-fidelity
approach versus our mixed-fidelity approach, and the optimization results obtained by employing
both approaches in a sequential manner.

To solve the optimization problem efficiently, we leverage the gradient-based techniques de-
veloped by the MDO community, namely MAUD (modular analysis and unified derivatives) [9],
which allows us to compute the total derivatives of an objective function using the sensitivi-
ties obtained from the mixed-fidelity models. Also, we employ a collocation method [8], which
serves as the common time integration scheme for both low-fidelity and high-fidelity models,
while formulating both the time integration problem and the design optimization problem as a
single monolithic problem that can be solved efficiently [3].

2 PROBLEM: OPTIMAL SUSPENSION DESIGN FOR VEHICLE DYNAMICS
Optimal suspension design for vehicle dynamics can be defined as follows
min f(u(z))

st.  G(u(z),z) =0 (1)
L <z <U i=1,2,... |7

where u is the vector of state variables defined for a particular car model. For the half-car model
(Figure [1)) used for the current work focusing on vertical dynamics, they are

u = [zc,0c, 2zw,1, 2w;2] (2)

which include the vertical displacement of the chassis z¢, the pitch angle of the chassis 6, and
the vertical displacements of the front and rear wheels, zy1 and 22, respectively.
Next, x is a set of design variables considered for the current work, defined as

x = lks1,ks2,¢s51,¢s2] (3)

where kg1 and kg2 are the spring constants of the front and rear suspension systems, and cg 1
and cg 2 are the damping coefficients of the same systems, with imposed bounds L; and Uj.
The objective function f, can be defined as follows [5]

f=w /(féc)zdt + wa /(éc)zdt+w3/(ZW1)2dt+W4/(ZW72)2dt. (4)
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Figure 1: Half-car model used for modeling vertical vehicle dynamics.

where the first two integrals capture the vertical and pitch angular accelerations of the chassis
over time, which correspond to the passenger’s discomfort. The last two integrals capture the
vertical displacements of each wheel, which correspond to the contact between the wheels and
the road that is critical for driving performance. This is a weighted sum of four objective terms,
hence w; are the weights assigned for each term.

Note that the objective function is dependent on w and their time derivatives, which must
satisfy the set of governing equations G(u(z),x). These equations essentially model the be-
haviours of the chassis, suspensions, and wheels, the exact forms of which are presented in the
following section for different fidelity approaches.

3 METHODS
3.1 Low-fidelity approach using half-car dynamics

For the low-fidelity approach, we use the following set of ordinary differential equations (ODE)
to model half-car dynamics [13].

MZzZc = Fs1+ Fsp, (5)
Ifc = —a1Fsy — axFs, (6)
mizwy = —Fsy1+ Fry, (7)
maiwe = —Fso + Frp. (8)

where M and I are the mass and the moment of inertia of the chassis, a1 and ay are the front
and rear axle distances from the center of mass of the chassis, and m; and ms are the mass of
the front and rear wheels. We assume the suspension system is in a pre-loaded state so ignore
gravity.
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The suspension forces Fis; and tire forces Fr; for each wheel i are defined as follows
Fs; = ksi(zwi + aifc — z¢) + csi(Gwi + aibo — #0), 9)

Fri=Fkri(0; — 2zw,). (10)

where ¢; is the road displacements applied at each wheel.

The advantages of this low-fidelity model are its small number of degrees-of-freedom (DOF)
and that computing the analytical derivatives required for gradient-based optimization is straight-
forward. However, it does not capture the intricate details of a suspension system.

3.2 High-fidelity approach using multi-body dynamics

An alternative approach to solving the vehicle dynamics problem is to use a multi-body
dynamics (MBD) solver to model and analyze the whole vehicle. A multi-body dynamical
system can be represented using the following system of equations [14]

M T .
C;lla _ F.+F, (11)
C, 0] (A F.
where M is the mass matrix of the system, q are the state variables or DOF of the system, F,
are the external forces, F, are the velocity dependent forces for example due to the damping,
and F. are the constraint forces associated with the constraint equations between the bodies in

the system. Cgq is the constraint Jacobian matrix derived from the constraint equations and A
are their Lagrange multipliers applied to enforce those constraints.

3.3 Proposed approach: Mixed-fidelity

For the mixed-fidelity approach we propose, the suspension-wheel assembly is represented
with a MBD model as shown in Figure [2, resembling a double-wishbone design. Hence, q =
[aw,qu,qr,qr] and F. = [Fg;, Fr;]. The other two forces can be computed using q and g
[14]. M can be constructed with the mass and the moments of inertia for each body in the
system. Finally, we assume pin joint constraints for all the joints in the system and compute
Cq based on q [14]. Therefore, assuming M is fixed for the system, given q, ¢, and F. at a
particular point in time, we can initialize and solve the above system of equations to obtain q.
Any capable MBD solver can be used here, and we use [2] for this work.

For the mixed-fidelity approach, the system of MBD equations above replaces Egs and
(8), while the force equations @ and are replaced with the following equations, as depicted
in Figure [2] '

Fsi = ksi(qp; + aifc — zc) + csi(d; + aifc — Zc), (12)

Fri = kri(0i — qw,)- (13)

3.4 Collocation method

All motion equations used above for vehicle dynamics are ODE’s. Solving these equations
over a time interval requires applying a time integration scheme. The common approach is to
use an implicit time-marching method such as the Runge-Kutta method [7] to solve for the
states forward in time. For design optimization, one would also need to solve for the adjoints
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Figure 2: Multi-body dynamics model used for the suspension-wheel assembly.

backward in time, which are necessary for computing the total sensitivities [2]. However, the
following challenges arise when applying this approach to our application.

First, note that a MBD solver employed to model and analyze the suspension-wheel assembly
will have a particular time integration scheme built in. On the other hand, we also need a time
integration scheme for Eqs and @, which must be compatible with the one employed for the
MBD solver. If there is no knowledge of the time integration method used in the MBD solver,
this challenge is difficult to resolve.

Next, a MBD solver may only perform the forward simulation and not provide the adjoints
(based on the backward simulation) that are required to compute the gradients for design opti-
mization. This is true for almost all the commercially available MBD solvers.

To overcome these challenges, we use a collocation method. The collocation method [4]
dicretizes the time domain into multiple segments and imposes defect constraints on each time
segment defined between its discretization nodes. Then, a polynomial is approximated between
the discretization nodes using their state values (guessed initially), and a defect constraint is
defined as the difference in the slopes of the polynomial and the actual rates given by the ODE’s
at collocation nodes within the time segment. The problem then becomes finding the state values
at discretization nodes across the whole time interval that drive all the defect constraints to zero.
This essentially turns a time integration problem into a nonlinear, constrained optimization
problem, which can be efficiently solved using an optimizer tailored for such a problem [3].

In this approach, both the half-car dynamics equations and the MBD solver are used to
evaluate the state rate values at the discretization and collocation nodes during the optimization.
Hence, the collocation method serves as the common “time integrator”. Also, we incorporate
the design variables and objective function as part of the optimization problem, and therefore
simultaneously solve for both state and design variables. To address the lack of adjoints provided
by a MBD solver, we compute finite-difference gradients for the MBD model and combine them
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with the analytical gradients computed for vehicle dynamic equations, and these gradients form
the total system Jacobian [9] used during optimization.

3.5 Final optimization problem

The final optimization problem based on the mixed-fidelity model and the collocation method
can be defined as follows
Np

min f = Zwl £0)i + w2 (o) + w3(giy,1 )i + walaiv2)i
$u i—1

i) = (14)
i(x, a)) 0 j=1,2,.. (Npr—1)
k< Uk k=1,.., |zl

s.t.

:l
Ql S

&~ L
E%

15 (@,
¢(u,t
k<
where @ is the discretized set of state variables over time. The objective function is a discretized
form of Eq . n; and (; are the defect constraints involving the state variables, their first time

derivatives, and their second time derivatives, the last of which are evaluated using the vehicle
dynamics models.

3.6 Implementation details

We use Dymos [3] to implement our vehicle dynamics models and leverage its collocation
method and optimization library (wrapped around IPOPT, Interior Point OPTimizer [12]) to
solve the optimization problem posed as Eq . Dymos is an open-source Python library that
enables simulation or optimization involving multidisciplinary time-dependent systems.

Each of the vehicle dynamics equations , @, @, as well as the two versions of the
force equations @, and , is modeled as a discipline component in Dymos. Each
component computes either the acceleration terms or the force terms as outputs given the other
variables as inputs and also the partial derivatives of the outputs with respect to all the inputs.
For the MBD solver, it is also wrapped as a Dymos component and outputs the acceleration
terms given the other variables as inputs. However, because the solver does not provide any
gradients, we used the finite-differencing feature available in Dymos to compute the partial
derivatives. Dymos then uses MAUD to assemble all these partial derivatives to compute the
system Jacobian providing the total derivatives of both the objective function and the defect
constraint functions with respect to the design and state variables to the optimizer.

4 EXPERIMENT
4.1 Two-step solving approach

To demonstrate the value of the mixed-fidelity approach, we devised the following experiment.
The optimization problem defined in Eq. is first solved using the low-fidelity approach to
prioritize obtaining solutions quickly. The design variables are initialized with the mid point
values between their bounds (to be presented). We then use the optimal values obtained as
the initial guess for the mixed-fidelity approach, and attempt to find a better solution with a
lower objective value. This two-step method resembles an engineering design process when an
engineer goes from abstract to more concrete design and analysis.
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4.2 Optimization settings

The parameter values used for the vehicle dynamics equations and force equations are listed
in Table [Il Also, the parameter values used for the MBD model are listed in Table [2l Lastly,
Table [3] lists the lower and upper bounds used for the design variables.

We apply road displacements at the front and back wheels that resemble a car going over
two consecutive bumps, as shown in Figure|3] The time duration used for the problem was 5.0s.
For the objective function in , we normalize each term with scaling factors 0.1, 0.01, 1.0, 1.0,
respectively and apply equal weights wy = ws = w3 = w4 = 0.25.

Table 1: Parameter values for the vehicle dynamics and force equations used for the experiment.

-1.713m | M 1414 kg
200000 N/m | I 2782 kg-m?

a; 1271 m | a9
120 kg kT,i

m;

Table 2: Parameter values for the MBD model used for the experiment. The subscripts W, F,U, L
corresponds to those bodies with the same subscripts used in Figure I, I, I, are the moments of
inertia for each body. pcg are the positions of the center of gravity for each body. pw.u,pw.r,pu.F,
and py.r are the joint locations between the bodies denoted with the subscripts. prs, and pg,.; are the
locations where the corresponding forces are applied. Refer to Figure [2| for the visualization of these
locations. For all the position vectors, we ignore indicating the y-axis values as they are all zero.

mw, 80 kg Lowi;  4l4kgm? | Iyw, 75kegm? | Lw, 4.14 kgm?
mp, 10 kg Irp; 0517kgm? | I, p; 0938kgm? | I p; 0.517 kg'm?
myi 20 kg Lou 0 kg-m? Lui 015kgm? | Lypy;  0.15 kgm?
mr 20 kg Lo 0 kg-m? I,r; 015kgm? | I, p;  0.15kgm?
pca,wi  [0.54, 0lm | pca,ri [0, OJm pecui 027, 02m | pca,ri  [0.27,-0.2]m
pww  [0.45,02lm | pw.  [0.45,-02lm | py.r  [0.12,02lm | py.r  [0.12,-0.2]m
prs; [0.27,02lm | pr,, [0.54,-0.38m
Table 3: Design variable bounds used for the experiment.
ks1 [10000, 50000] N/m | kg2 [10000, 50000] N/m
cs1 [1000, 5000] N-s/m | cg2  [1000, 5000] N-s/m
Front
0.3
0.29
0.11 K K
0.0 o ° ° °
Back
0.3
0.2
011 ™% K
00 : L ° . L] L] ' . : :
0.0 1.0 2.0 3.0 4.0 5.0

Figure 3: Road displacements applied to each wheel for the experiment.



Hyunmin Cheong, Mehran Ebrahimi, Hesam Salehipour, Adrian Butscher, and Alex Tessier

For the collocation method, we used the Radau pseudospectral option available in Dymos
with the number of segments = 16 and the polynomial order = 5. We verified that this resolution
was sufficient to produce the same trajectory results as a time-marching method.

For both steps of the two-step procedure, optimization is ran until it is stopped based on the
default convergence criteria implemented in IPOPT.

4.3 RESULTS

We compare the simulation results obtained with the low-fidelity and the mixed-fidelity ap-
proaches by plotting the state variables of interest over time, as shown in Figure [df We can
see that the mixed-fidelity model captures more intricate fluctuations of the state variables,
especially for 3¢ and fc.

Next, we compare the simulation results for the optimal solutions found with each approach,
as shown in Figure |5l It can be seen that a significant improvement is made in minimizing the
¢ over time with the mixed-fidelity approach.

Finally, Table [4] shows the optimal values of the design variables and the objectives found
for the low-fidelity and mixed-fidelity approaches, compared to the initial guess baseline. It is
shown that optimizing with the low-fidelity approach first brings down the objective value from
0.909 to 0.384, while the subsequent mixed-fidelity approach further brings down the objective
value to 0.322, demonstrating the benefit of the latter in improving the optimal solution found.

Table 4: Optimal values of the design variables and objective found for each approach, compared to
the initial guess values.

‘ ksi[N/m] kg2 [N/m] cg1 [N-s/m] cg2 [N-s/m] ‘ f

Initial guess 30000 30000 3000 3000 0.909
Low-fidelity 42400 20700 2820 2010 0.384
Mixed-fidelity 37500 16400 2940 1890 0.322
Z¢: chassis vertical f¢: chassis angular zw 1: front wheel Zy »: rear wheel
acceleration acceleration vertical disp. vertical disp.

Low-Fidelity

Mixed-Fidelity

o 1 2 3 4 H
0 1 2 3 4 5

4 1 2 3 a H 0 1 3 3 H S 0 1 2 3 4 5

Figure 4: Comparison of simulation results between the low-fidelity and mixed-fidelity approaches.
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Z¢: chassis vertical ¢: chassis angular zy 4: front wheel zy »: rear wheel
acceleration acceleration vertical disp. vertical disp.

>

=

]

h=l

&

2

(=]

—

>

=

o

h=}

i

1

o

v

X

= . 10

s

Figure 5: Comparison of simulation results for the optimal solutions found with the low-fidelity and
mixed-fidelity approaches.

5 SUMMARY AND CONCLUSIONS

The current work demonstrates the application of a mixed-fidelity model for design optimiza-
tion involving vehicle dynamics. In particular, we combine low-fidelity half-car dynamics model
and a high-fidelity MBD solver to optimize suspension parameters for comfort and driving perfor-
mance focusing on the vertical dynamics. We used the collocation method to solve for the state
variables of both the low- and high-fidelity models and simultaneously include design optimiza-
tion as a monolithic problem. The total gradients are computed out of the partial derivatives
from each model based on MAUD, which are required for employing a gradient-optimization
algorithm, namely IPOPT. We implemented our approach on Dymos, an open-source library
that readily provides all these optimization techniques.

We highlight the value of the mixed-fidelity approach with an experiment featuring a two-step
problem solving procedure. The low-fidelity approach is first used to find the initial optimal
solution and the mixed-fidelity approach is subsequently used to improve the solution. The
simulation results obtained with the mixed-fidelity approach also show more granular trajectories
than the low-fidelity approach.

In summary, the current work demonstrates that a gradient-based, mixed-fidelity multidisci-
plinary design optimization approach provides an effective solution for tackling a complex vehicle
dynamics design application.
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