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Multi-split configuration design
for fluid-based thermal
management systems
High power density systems require efficient cooling to maintain their thermal perfor-
mance. Despite this, as systems get larger and more complex, human expertise and
insight may not suffice to determine the desired thermal management system designs. To
this end, a framework for automatic architecture exploration is presented in this article
for a class of single-phase, multi-split cooling systems. For this class of systems, heat
generation devices are clustered based on their spatial information, and flow splits are
added only when required and at the location of heat devices. To generate different archi-
tectures, candidate architectures are represented as graphs. From these graphs, dynamic
physics models are created automatically using a graph-based thermal modeling frame-
work. Then, an optimal fluid flow distribution problem is solved by addressing temperature
constraints in the presence of exogenous heat loads to achieve optimal performance. The
focus in this work is on the design of general multi-split heat management systems. The
methods presented here can be used for diverse applications in the domain of configu-
ration design. The multi-split algorithm can produce configurations where splitting can
occur at any of the vertices. The results presented include three categories of problems
and are discussed in detail.

Keywords: Design Synthesis, Graph Generation, Optimization, Optimal Flow Control,
Thermal Management System

1 Introduction
Electrification of many systems in various domains has in-

creased over the last few decades [1–3]. These electronic devices
are experiencing intensifying miniaturization [4–9], resulting in
higher power densities. Currently, microprocessors generate heat
fluxes of over 102 W/cm2. Hot spots on microelectronic chips
can also generate heat fluxes of 1 kW/cm2 or more, which can
result in excessive temperatures in local regions [4]. When devices
are operated at excessive temperatures, their performance and re-
liability are negatively affected, resulting in eventual malfunction
[10,11]. The automated optimal design of thermal management
systems (TMSs) is essential for expediting design processes and
achieving ambitious performance goals [12,13].

Throughout the literature, the design of TMSs has focused
largely on improving individual components [14,15]. Yet, opti-
mizing components in isolation can result in a sub-optimal overall
TMS design. Additionally, the design of a whole TMS sometimes
is only relevant to a particular application [16], disincentivizing
investment in effective tailored design. Peddada et al. [14] took an
important step towards generalized design automation of a class of
TMSs that are not limited to a specific application. However, the
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systems considered in that work are restricted to single-split sys-
tem architectures, i.e., configurations with a single source where
thermal-devices are located in branches that split only at the source.
There are, nevertheless, many instances in which multi-split sys-
tems are required [17]. In a multi-split architecture, branching can
occur at the main source or any system thermal-device. Figure 1
illustrates the difference between single-split and multi-split sys-
tems. Figure 1(a) represents a general single-split system where
branching occurs only at the source (S). In contrast, branching in
the multi-split system (Fig. 1(b)) can occur either at the source or
at the junctions (J). Multi-split systems represent a much richer set
of candidate design configurations compared to single-split.

After determining a design configuration, system dynamics must
be modeled for performance comparison. System dynamics models
can range from low-fidelity (e.g., regression of empirical models)
to high-fidelity (e.g., finite element methods). At early system
design stages, ideal models are 1) computationally efficient, 2)
sufficiently comprehensive to capture key physics that drive design
decisions, and 3) can be generated automatically for new config-
urations. These attributes support effective exploration of a large
design space with reasonable computational expense. To achieve
these objectives, the method presented here utilizes graph mod-
eling for automated construction of TMS lumped-parameter dy-
namics models. In this model, vertices represent capacitive energy
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Fig. 1 Comparison of the configuration between (a) Single-
Split and (b) Multi-Split Cases. The location of branching is
indicated by a box encompassing source or junction nodes.

storage, while edges represent pathways for energy transfer be-
tween vertices [14,18–21]. In TMS graphs, vertices and edges are
characterized by temperature and the rate of thermal energy trans-
fer, respectively. Candidate TMS configurations identified based
on lumped parameter model results can then be analyzed in the
next phase using higher fidelity models to ensure they satisfy all
conditions and constraints.

Designs of general multi-split heat management systems should
meet transient response conditions [22] as many electronic devices
work in applications with time-varying workloads [4]. Accurate
modeling of the design problem as an optimization problem, there-
fore, requires treatment of system dynamics, including bounds and
constraints on dynamic behavior, as well as optimal control for
active systems. Continuous optimization can be applied to the
combined design of physical and control system design, a well-
established problem in Control Co-Design (CCD) [23–26], for a
given system configuration. Distinct configurations can have fun-
damentally different dynamics, design variables, and constraints,
so each configuration must be treated as independent CCD op-
timization problems. Fair comparison of configurations requires
CCD optimization of each, which, for architecture design prob-
lems of practical scale, requires automatic generation and solution
of the optimization problem for each candidate configuration. In
this paper, we introduce a strategy for the generation and the opti-
mal design of general multi-split heat management systems using
graphs. For every generated unique and feasible multi-split system
configuration, a continuous optimization problem is formulated and
solved [14,27,28].

The thermal management system configuration design consid-
ered in this paper belongs to an especially challenging class of
optimization problems where discrete decisions change the set of
continuous decisions to be made. This necessitates a nested dis-
crete/continuous approach. Furthermore, the very general nature of
these problems prevent the use of established integer programming
methods that can be used for efficient solution of other problem
classes with spatial properties [29]. At least three possible ap-
proaches for solving general physical systems configuration design
problems exist. The first approach, as described above and used
in the studies presented here, entails enumerating all unique and
feasible configurations for a given design space, solving the con-
tinuous optimization problem for each one, and then producing a
ranked set of design candidates. This is the only approach that can
produce a result that is a confirmed global optimum, as it explores
the entire design space. A second approach employs a population-
based optimization algorithm, such as a Genetic Algorithm (GA),
or other gradient-free search strategy to navigate the configuration
space while still solving the continuous optimization problem for
each configuration. A third approach is to utilize machine learning
or artificial intelligence techniques to restructure the system con-
figuration design space [30,31] such that it is more tractable, while
again nesting continuous optimization within this search. Some re-
cent machine learning strategies have proven to be only marginally
better than random search [31], although design synthesis using

machine learning does appear to have significant potential. Gen-
eral solution approaches for configuration problems are too large
for enumeration and without special problem structure remains elu-
sive, and is truly an engineering design grand challenge. Data sets
generated via targeted enumeration may serve as an important ba-
sis for scaling to larger problems in the future using data-driven
techniques.

In this article, multi-split TMS spatial considerations are also
incorporated into the design problem; the spatial data of the sys-
tem heat-devices are used for clustering and defining junctions
where branching starts. After forming the clusters, we find the
Euclidean distance of heat-device from the centroid of the clus-
ter that each heat-device belongs to. The heat-device closest to
the centroid is defined as the cluster’s junction; refer to Sec. 4.2
for more details. This architecture design strategy is generalizable
across a wide range of applications. It also applies to both single-
split and multi-split architectures, supporting the quantification of
trade-offs between multi-split system performance improvements
and increases in cost and complexity.

The main contributions of the work presented in this article are:

1 Introduction of a new automated modeling strategy for multi-
split thermal management systems. This strategy has appli-
cations for configuration generation across a wide range of
systems.

2 Employing spatial information to cluster data and to define
junctions.

3 Comparison of multi-split versus single-split configurations,
providing insight into the trade-offs between system perfor-
mance and system complexity.

4 In-depth study of multi-split system optimal results and anal-
ysis of the system signals such as flow rates and flow tempera-
tures at heat-device locations that led to this optimal solution.

The analysis of the optimization study results produced
evidence-based design guidelines for active thermal management
system configuration design practice, also presented in this article.

This article continues as follows: In Sec. 2, we discuss the ther-
mal management system architectures studied in this work. The
dynamic graph based models of the thermal architectures are pre-
sented in Sec. 3. Section 4 describes the graph-based representa-
tion of multi-split architectures. The formulation of the variable
time horizon dynamic optimization problem is explained in Sec. 5.
Section 6 presents case studies using different architectures and
heat loads. Section 7 concludes with a summary of the design
methodology, guidelines for thermal management system design,
and potential future research topics.

2 System Description and Modeling
Figure 2 illustrates the class of problems considered in this arti-

cle. The purpose of the systems presented in the figure are to man-
age the temperature of various heat generating devices mounted
on Cold Plate Heat Exchangers (CPHXs) through which a liquid
coolant flows. The coolant is stored in a tank and is transferred to
each branch by a pump. Each branch has several valves and can
divide the flow it receives into its sub-branches. The coolant that
passes through heat exchangers absorbs heat and transfers it to the
thermal sink through a Liquid-to-Liquid Heat Exchanger (LLHX).

The class of architectures considered in this work are multi-split
configurations as opposed to the single-split configurations gener-
ated in the study by Peddada et al. [14]. A single-split assumption
limits the configuration search space; expanding the search space
to include multi-split configurations may enhance system perfor-
mance. The multi-split enumeration algorithm created in this work
produces configurations where splits may be made at the pump
(source) or at any of the CPHX locations. Sections 3 and 4 de-
scribe the graph-based physical modeling of the thermal systems
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Fig. 2 Class of problems considered in this paper. The sys-
tems include a tank, a pump, valve(s), CPHXs in parallel and
series, a LLHX, and a sink.

and the representation and generation of multi-split architectures.
Here the heat load applied to each CPHX, as well as the inlet tem-
perature and mass flow rate of the thermal sink, have been assumed
to be known exogenous inputs. In addition, heat generating devices
are assumed to have the same temperature as the wall of the CPHX
on which they are mounted. It is assumed that heat loss through
pipes is zero.

An optimal control problem is defined for each fluid-based ther-
mal management systems configuration generated using the multi-
split algorithm. The control problem seeks the optimal flow rate
trajectory for each pipe that maximizes system performance, while
satisfying component temperature constraints. The flow rates are
controlled by valves. Dynamic system models incorporate the ther-
mal physics of advection, convection, and bi-directional advection.
A unique model is generated for each configuration design. We as-
sume that system performance is quantified by thermal endurance,
i.e., the goal is to maximize the time that the device is on while
ensuring that all temperature bounds are met. This is consistent
with the approach in the study conducted by Peddada et al. [14],
supporting direct comparison with earlier single-split studies us-
ing graph-based configuration representations. Thermal endurance
is an important objective because it ensures the system can op-
erate reliably and efficiently over time, meeting safety standards
and reducing maintenance costs. However, it should be noted that
while thermal endurance is used as the objective for the control
problem, other important metrics, such as graph complexity, com-
ponent cost, or energy efficiency can be utilized to rank the graphs
or quantify conflicting tradeoffs. The best graph for the overall sys-
tem needs can then be chosen as the optimal configuration based
on this ranking or tradeoff data.

The workflow diagram illustrating an overview of the solution
procedure and steps involved in the code execution is provided in
Fig. 3. In the subsequent sections, each part will be discussed in
detail. In this diagram, the variable Data represents the positions
of all CPHXs in [𝑥, 𝑦, 𝑧] coordinates. The variable Heat Load &
Graph Config specifies thermal properties, heat load (disturbances)
of each node, the depth of the split generation in the graph, and the
graph index to select from the total population of graphs. Using
the given Data and Heat Load & Graph Config, a Base Graph is
generated, representing the connections between the tank, junctions
(denoted as 𝑗2 and 𝑗3 in Fig. 3), and other CPHX nodes. Subse-

quently, a Physics Graph is created by adding CPHX wall nodes,
sink nodes, and source power (heat load) to the Base Graph, along
with the underlying physics between these nodes, which include
convection, advection, and bidirectional advection. Based on the
Physics Graph, an Open Loop Optimal Control (OLOC) is defined
and solved. Then the OLOC optimization result is reported as the
objective function value (thermal endurance) of the chosen graph.

Fig. 3 Workflow diagram illustrating the steps involved in
the code execution. Starting with the given Data, Head Load
and Config Number, the base graph and physics graph are
generated. The OLOC problem is then defined and solved
to obtain the objective function value (thermal endurance
with the incorporation of a penalty function for control signal
smoothness and convergence). Refer to Sec. 5 for a compre-
hensive discussion.

3 Dynamic Graph-Based Modeling
This article uses the dynamic graph-based modeling framework

discussed in Ref. [14,19]. Consider a graph with 𝑁𝑣 vertices
(nodes), 𝑁𝑒 regular edges, and 𝑁𝑠 source edges. The 𝑁𝑣 nodes
includes 𝑁𝑡 sink nodes and 𝑁𝑣 −𝑁𝑡 regular nodes. A regular edge
connects two regular vertices and a source edge connect a regular
node to a source. Each regular node or sink node has an associated
dynamic state. For the case of thermal management systems, the
dynamic state of a regular vertex and sink vertex are the temper-
ature 𝑇𝑖 and the temperature 𝑇 𝑡

𝑖
, respectively. Furthermore, each

regular and source edge have associated rates of thermal energy
transfer, 𝑃 and 𝑃𝑠 , respectively. For regular edges, 𝑃 is a function
of the temperature 𝑇 of the corresponding two vertices (𝑇𝑖 and 𝑇𝑗 )
that make up this edge, and also a mass flow rate (𝑚̇𝑖− 𝑗 ) which
can be treated as an input to the model. In addition, note that
the sink vertex temperatures act as system disturbances, and the
temperature of all regular vertices is obtained based on the thermal
power transferred through edges and the thermal sink. In this sys-
tem, the dynamics of each regular state must satisfy a conservation
equation, as shown in Eq. (1). Here, 𝑖 is the vertex index, 𝐶𝑖 > 0
represents the thermal capacitance of the vertex, 𝑇𝑖 is the tempera-
ture, 𝑃in

𝑖 𝑗
represents the transfer of thermal energy from node 𝑗 into

node 𝑖, and 𝑃out
𝑖 𝑗

represents the outgoing thermal energy of node 𝑖

to node 𝑗 . The summation Σ𝑗 should be computed over all nodes
that are connected (edged) to node 𝑖. Additionally, 𝑃𝑠

𝑖−𝑒 represents
the thermal energy from the source, and the summation Σ𝑒 should
be computed over all edges that are from sources to node 𝑖.

𝐶𝑖𝑇̇𝑖 = Σ𝑗

(︂
𝑃in
𝑖 𝑗 − 𝑃out

𝑖 𝑗

)︂
+ Σ𝑒𝑃𝑠𝑖−𝑒 (1)

For fluid-based systems, the power flow through edge (𝑖 − 𝑗) is
a function of temperatures 𝑇𝑖 and 𝑇𝑗 , and 𝑚̇𝑖− 𝑗 , which is the mass
flow rate through that edge. As a result we have:

𝑃𝑖 𝑗 = 𝑓
(︁
𝑇𝑖 , 𝑇𝑗 , 𝑚̇𝑖− 𝑗

)︁
(2)
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To describe the dynamics of regular vertices, we define a matrix
M𝑁𝑣×𝑁𝑒

, where each element 𝑚𝑖, 𝑗 is defined as follows [14,18]:

𝑚𝑖, 𝑗 =

{︄ +1 if 𝑃𝑖, 𝑗 exits 𝑖 and enters 𝑗

−1 if 𝑃𝑖, 𝑗 enters 𝑖 and exits 𝑗

0 otherwise.
(3)

Based on M, we can define Eq. (4), where M is a structural
mapping from regular power flows 𝑃 to regular temperatures 𝑇 ,
and M is a structural mapping from regular power flows 𝑃 to
vertex temperatures 𝑇 𝑡 .

M𝑁𝑣×𝑁𝑒
=

[︃
M(𝑁𝑣−𝑁𝑡 )×𝑁𝑒

M𝑁𝑡×𝑁𝑒

]︃
(4)

Similarly, we can define the matrix D(𝑁𝑣−𝑁𝑡 )×𝑁𝑠
for the con-

nection of external sources to the system, where each element 𝑑𝑖,𝑒
is:

𝑑𝑖,𝑒 =

{︃
+1 if 𝑃𝑠

𝑖−𝑒 enters 𝑖
0 otherwise. (5)

Based on Eq. (1) and the above definitions, we can define the
dynamics of all regular states as follows, where C = diag( [𝐶𝑖]) is
the diagonal matrix of capacitances.

C𝑻̇ = −M𝑷 + D𝑷𝑠 (6)

This section summarizes the equations employed in the auto-
mated dynamic model generation. For a more detailed exposition,
see Ref. [14].

3.1 Graph-Based Model for Multi-split Architectures. Fig-
ure 4 illustrates the graph corresponding to the class of system
architectures considered in this article. To model this class us-
ing the graph-based approach, vertices correspond to temperatures
of the fluid in the tank, fluid in the sink, fluid in each CPHX,
wall of each CPHX, fluid in each side of the LLHX, and the wall
of the LLHX. The thermal capacitance for fluid temperatures is
𝐶𝑖 = 𝜌𝑉𝑖𝑐𝑝 , where 𝑉 is the fluid volume, 𝑐𝑝 is the specific heat
capacitance, and 𝜌 is the fluid density. The wall thermal capaci-
tance is 𝐶𝑖 = 𝑀𝑤,𝑖𝑐𝑝,𝑤,𝑖 , where 𝑀𝑤 is the wall mass and 𝑐𝑝,𝑤 is
the specific heat capacitance of the wall material. Thermal capac-
itance values are assumed to be constant in all analyses.

In this article, two types of power flows are required: convection
and advection. The convective power flows are governed by 𝑃𝑖 𝑗 =

ℎ𝑖 𝑗 𝐴𝑖 𝑗
(︁
𝑇𝑗 − 𝑇𝑖

)︁
and advective power flows are governed by 𝑃𝑖 𝑗 =

𝑚̇𝑖− 𝑗𝑐𝑝𝑇𝑗 , where 𝐴𝑖 𝑗 is the convective surface area, ℎ𝑖 𝑗 is the
heat transfer coefficient, and 𝑚̇𝑗 is the mass flow rate of the fluid.
Additionally, when fluid circulates between two thermal elements,
such as the LLHX’s secondary side and the thermal sink, both
directions’ advective power flows can be combined into a single
‘bidirectional advection’ power flow: 𝑃𝑖 𝑗 = 𝑚̇𝑖− 𝑗𝑐𝑝 (𝑇𝑗 − 𝑇𝑖).

Figure 5 depicts the governing dynamics of the main compo-
nents for the problem class considered in this article. The model
includes advection, convection, and bidirectional advection. The
power-flow type in the tank is advection, which occurs between 1)
the tank and the fluid node on the CPHX, and 2) the tank and the
primary side of the LLHX. Advection and convection are present in
the CPHX. Advection occurs between 1) the CPHX fluid node and
tank and 2) the CPHX fluid node and primary side of the LLHX.
Convection occurs between the CPHX fluid and the wall node.
The LLHX involves advection, convection, and bi-directional ad-
vection. The advection occurs between 1) the primary side of
the LLHX and tank, and 2) the primary side of the LLHX and
the CPHX fluid node. The bi-directional advection takes place
between the secondary side of the LLHX and the sink. The con-
vection occurs between 1) the LLHX wall node and the primary
side of LLHX and 2) the LLHX wall node and the secondary side
of LLHX. These are building blocks of any larger system. Using

Fig. 4 Graph-based model for multi-split architectures stud-
ied in this article. Here, Fluid nodes are represented by cir-
cles, wall nodes by squares, and thermal power is indicated
by directional lines (distinguished according to the legend).

Fig. 5 Notional example to illustrate the elements of thermal
physics included in this system model. Here, a node (circle)
represents a temperature and an edge (directional line) rep-
resents a thermal power flow.

these components, a model of the dynamics of any complex system
of the form illustrated in Fig. 4 can be generated.

For the systems considered here, Eq. (2) can be written as [14]:

𝑃𝑖 𝑗 = 𝑎1
𝑖 𝑗𝑇𝑗 + 𝑎

2
𝑖 𝑗𝑇𝑖 + 𝑏

1
𝑖 𝑗 𝑚̇𝑖− 𝑗𝑇𝑗 + 𝑏

2
𝑖 𝑗 𝑚̇𝑖− 𝑗𝑇𝑖 (7)

where the system’s coefficients 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 are constants for dif-
ferent power flows: for convection, 𝑎1

𝑖 𝑗
= ℎ𝑖 𝑗 𝐴𝑖 𝑗 , 𝑎

2
𝑖 𝑗

= −ℎ𝑖 𝑗 𝐴𝑖 𝑗 ,

4 / PREPRINT FOR REVIEW Transactions of the ASME



and 𝑏1𝑖 𝑗 = 𝑏2
𝑖 𝑗

= 0; for advection, 𝑏1
𝑖 𝑗

= 𝑚̇𝑖− 𝑗𝑐𝑝 (with others
zero); for bidirectional advection, 𝑏1

𝑖 𝑗
= 𝑚̇𝑖− 𝑗𝑐𝑝 and 𝑏2

𝑖 𝑗
is its neg-

ative. Two other external system inputs are considered: the source
power (𝑃𝑠) and the thermal sink temperature (𝑇 𝑡 ).

3.2 State Equations for the Graph-Based Model. The TMS
state equations are obtained by using a methodology similar to
the one presented in Refs. [14,19,20]. The methodology described
there has been extended to accommodate multi-split configurations.
The elements 𝑚𝑎

𝑖, 𝑗
of matrix M𝑎

𝑁𝑣×𝑁𝑒
are defined in Eq. (8), where

𝑎1
𝑖, 𝑗

and 𝑎2
𝑖, 𝑗

are the coefficients in Eq. (7). M𝑏
𝑁𝑣×𝑁𝑒

can be defined
similarly using the coefficients 𝑏𝑖, 𝑗 in Eq. (7).

𝑚𝑎𝑖, 𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑎1
𝑖, 𝑗

if 𝑃𝑖, 𝑗 exits 𝑖 and enters 𝑗

𝑎2
𝑖, 𝑗

if 𝑃𝑖, 𝑗 enters 𝑖 and exits 𝑗

0 otherwise.
(8)

Please note that since there are more edges in the system than
independent flow rates, there is not a one-to-one relationship be-
tween the mass flow rates of the system architecture and the edges
of its thermal graph. As a result, we should map the flow rates to
their corresponding flow in each edge. To do so, first, based on
the graph structure and known pump flow rate 𝑚𝑝 and tank flow
rate 𝑚𝑡 , we define 𝑚̇dp as the flow rate in independent branches.
The derivative of 𝑚̇dp is later defined as a control signal and is
obtained through OLOC optimization. After that, we compute the
flow rate for dependent branches (𝑚̇indp) by using the graph struc-
ture and the pump, sink, and independent branches’ flow rate. This
algebraic computation can be represented through matrix multipli-
cation. Please refer to Fig. 6 for a simple example. In the next step,
we define an 𝑁𝑒 × (𝑛𝑑𝑝 + 𝑛indp + 2) matrix 𝒁 that maps these flow
rates to corresponding edges. Here, 𝑛𝑑𝑝 and 𝑛indp are the number
of independent and dependent flow rates, respectively, and the +2
accounts for the pump and sink flow rates. One main difference
between single and multiple split TMS models is the 𝒁 matrix.
Additionally, as we move from single to multi-split, the number of
nodes and branches increases.

As a result, we have:

𝑷 = [𝑴𝑎 ]𝑇
[︃
𝑻
𝑇 𝑡

]︃
+ diag ⎛⎜⎝𝒁

⎡⎢⎢⎢⎢⎣
𝑚̇𝑝

𝒎̇𝑓

𝑚̇𝑡

⎤⎥⎥⎥⎥⎦⎞⎟⎠ [𝑴𝑏 ]𝑇
[︃
𝑻
𝑇 𝑡

]︃
(9)

Hence, by using Eqs. (6) and (9), the state space equations can be written
as:

𝑻̇ (𝑡 ) = 𝑨

[︃
𝑻 (𝑡 )
𝑇 𝑡 (𝑡 )

]︃
+ 𝑩1

⎛⎜⎝𝑑𝑖𝑎𝑔 ⎛⎜⎝𝒁
⎡⎢⎢⎢⎢⎣
𝑚̇𝑝 (𝑡 )
𝒎̇𝑓 (𝑡 )
𝑚̇𝑡 (𝑡 )

⎤⎥⎥⎥⎥⎦⎞⎟⎠⎞⎟⎠𝑩2

[︃
𝑻 (𝑡 )
𝑇 𝑡 (𝑡 )

]︃
+𝑪−1𝑫𝑷𝑠 (𝑡 )

(10)

where:

𝑨 = −𝑪−1𝑴 [𝑴𝑎 ]𝑇 (11)

𝑩1 = −𝑪−1𝑴 (12)

𝑩2 = [𝑴𝑏 ]𝑇 (13)

A simple example problem is shown in Fig. 6. Each of the two junctions
has 3 associated nodes. The first junction ( 𝑗2) distributes the flow to 3
different branches, and the second junction ( 𝑗3) distributes the flow to two
branches, where 2 nodes in a branch are in series, and the second branch
has only 1 node. In this figure, states are denoted using the symbol 𝝃;
here the states all correspond to node temperatures. For example, 𝜉1 is
the temperature of node 1 and 𝜉𝑤−1 is the wall temperature of the CPHX
connected to node 1. The system involves both independent and dependent
flows, as depicted in Fig. 6. Independent flows can be controlled, whereas
dependent flows can be calculated based on the independent flows (see
Fig. 6 for these equations). In the figure, the edges that carry dependent
power flows are shown with dashed lines.

Fig. 6 Graph illustrating the variables for a simple example
multi-split configuration. Types of power flow are illustrated,
including the distinction between independent and depen-
dent flows.

4 Generating Multi-split Spatial Graphs
4.1 Graph Representation. The system configurations here can be

represented by acyclic undirected connected graphs where any two nodes
are connected by only one simple path (i.e., a tree). In the current repre-
sentation, the tank is always the root node and each CPHX is labeled with
a number from 1 to 𝑁 . Splittings occur at the root or at any other node. In
the corresponding symbolic representation, branching is shown by paren-
theses and consequent CPHXs, i.e., nodes in one branch are separated by a
comma. Figure 7 shows the representation for two configurations and their
equivalent graphs.

Fig. 7 Two configuration representations and their equiva-
lent graphs.

The number of single-split configurations increases rapidly as the
number of heat-generating devices increases. The equation 𝐺 (𝑁 ) =∑︁𝑁

𝑘=1
(︁𝑁
𝑘

)︁ (︁𝑁−1
𝑘−1

)︁
(𝑁 − 𝑘 )!, adopted from Refs. [14,32], quantifies the num-

ber of generated configurations for this enumeration. In this equation, 𝑘
and 𝑁 represent the number of CPHXs connected to the root (tank) and to-
tal number of nodes (CPHXs). Here,

(︁𝑁
𝑘

)︁
is the number of ways to choose

𝑘 CPHXs to connect to the root.
(︁𝑁−1
𝑘−1

)︁
is the number of k-compositions of

an integer 𝑁 , where a k-composition is a sum of 𝑘 positive integers that add
up to 𝑁 . Here,

(︁𝑁−1
𝑘−1

)︁
can be viewed as a lower bound that illustrates how

rapidly the number of single-split configurations increases with 𝑁 . When
splits (or junctions) are added, the total number of configurations increases
more rapidly as the single-split graphs are the base case. Multi-split graph
models can represent both all single-split graph scenarios (where branch-
ing can happen at the root) as well cases with branching at any node other
than the root. As a result, the number of possible multi-split configurations
grows more with the number of nodes. Derivation of bounds on multi-split
configuration growth is an open question and left for future work.

The addition of junction nodes and layers leads to a rapid growth in the
number of graphs. It is desirable to impose constraints in a way that mean-
ingfully limits this growth. One strategy is to recognize that these graphs
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represent physical designs, and that spatial system information can be lever-
aged to reduce problem complexity. Here we employ a spatial clustering
method to group the nodes in sub-domains and enumerate the sub-branches
only in the nearby neighborhoods; this procedure is detailed in Sec. 4.2.
This approach, however, cannot access all possible designs (as can enumer-
ation). Therefore, we also examine a second strategy where the junction
locations are enumerated. Exploring the trade-offs between performance
improvement and reducing problem complexity is investigated in this ar-
ticle; in some cases enumeration may be worth the added computational
cost.

4.2 Generation of Multi-split Spatial Graphs. Algorithms 1–4 de-
scribe the multi-split graph generation framework of this work. The gener-
ation procedure passively chooses junction nodes during run-time instead
of employing all the nodes in enumerations from the beginning. It performs
recursion for refinement. The enumerations can cover (i) tank-junctions,
(ii) junction-CPHXs, and (iii) both, based on the specific requirements of
the optimization problem; this study focuses on class (ii). In Algorithm 1,
we utilized K-Means clustering and a threshold to define various clusters
for nodes based on their 3-D space locations; these clusters are used in
Algorithm 2 to form Super-Nodes. In Algorithm 1, the vertex data were
grouped into a varying number of clusters, ranging from 1 to half of the
total number of vertices (rounded down). Inertia, which measures how
well a dataset was clustered by K-Means, is computed by measuring the
distance between each data point and its centroid, squaring this distance,
and summing these squares within a single cluster. The change in slope
of a curve based on all inertia data was utilized to determine the number
of clusters. Here, stable clustering is defined as when the slope change of
inertia data falls below a specified threshold (0.1 here).
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Fig. 8 Clustering and the creation of a sample configuration
for a set of nodes. This figure shows (a) the spatial locations
of a source (T) and 17 nodes, (b) first-level clusters, (c) cen-
troid of each cluster, (d) chosen junctions and a routing from
T to junctions, (e) second-level clusters, (f) the centroid and
the corresponding junctions of the second-level, (g) a rout-
ing from first-level to second-level junctions, (h) a sample
enumeration in the internal cluster with more than 1 node.
Figure (i) presents the generated sample graph.

Algorithm 1 Selecting Number of Clusters to form Super-Nodes
1: 𝑁 ← number of nodes
2: for 𝐾 in range(1, 𝑁 ) do
3: cluster nodes into 𝐾 clusters via K-means
4: if the clustering is stable, stop
5: return 𝐾 and the corresponding nodes of each cluster

Algorithm 2 initially creates trees using node spatial data. The node
data are clustered to form super-nodes in a recursive manner. Here, a
level represents the levels of splitting in an architecture tree. A junction

Algorithm 2 Generation of a Hierarchical Tree of Super-Nodes
1: 𝑇 ← tree
2: super-node[0]← {𝑃 [0], 𝐷 [0] } here 𝑃 [0] is Tanks and 𝐷 [0] is the spatial data

of all nodes
3: 𝐿 [0] includes super-node[0]
4: 𝑛𝑢𝑚𝐿 ← number of levels in the tree
5: 𝑚← number of super-nodes in 𝑇
6: for 𝑙 in range(1, 𝑛𝑢𝑚𝐿) do
7: 𝐼𝑑𝑠 ← index of all super-nodes in 𝐿 [𝑙 − 1]
8: for 𝑖 in 𝐼𝑑𝑠 do
9: cluster super-node 𝑖 into 𝐾 [𝑖 ] clusters using Algorithm 1

10: for 𝑘 in range(1,K[i]) do
11: 𝑚 = 𝑚 + 1
12: 𝑃𝑘 ← the closest node to centroid of 𝐷 (𝑘 ) (𝑃𝑘 is junction.)
13: 𝑃 [𝑖 ] ← [𝑃1 , 𝑃2 , ..., 𝑃𝑛 , 𝑃𝑘 ]
14: remove 𝑃𝑘 from 𝐷 (𝑘 )
15: 𝑇 [𝑚] ← {𝑃 [𝑘 ], 𝐷 [𝑘 ] }
16: 𝐿 [𝑙 ] ← add 𝑇 [𝑚]
17: return Tree T with numL levels

Algorithm 3 Graph Enumeration
1: 𝑁 ← number of nodes
2: 𝑒𝐺 [0] ← [[0] ] ⊲ each sub-list represents the adjacency list of a graph
3: 𝑒𝐺 [1] ← [[ (0, 1) ] ]
4: for 𝑛 in [2, 𝑁 ] do
5: 𝑃𝑎𝑟𝑒𝑛𝑡𝑠[𝑛] ← [1, . . . , 𝑛 − 1]
6: for 𝑔 in 𝑒𝐺 [𝑛 − 1] do
7: for each 𝑁𝑜𝑑𝑒 in 𝑔 do
8: if 𝑁𝑜𝑑𝑒 belongs to 𝑃𝑎𝑟𝑒𝑛𝑡𝑠[𝑛] then
9: add edge (𝑁𝑜𝑑𝑒, 𝑛) to 𝑔 and add the adjacency list of the new

graph to 𝑒𝐺 [𝑛]
10: return all enumerated graphs 𝑒𝐺 [𝑁 ]

Algorithm 4 Graph Generation for a Selected Tree Level
1: 𝑙 ← Tree level selected for graph generation
2: 𝐼𝑑𝑠 ← index of all super-nodes in 𝐿 [𝑙 ] for tree generated by Algorithm 2
3: for 𝑖 in 𝐼𝑑𝑠 do
4: 𝑄 ← parents of the super-node (𝑃 [𝑖 ])
5: 𝑔1[1 : 𝑗 ] ← enumerate super-node[𝑖 ] using Algorithm 3 with its junction

as its root
6: 𝑔2← the circular graph of 𝑄 with (𝑃 [−1], 𝑃[0] ) edge removed
7: 𝑔[𝑖, 1 : 𝑗 ] ← merge 𝑔2 with every 𝑔1[1 : 𝑗 ]
8: combine a sub-graph selected from each super-nodes of level l to generate all the

graphs

node is defined for each super-node by choosing the node with the smallest
Euclidean distance from the cluster’s centroid; see Fig. 8 and Algorithm
2. Note that a junction represents a CPHX node where the coolant flow
splits into branches. Next, we enumerate all sub-graphs of a selected tree
level. This means, for a chosen super-node in that tree level, its nodes are
enumerated to form all possible sub-graphs; Algorithm 3 describes how
the enumeration algorithm works. Afterwards, we connect the root node
(Tank) and the corresponding junction nodes of the super-node to its sub-
graphs; see Algorithm 4. This process is performed for all super-nodes
of the selected level. Finally, an architecture graph is created by choosing
and merging one sub-graph from the pool of sub-graphs generated for each
super-node in that level; refer to Algorithm 4. Note that various sub-clusters
can be defined within a cluster to form multiple layers of junction nodes.

In addition to the above mentioned graph generation algorithm, we also
generated graphs using a second strategy where the locations of junctions
in the trees are enumerated. The main difference between the first and
second graph generation strategies is in topological locations of junction
nodes in the architectural graphs.

We generate all configurations within a class, evaluate the performance
of each configuration, and choose the configuration with the best optimized
performance. Figure 9 shows all 13 configurations made by the single-split
algorithm for 3 nodes, depicting both the base graphs and the extended
physics graphs generated for simulations. Figure 10 shows two sample
configurations and their physics models for a multi-split system with 19
nodes (root, 6 junction CPHXs, and 12 CPHXs nodes). In the base graph,
there are no dynamics; only the connections between tank and fluid nodes
are determined using Algorithms 1–4. Then, physics graphs are generated
based on the dynamic equations developed in Sec. 3.
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Fig. 9 The (a) base and (b) complete physics graphs for
single-split systems with 3 CPHXs

Fig. 10 Two sample configurations for a multi-split system
with 18 CPHXs. Figures (a) and (b) show the base graphs,
and Figs. (c) and (d) show the complete physics graphs for
the base graphs (a) and (b), respectively.

5 Open-loop Optimal Control (OLOC) Problem
The objective of the optimal control problem is to maximize the ther-

mal endurance while satisfying limits on temperatures and mass flow rates.
When any of the node’s temperatures (defined as states) reaches the upper
bound, the OLOC terminates, and the final time is recorded as the thermal
endurance. Figure 11 illustrates the OLOC implementation structure. Here,
we seek to determine a control trajectory 𝑢(𝑡 ) for each independent flow
that maximizes the objective function while satisfying constraints. Within
this figure, Eq. (𝑐1) presents the system states (𝝃), encompassing the vec-
tor of temperature nodes (𝑻 ), and the flow rate of independent branches
(𝒎̇indp). The dynamics that shows how these states evolve over time are
shown in Eq. (𝑐8). Equation (𝑐2) defines the control signals as the rate
of change of the valve flow rates in independent branches. The flow rate
in dependent branches is determined by an algebraic equation that ensures
that the input flow rate of each branch is equal to the output flow rate of
that branch. This equation can be represented as a matrix multiplication,
as shown in Eq. (𝑐3), where matrix M maps the flow rate of independent
branches (𝒎̇indp) to the flow rate of dependent branches (𝒎̇dp). A practical
illustration of this calculation is provided in Fig. 6. In Eq. (𝑐4), the total
flow rate of all branches is presented, comprising both independent and
dependent flow rates. It is worth mentioning that the order of combin-
ing independent and dependent flow rates depends on the graph structure.
To achieve this, the code, developed for the analysis, categorizes nodes
into parents and children, where children of a parent are nodes branching
from it. If a parent node has 𝑁 children, it results in 𝑁 − 1 indepen-
dent flow rates. This process is illustrated in Fig. 12 for a graph with 9

nodes. Nodes are initially divided into child and parent groups based on
their connections, then independent and dependent branches are identified.
Here, independent branches are represented by solid lines, while dependent
branches are shown as dashed lines.

Fig. 11 OLOC components

Fig. 12 Procedure to define dependent and independent
branches in OLOC problem. Here, Independent branches
are represented by solid lines, while dependent branches are
shown as dashed lines.

In Fig. 11 the initial conditions for the temperature nodes are given
by Eq. (𝑐5). In this equation, T𝑤 represents the wall temperature of the
CPHX states, T𝑓 represents the fluid temperature of the CPHX states, and
T𝑙 represents the temperature of the Tank and LLHX states. Equation
(𝑐6) presents inequality constraints that ensure the operating temperature
of each component remains within an upper bound throughout the entire
time horizon. The first two terms in Eq. (𝑐7) represent the inequality
constraint that guarantees the flow rates of both independent and dependent
branches remain within a specified bound. This equation, when combined
with Eq. (𝑐3), ensures that the input flow rate of each branch is equal to
its output flow rate. It also ensures that the maximum flow rate cannot
exceed the pump flow rate (𝑚̇𝑝). The last term in Eq. (𝑐7) represents the
limit on the derivative of the flow rate, capturing the physical limitations
of the valves [14]. Equations (𝑐8) and (𝑐9) show how states defined in
Eq. (𝑐1) evolve over time. In Eq. (𝑐10), the objective value is represented,
aiming to maximize the thermal endurance. Similar to the approach in
Ref. [14], a penalty term is incorporated to facilitate solution smoothness
and enhance convergence, because if the control signal (𝒎̈𝑓 ) is not included
in the objective, numerical issue often emerge involving bang-bang control
and singular arcs [33], and the computation cost of OLOC increases [34].
The parameter 𝜆 is selected such that the total penalty cost remains below
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1% of 𝑡end. Table 1 shows the parameters used in the physical simulations
for the studies in this article.

Table 1 Parameters used in the physics modeling of the
thermal systems [14].

Parameter Value
LLHX wall mass 1.2 kg
CPHX wall mass 1.15 kg
Tank fluid mass 2.01 kg

Thermal sink temperature 𝑇 𝑡 15𝑜 C
Tank/LLHX initial temperature , 𝑇𝑙,0 15𝑜 C
CPHX initial wall temperature, 𝑇𝑤,0 20𝑜 C

CPHX initial fluid temperature , 𝑇𝑓 ,0 20𝑜 C
Thermal sink mass flow rate, 𝑚̇𝑡 0.2 kg/s

Pump mass flow rate 𝑚̇𝑝 0.4 kg/s
Valve rate limit 𝑚̈𝑓 ,max 0.05 kg/s2

Penalty parameter, 𝜆 0.01/(𝑁𝑓 𝒎̈
2
f,max )

There are two main approaches for solving OLOC problems: 1) Indi-
rect (optimize then discretize) and 2) Direct (discretize then optimize). In
the indirect method, a differential algebraic equation is derived using op-
timality conditions (the calculus of variations or the Pontryagin minimum
principle). These equations are then discretized and solved numerically
[35,36]. In contrast, the direct method first discretizes the problem so it
can be transformed into a nonlinear program (NLP), which can then be
solved by a nonlinear programming solver such as SNOPT [37] or IPOPT
[38]. The indirect method provides more information about the structure
of the problem, but has limited value for solving constrained problems. Al-
ternatively, direct methods use NLP solvers to solve complex constrained
problems successfully; some well-established OLOC software tools based
on the direct method are available, for example GPOPS [34] and Dymos
[39]. The studies presented here utilize Dymos to solve the OLOC prob-
lems, which is an open-source software tool developed in Python. The
computational cost of solving the OLOC problem depends on the size of
the graph, but on average, it takes approximately two minutes to solve the
problem for each configuration using a workstation with an AMD EPYC
7502 32-Core Processor @ 2.5 GHz, 64 GB DDR4-3200 RAM, LINUX
Ubuntu 20.04.1, and Python 3.8.10. Additionally, it is important to high-
light that in these studies, the evaluation of the nonlinear optimal control
problems for each of the architectures has been parallelized, which signifi-
cantly reduces computational solution expense.

6 Case Studies
We present three case studies to illustrate how this work can help engi-

neers design optimal thermal management systems. In the first case study
(Sec. 6.1), the goal is to obtain the optimal structure for thermal man-
agement systems having 3 and 4 CPHXs. Here we use enumeration and
compare both single-split and multi-split cases. For 3 and 4 CPHXs sys-
tems, the heat loads are [12, 4, 1] kW and [12, 4, 1, 1] kW, respectively. In
Sec. 6.2, we show the results for the multiple-split case under two heat loads
(disturbances): [5, 5, 5, 5, 5, 5] kW and [5, 7, 6, 4, 5, 5] kW. This example
demonstrates that the optimal configuration can change when disturbances
are different. OLOC signals are also compared for selected configurations.
While the main focus of this article revolves around the results obtained
from small graphs for detailed analysis and discussions, it is important to
note that this methodology is applicable to graphs of any size. This ver-
satility is demonstrated in Sec. 6.3, where a graph consisting of 18 nodes,
with a Tank, 14 CPHXs, and 3 junctions CPHXs, is studied. It should
be noted that in all these cases, the method illustrated in Fig. 8 is utilized
for junction creation. Additionally, in all of these scenarios, the heat loads
remain constant (not time-varying). However, the OLOC problem depicted
in Fig. 11 is not limited to constant heat loads, and time-varying heat loads
can be easily accommodated. The only drawback is that computational
expense increases, as more discretization points in the OLOC problem are
normally required when considering time-varying heat loads. It is worth
noting that even when heat loads are constant, we are able to observe sys-
tem dynamics and capture transient responses because the derivative of
flow rate, which is a control signal, is not constant, as demonstrated in
Sec. 6.1-6.3. Furthermore, as the OLOC problem is solved numerically, it
requires an initial guess for all states and controls. While in many cases we
have observed identical states and controls for various initial guesses, there
may be some cases that are more sensitive to the initial guess. However,
we have observed that even in those cases, the resulting objective value is
almost identical.

6.1 Comparing single-split and multi-split cases with 3 and 4
CPHX-nodes. Here we aim to find the best architectures among single-
split and multi-split configurations with 3 and 4 nodes. The result for the
first scenario with 3 nodes is shown in Fig. 13. In this illustration, only
the fluid nodes of CPHX and the tank are depicted, while the disturbance
of each CPHX is displayed in its respective node. Here, Multi represents
multi-split cases and Single represents single-split cases. The horizontal
axis in Fig. 13(a) shows the percentile score and the vertical axis shows
thermal endurance. Here, a percentile score represents the relative position
of a value within a dataset by indicating the percentage of values that are
strictly lower than it. Thus, the best case is at the top right, and the worst
case is at the bottom left. As we see, the multi-split architecture yields the
best result. It should be mentioned that the results obtained depend on the
heat load. For example, here, we have an extreme load (12) that is much
larger than other loads. Multi-split configurations usually produce a better
result under large loads since the node with the maximum disturbance is
connected to the tank and receives the maximum available flow-rate. How-
ever, in many other cases, the flow rate that this node receives is a smaller
fraction of the pump flow rate. It is worth mentioning that, as shown in
Fig. 13(a), there are instances where both multi-split and single-split cases
achieve the same objective function value. This occurs in situations (such
as 𝑆4) where there is only one branch, resulting in zero splits. This type
of configuration is generated by both single and multi-split algorithms,
hence it is counted twice. In this analysis, the total number of single- and
multi-split cases are 𝑛𝑆 = 13, and 𝑛𝑀 = 9, respectively.
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(b) Flow rate and wall temperature of the cases shown in Fig. 13(a)

Fig. 13 Comparison of multi- and single-split cases with 3
nodes having di st = [12, 4, 1] kW. Number of cases: nS = 13,
nM = 9. In Fig. 13(b), temperature signals are depicted with
solid lines. Temperature and flow rate data corresponding to
the same node are indicated by identical colors and symbols.
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In Fig. 13, three cases are denoted as 𝑀 (Multi-split), 𝑆1 (single-split-
1), and 𝑆2 (single-split-2). The flow rate and wall temperature of these
three cases are presented in Fig. 13(b). Here, the left vertical axis repre-
sents the temperature, while the right vertical axis displays the flow rate.
Temperature signals are depicted with solid lines, whereas flow rate data
are presented in dashed, dotted, and dash-dotted lines. Both temperature
and flow rate data corresponding to the same node are indicated by iden-
tical colors and symbols. Additionally, a horizontal gray line indicates the
maximum constraint values for both the flow rate and temperature. Among
the three cases (𝑀, 𝑆1, 𝑆2), 𝑆2 exhibits the highest control authority (3)
due to its maximum parallel flows. This suggests that the best results can be
expected from this configuration. However, this assumption may not hold
true universally. A significant difference between 𝑀 and 𝑆2 lies in how
the node with a 12 kW heat load is handled. In the case of 𝑀, this node
receives the maximum flow rate (pump flow rate) as it is connected directly
to the pump. Conversely, in 𝑆2, the flow received by this node is a fraction
of the pump flow rate. As depicted in Fig. 13(b), the flow rates of these
nodes differ across each graph. Consequently, this disparity impacts the
objective function value and results in varying temperatures. Additionally,
as shown in the left vertical of Fig. 13(b), the wall temperature of nodes 12
and 4 reached the upper bounds. Notably, the case labeled as ‘𝑀’ achieves
this upper bound at a later stage compared to the other cases, indicating a
better objective function value (specifically, 69.9◦ C).

As mentioned earlier, one of the advantages of using a multi-split config-
uration in this case is that the node with the maximum heat load is directly
connected to the pump and receives the maximum flow rate. Therefore,
one might expect similar results if all nodes are connected in series directly
to the pump. However, as depicted in Fig. 13(a), when these nodes are
arranged in series with the pump and nodes with higher loads are posi-
tioned closer to the pump (𝑆3), the achieved result, although satisfactory, is
inferior to the multi-split case. This disparity arises because the dynamics
involved in this problem, such as convection, advection, and bidirectional
advection, are also dependent on the graph’s structure. Consequently, even
though node 12 in both 𝑀 and 𝑆3 receives the full pump flow rate, their dis-
tinct dynamics lead to different objective function values. It should also be
noted that even with a fixed graph structure, altering only the load locations
yields different outcomes. For instance, as illustrated in Fig. 13(a), cases
𝑆3 and 𝑆4 possess the same structure but exhibit substantially different ob-
jective function values (𝑡𝑓 ). Furthermore, simply changing the positions of
the 12 and 4 heat loads results in significantly different objective function
values for the multi-split cases (𝑀 and 𝑀2). In these cases, we gener-
ally observe that when the structure remains fixed, the objective function
value tends to improve when nodes with higher heat loads are positioned
closer to the pump. This can be attributed to the fact that nodes with high
heat loads require cooler fluid to dissipate the heat. When these nodes are
closer to the pump, the fluid reaching them is relatively cooler. However,
if these nodes are located far away from the pump, the fluid reaching them
is already hot as it has absorbed heat from other nodes. Consequently,
the objective function value (in this case, thermal endurance) decreases.
Such studies provide valuable insights for engineering purposes, enabling
us to extract knowledge from optimization data. In Refs. [40,41] we have
expanded upon this idea to extract human-interpretable knowledge that is
useful for practicing engineers.

Figure 14 presents a similar study, but this time for graphs with 4
CPHXs. In the case where we have two nodes with the same heat load (1),
denoted as 𝑏1 in the first branch and 𝑏2 in the second branch of case 𝑀, we
observe that the multi-split case (𝑀) achieves a higher (better) objective
function value compared to the single-split cases. The optimal solution is
found in the multi-split case (𝑀), where the node with the maximum load
is connected to the pump and then divides into two branches. Among the
single-split cases, the best solution is achieved when all nodes are arranged
in series and the nodes with higher heat loads are positioned closer to the
tank (𝑆1). On the other hand, if the order of heat loads is reversed (𝑆3),
the objective value worsens. This is because in this scenario, the node with
the highest heat load receives fluid that is already hot since it has absorbed
heat from other nodes, resulting in a decrease in thermal endurance.

The flow rate and wall temperature characteristics of three graphs,
namely 𝑀, 𝑆1, and 𝑆2, are investigated in Figure 14(b). One notable
difference between 𝑀 and 𝑆1 is that, in 𝑆1, the flow rate in all nodes is
the same as the pump flow rate, whereas in 𝑀, it is not. As depicted in
the right vertical axis of Fig. 14(b), the flow rate in node 1𝑏2 of 𝑀 is
nearly zero initially, increases, and then decreases again. An interesting
observation is the change in the wall temperature of node 1𝑏2. As shown
in the left vertical axis of Fig. 14(b), the wall temperature of this node
increases as the flow rate in that branch increases. This phenomenon can
be explained by the fact that node 1𝑏2 has a lower heat load compared
to other nodes, and the coolant fluid entering this node is already warmer
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(b) Flow rate and Wall temperature of the cases shown in Fig. 14(a)

Fig. 14 Comparison of multi- and single-split cases with
4 nodes, having di st = [12, 4, 1, 1] kW. Number of cases:
nS = 73, nM = 88. In Fig. 14(b), temperature signals are
depicted with solid lines. Temperature and flow rate data
corresponding to the same node are indicated by identical
colors and symbols.

than its wall. Consequently, the flow rate in this branch increases to allow
the coolant fluid to dissipate some of its heat to the CPHX of this node.
Furthermore, as the flow rate in 1𝑏2 surpasses zero, the coolant flow gets
cooler and the rate of change in the wall temperature of node 12 decreases,
resulting in a delayed approach to the upper temperature bound (45 degrees
Celsius) and thus increasing thermal endurance. As a result, an optimal
coordination of coolant fluid flow rate is achieved, facilitating optimal heat
transfer between different nodes and the coolant, ultimately leading to the
best objective function value.

A similar situation was observed in the case of 3 nodes, for the node
with heat load 1 kW, (see case 1M in Fig. 13) near the 40.0 second mark.
At this point, the flow rate of the node with a 1 kW heat load increases
and helps dissipate heat from the fluid flow, resulting in cooler fluid. This,
in turn, allowed the other wall nodes to reach the upper bound at a later
time, ultimately improving thermal endurance. Generating such strategies
through human intuition gained from human experience alone can be chal-
lenging. However, optimization studies such as these assist engineers in
discovering generalizable strategies to solve specific types of problems. By
leveraging these studies, engineers can avoid the need for trial and error,
thereby significantly reducing the time and resources required to achieve
the desired outcome. Optimization studies may also be used to generate
large design data sets from which insights can be derived, as opposed to
relying upon results from implemented designs alone [40,41].
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6.2 Multi-split configurations with 6 CPHX-nodes and investiga-
tion of the inner-loop results. In this section we define the 3D locations
of the CPHXs, and then, based on spatial location, the junction nodes
are produced. For this system, the location coordinates of the CPHXs
are defined as: [2, 0, 0], [2, 1, 0], [3, 1, 0], [12, 12, 0], [15, 10, 0],
[13, 13, 0], where [𝑥, 𝑦, 𝑧 ] are the coordinate locations of CPHXs in 3D
space measured in meters. Two sets of heat loads are considered: case1
= [5, 5, 5, 5, 5, 5] kW, case2 = [5, 7, 6, 4, 5, 5] kW. In this problem, the
locations of junctions and their heat-loads are fixed but all other nodes will
vary. Therefore, we have nine different configurations in total, shown in
Fig. 15. The optimal configuration for each of these cases depends on the
disturbance values. For example, for the first scenario, configuration 0 pro-
duces the best result (highest thermal endurance). For the second scenario,
however, the best result is obtained from configuration 6.
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Fig. 15 Different architectures produced by the code with
CPHXs 3D spatial locations defined as: [2, 0, 0], [2, 1, 0],
[3, 1, 0], [12, 12, 0], [15, 10, 0], [13, 13, 0] m.

To understand what happens to each control and state signal when solv-
ing the OLOC problem for the case2, consider Fig. 16. In this visualiza-
tion, the fluid nodes are represented by circles, and the corresponding wall
temperatures are indicated in the plot legend using the notation 𝑤. For
instance, the wall node linked to the fluid node 0 is denoted as 𝑤 − 0.
All nodes are constrained to a maximum temperature of 45 degrees Cel-
sius; if temperature constraints are not active, it is possible to increase
thermal endurance. Optimal thermal endurance often occurs when all wall
nodes reach the upper-bound at the same time; if one of the nodes reaches
the upper-bound sooner than the others, the thermal endurance could be
increased (the capacity of the system has not been fully utilized).

In Fig. 16 the OLOC results are shown for case 6 (best), case 4 (worst),
and case 3 (intermediate). The optimal configuration (case 6) has the
maximum heat-load in series with nodes 0 and 1. Configuration 0 is
the next best solution among the 9 cases. Figure 16 also illustrates the
corresponding optimal control and state signals. For the best solution, we
observe that all the wall nodes reach the upper-bound temperature at the
same time, enabling this configuration to have the best thermal endurance.
By comparing configurations 6 and 3 we notice that the only difference
between these architectures is the order of nodes 0 and 1. In configuration
3, in the first branch where all nodes are in series, node 0 is the last node
and has a larger disturbances than node 1. When the fluid reaches this node,
it is already warmer than the fluid in node 1; therefore, the temperature for
that node reaches the upper-bound temperature sooner than node 1. On the
other hand, in the optimal configuration (6), node 0 is closer to the tank
and receives cooler fluid than does node 1.

6.3 A multi-split configuration with 17 CPHX-nodes. In the pre-
vious section, small-scale graphs were studied to facilitate discussion of
problem details and results. However, the code created for these stud-
ies has the potential of automatically generating and solving graphs of

arbitrarily-large size (limited, of course, by computational resources). To
demonstrate the ability to extend this modeling and design framework to
a problem of larger scale, we considered a graph with 17 heat-exchanger
nodes: 14 CPHXs, and 3 junction CPHXs which were added using the spa-
tial locations of the CPHXs. Figure 17 displays the generated graph. Some
CPHXs are connected directly to the tank, whereas others are connected
to the created junctions. All 𝐶𝑝 Fluid nodes have the same heat load of 4
kW, and the heat loads of junctions 𝐽2, 𝐽3, and 𝐽4 are 3 kW, 4 kW, and 5
kW, respectively.

Figure 17 shows the wall temperature (solid red line), fluid temperature
(dashed-dot green line), and flow rate (dotted-blue line) trajectories for
each node. Additionally, the dashed gray line represents the range of these
variables, with temperature ranging from 15 to 45 degrees and flow rate
ranging from 0 to 0.4 kg/s. We can see that the wall temperature of
all nodes at the end of each branch (nodes: 0, 1, 2, 3, 4, 6, 7, 8, 9,
10, 11, 12, 13) reaches the upper bound simultaneously. Similarly, the
wall temperature of 𝐽4, which has the highest heat load among all three
junctions, also reaches the upper bound. While this might not always hold
true (consider cases where the heat loads of the junctions are negligible),
it demonstrates that compared to the other two junctions, this particular
junction has a more significant impact on the objective function value of
this graph. Moreover, as we see, the flow rate of 𝐽4 is higher than that of
𝐽2 and 𝐽3. Additionally, since all nodes have the same heat load, nodes
connected to the same junction (or to the tank) exhibit almost identical flow
rate signals. As an example, the flow rate values of all nodes within the
following three categories are identical: {6, 7, 8, 0, 1, 2}, {9, 10, 11}, and
{12, 13}. The thermal endurance of this system under the given heat load
is 48.68 seconds.

7 Conclusion
This article presents the optimal flow control of fluid-based thermal

management systems with multi-split configurations. Graph-based model-
ing is used to generate different configurations and to automatically con-
struct their dynamic equations. In addition, the spatial information of the
heat-exchangers is used to define junctions and determine the level of sys-
tem architecture complexity. The presented generative algorithm can be
used for various applications in the domain of configuration design. Open-
loop optimal control is used to quantify the best possible performance of
each configuration. This allows a fair comparison of configurations and
identification of the best overall system architecture.

The results include 3 parts. Part 1 compares the results of single and
multi-split systems composed of 3 or 4 CPHXs and discusses the results in
detail. Part 2 presents and compares the results for multi-split systems com-
posed of 6 CPHXs and provides a comprehensive analysis of the inner-loop
OLOC optimization. Finally, Part 3 studies a larger scale multi-split system
made of 17 CPHXs; an analysis of the results obtained is presented. The
results show that multi-split configurations result in a better configuration
design in some cases. For many optimal cases, all the wall nodes positioned
at the end of CPHX system branches reach the upper-bound temperature
simultaneously. Additionally, we observed that the optimal configuration
depends on the disturbance values. Finally, the results show the possibility
of modeling and analyzing large system made of various CPHXs.

In our future work, prior research performed by some of the authors
on holistic design for 3D spatial packaging and routing of interconnected
systems [42–46] will be employed to capture the spatial aspects of the multi-
split configurations via optimal placement of junction nodes and cooling
circuit components such as the CPHXs, pumps, valves, and the tank with
simultaneous optimization of 3D lengths of the branches (or pipe segments)
while satisfying volume and multi-physics constraints. This can lead to a
more complete definition of the real-world multi-split configuration fluid-
based thermal system problem. Furthermore, in the next phase of these
studies, we plan to use a population-based algorithm and compare its re-
sults with an enumeration-based framework. In addition, following the
study conducted in this article, we have utilized machine learning tech-
niques to extract generalizable design knowledge interpretable by humans
from the design optimization data [40,41]. This approach enables us to
reveal valuable insights and understand the underlying patterns and rela-
tionships in a more systematic and interpretable manner. By leveraging
machine learning methods, we can enhance our understanding of patterns
in optimal thermal system design and gain actionable knowledge that can
be applied to further improve the design and performance of such sys-
tems. Some other future work items include using more sophisticated
hydraulic and thermal models, performing 3D spatial optimization of the
pipe network with simultaneous energy loss minimization, exploration of
alternative objective functions, additional failure mode constraints, lifecy-
cle considerations, and application of the proposed design framework to
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Fig. 16 Investigation of the OLOC signals for the three cases presented in Fig. 15, with heat loads of [5, 7, 6, 4, 5, 5] kW.
The multi-split configuration reveals that case 6 exhibits the maximum thermal endurance, case 4 the minimum, and case
3 a value in the mid-range. In the left part of this figure, three configurations are displayed with labeled fluid nodes. The
text inside each circle indicates the corresponding fluid node’s label. Except for the Tank, each fluid node is paired with a
corresponding wall (w) node. These wall nodes are not shown, but their respective heat loads are displayed beside each
node in the leftmost images (in kW) and their temperatures are shown in the rightmost image, labeled asw − i , where i is the
fluid node’s label. Additionally, in the rightmost image, the nodes corresponding to the LLHX are labeled as p − LL, w − LL,
and s −LL, representing the primary, secondary, and wall of the LLHX, respectively. The label for the sink node is shown as
si nk . In the middle figure, all flow rates of fluid nodes are shown, and on the right, all temperatures of fluid and wall nodes
are depicted.

larger industry-relevant applications.
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Nomenclature
LLHX = Liquid-to-Liquid Heat Exchanger
CPHX = Cold Plate Heat Exchanger

CCD = Control Co-Design
OLOC = Optimal Open Loop Control

𝑥, 𝑦, 𝑧 = Three-dimensional coordinates of components
𝑁𝑣 = Number of all vertices
𝑁𝑡 = Number of sink vertices
𝑁𝑒 = Number of regular edges
𝑁𝑠 = Number of source edges
𝑇 = Temperature of regular node
𝑇 𝑡 = Temperature of sink node
𝑖, 𝑗 = Index of graphs, vertices, etc
𝑃 = Rate of transfer of thermal energy in regular edge
𝑃𝑠 = Rate of transfer of thermal energy in source edge
𝑚̇ = Mass flow rate
𝐶 = Thermal capacitance
𝑃in
𝑖 𝑗

= The transfer of thermal energy from node 𝑗 to node 𝑖
𝑃out
𝑖 𝑗

= The transfer of thermal energy from node 𝑖 to node 𝑗
𝑖 − 𝑗 = The Edge that connects node 𝑖 and 𝑗
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Fig. 17 A graph with 18 nodes: 1 tank, 14 CPHXs, and 3
junction CPHXs. Individual plots, adjacent to each node, dis-
play the wall temperature (solid red line), fluid temperature
(dashed-dot green line), and flow rate (dotted blue line). The
plots show temperature (left vertical axis) in ◦C and flow rate
in Kg/s (right vertical axis) vs. time in S (horizontal axis). The
dashed gray lines indicates the temperature values of 15◦C
and 45◦C, and flow rates of 0 and 0.4 Kg/s.

M = Structural mapping from powers to temperatures
𝑚𝑖, 𝑗 = Element 𝑖, 𝑗 of M

M = Structural mapping from regular power flows 𝑃 to regular
temperatures 𝑇

M = Structural mapping from regular power flows 𝑃 to vertex
states 𝑇 𝑡

D = Structural mapping from external sources to regular
temperatures 𝑇

𝑑𝑖,𝑒 = Element 𝑖 and 𝑒 of D
C = Diagonal matrix of capacitances.
𝑉 = Fluid volume
𝑐𝑝 = Specific heat capacitance
𝜌 = Fluid density

𝑀𝑤 = Wall mass
𝑐𝑝,𝑤,𝑖 = The specific heat capacitance of the wall material

𝐴 = Convective surface area
ℎ𝑖 𝑗 = Heat transfer coefficient

𝑎1, 𝑎2 = Coefficient for convection power flow
𝑏1, 𝑏2 = Coefficient for advection power flow

𝑝 = primary
𝑠 = Secondary
𝑤 = Wall

M𝑎 , M𝑏 = Structural mapping from temperatures to thermal energy flow
𝑚𝑎 , 𝑚𝑏 = Element of M𝑎 and M𝑏

𝑚𝑝 = Pump flow rate
𝑚𝑡 = Tank flow rate
𝑚̇dp = Flow rate in dependent branches
𝑚̇indp = Flow rate in independent branches
𝑛𝑑𝑝 = Number of dependent branches

𝑛𝑖𝑛𝑑𝑝 = Number of independent branches
Z = Structural mapping from flow rates to all branches

A, B1, B2 = Matrices to define state equations
𝝃 = States
𝑁 = Number of CPHXs

𝐺 (𝑁 ) = Number of Configurations
𝐽 = Number of junctions

𝒖 (𝑡 ) = Control signal
𝜆 = Penalty term in OLOC objective

NLP = Nonlinear program
kW = Kilo Watts
𝑡𝑓 = Final time
𝑛𝑆 = Number of single split cases
𝑛𝑀 = Number of multi split cases
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