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Fig. 1. Given input keyframes, our approach interpolates substeps of a fluid simulation – resulting in a smooth and realistic animation.

In this work, we introduce FluidsFormer : a transformer-based approach for fluid interpolation within a continuous-time framework.
By combining the capabilities of PITT and a residual neural network (RNN), we analytically predict the physical properties of the fluid
state. This enables us to interpolate substep frames between simulated keyframes, enhancing the temporal smoothness and sharpness
of animations. We demonstrate promising results for smoke interpolation and conduct initial experiments on liquids.
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1 INTRODUCTION

As we advance into the era of generative AI, there has been a surge of interest in editing within the latent space,
presenting a genuine challenge in providing controllable data-driven capabilities. Among many other areas in computer
graphics, physics-based animation remains particularly challenging to edit as it relies on complex physics rules and
principles that need to be satisfied for realism. Another challenge posed by these physics-based phenomena, particularly
within the visual effects industry, is the need to adapt these principles to align with artistic direction, as observed
in animation films. Striking a balance between realism and controllability poses difficulty in providing tools for
editing natural phenomena such as fluids. For several decades, numerous researchers have endeavored to enhance
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Fig. 2. Here is an overview of the FluidsFormer approach. A conventional Eulerian solver is used to produce keyframes, along with
their respective volumetric properties, using a large timestep. We leverage most of the PITT network to tokenize and embed the
partial differential equations (PDEs) needed to compute the density at any given time between the reference frames. Finally, our
density network predicts the advected densities at substeps (e.g., 𝑠 = [0.25, 0.75]).

the controllability and flexibility of fluid editing – transitioning from local editing of keyframes [Pan et al. 2013] to
flow-based methods [Sato et al. 2018]. While the latter showed promise in terms of controllability, some explored optical
flow-based approaches to interpolate Eulerian [Thuerey 2016] and particle-based fluids [Roy et al. 2021] as novel means
of creating and editing such natural phenomena. Although also promising, these flow-based approaches remained highly
dependent on numerical solvers, rendering them still fairly computationally expensive. More recently, data-driven
methods have emerged to simulate and control fluids at a reduced cost. Introduced to computer graphics approximately
a decade ago, [Ladickỳ et al. 2015] proposed a novel approach to computing particle acceleration using a regression
forest. Subsequently, a significant advancement was made by utilizing LSTM-based methods [Wiewel et al. 2019] to
handle and compute pressure changes as sequential data. Similarly, other works were introduced to address the pressure
projection step using CNNs [Tompson et al. 2017; Yang et al. 2016]. Techniques were also proposed to synthesize smoke
from pre-computed patches [Chu and Thuerey 2017], generate super-resolution flows using GANs [Xie et al. 2018],
and enhance diffusion behavior and liquid splashes [Um et al. 2018]. In recent years, methods have been introduced to
improve the apparent resolution of smoke [Bai et al. 2020] and particle-based liquids [Roy et al. 2021]. Although our
primary objective remains to enhance the controllability of fluid editing, our approach shares similarities with that
of [Thuerey 2016] and [Roy et al. 2021] as we aim to interpolate fluids in a data-driven manner using the advection
scheme of Eulerian simulations.

2 OUR METHOD

Although Transformer-based networks have been primarily introduced for natural language processing (NLP) and text
generation, they offer interesting properties for sequential data in general. In our method, we propose to leverage an
attention-based architecture within a continuous-time framework to learn and interpolate simulation properties per
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frame in an approximate analytical manner. In the following sections, we will outline the details spanning from data
preparation to network architecture and training using a transformer-based encoder-decoder network. We will also
highlight a few concrete use cases to introduce novel ways of generating and editing fluids.

2.1 Data Preparation

The data preparation is divided into two main steps: (1) generating the temporal embeddings for the fluid element’s
states and (2) handling the tokenization process in a physics-adapted context.

Physics-Adapted Tokenization. The tokenization process is performed by parsing and splitting the Navier-Stokes
equation into components (see Eq. 1) – we intentionally omit the viscosity term to simplify the related operations.

𝜌

(
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𝜕𝑡

+ u · ∇u
)
= −∇𝑝 (1)

Temporal Embedding. We learn the latent embedding of the advection part of the governing equation using
standard multi-head self-attention blocks from the PITT architecture [Lorsung et al. 2024]. That way, our model is
capable of learning to interpolate physics properties analytically (e.g., densities 𝜌). As we do not consider the equilibrium
equation (i.e., ∇ · u = 0), we handle the volume preservation part by simply penalizing in our loss function the solutions
diverging too much from the reference.

2.2 Network Architecture

Our network architecture is composed of two stacked networks: (1) the pre-trained PITT network (transformer-based
network) for solving the governing partial differential equation of the fluid dynamics and (2) the density network (RNN)
to learn and predict the time-continuous density for the substeps between the input keyframes. We use the 18-layer
architecture for our residual neural network as it gives us a decent performance (i.e., training/inference speed and
accuracy) while reducing the requirement for an enormous dataset. Same as the ResNet original paper [He et al. 2016],
our network is composed of one 7x7 convolution layer (including a 3x3 max pooling layer), 8 pairs of 3x3 convolution
layers with respectively 64, 128, 256, and 512 kernels, and one last fully connected layer using a softmax activation
function for average pooling (the rest of layers are using a ReLU activation function).

2.3 Training and Dataset

The density network is trained on normalized data [−1, 1] outputted from the PITT network. During training, each
simulation scenario is processed through the PITT network to generate the latent embedding of the non-viscous
governing equation and provides an analytically-driven approximation to our density network to predict the correct
density in space and time. To update the parameters, we use a Huber loss function 𝐿𝛿 minimizing a single term
considering the possible outliers (with some regularization term): the difference in density between the ground truth 𝜌

and the prediction 𝜌 .
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As the reference density is advected using the divergence-free velocity field, we already the volume preservation law.
We validated and tweaked the hyperparameters of our model using a 2D dataset of laminar and turbulent flows

generated with OpenFOAM [Jasak 2009]. Then we generated volumetric data from Eulerian simulations using Bifrost.
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The volumetric data points are constituted of a position (center of the cell), a velocity, and a density. The volumetric
dataset is composed of 1000 (800 for training, 100 for validation, and 100 for testing) smoke inflow and emission
simulations of 50 frames in length, without and with a single obstacle placed at random locations. As for most RNN
architectures, we need a significant amount of data to properly generalize without dissipating the small-scale details in
the simulation (e.g., second-order vorticity).

2.4 Continuous-Time Learning

Similarly to [Chen et al. 2024], our architecture uses a continuous-time multi-head attention module to transform
time-varying sequence relationships into vectors of queries Q, keys K, and values V. The purpose of this module is to
output a continuous dynamic flow evolving throughout the data points. However, as opposed to [Chen et al. 2024]
and inspired by [Deleu et al. 2022], we formulate the learning algorithm to follow the input velocity during training –
allowing our model to converge faster and to reflect the analytical framework as discussed in Sec. 2.1. The updated
gradients are then used to update the parameters defining the fluid’s behavior. In other words, we train our model to
evaluate the density based on the advection term and the velocities of the governing equation of the input system. An
inherent advantage of analytically learning density advection is the flexibility to dynamically choose the discretization
during the inference stage as required. Essentially, by employing the pre-trained PITT network, we evenly divide the
time interval between two keyframes into a specified number of substeps 𝑆 . Subsequently, we evaluate the density at
these time points while considering the initial conditions. The density 𝜌 is computed at location 𝑥 by advecting the
previous density with respect to the input velocity.

3 VARIOUS APPLICATIONS

Eulerian Fluids Interpolation. Our main goal with this approach is to propose a continuous-time transformer
model capable of learning the underlying dynamics of fluid systems for interpolation purposes. The idea behind
interpolating fluids is to generate a visually appealing and temporally smooth animation using only a few keyframes at
large timesteps. Our interpolation methods will fill in between similarly to simulate the substeps between the provided
reference keyframes (as shown in Fig. 1).

Generating using Variants. In this last use case, we take advantage of the generated tree structure to combine
keyframes using Boolean operations such as addition, subtraction, and intersection. Using the volumetric data (i.e.,
properly stored in grid cells), we can mix multiple keyframes into a single target in our approach and produce a
completely new animation.
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Fig. 3. Combining FluidsFormer with an explicit solver to generate
viscosity variations for liquids.

Tree-Based Variants. For this use case, for each
frame, we output multiple probable solutions using top-k
sampling along with diverse Beam Search on the decoder
side to encourage diversity in the generated sequences.
From this set of solutions, we build a tree structure that
allows us to branch out at any node to produce variants of
a single simulation while preserving the initial conditions.
We also performed a few early experiments combining
our approach to an explicit solver for liquid simulations.
As opposed to other presented use cases, we tested our
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approach to interpolate between various viscosity states. As shown in Fig. 3, we use our approach to produce five
(5) variations of the same simulation but using different viscosity values 𝜈 (0 being the less viscous and 10000 the
most). Starting with the same initial conditions I0, we branch a new variation of the current state of the velocity by
predicting the next sequence of velocities according to a certain viscosity threshold (e.g., 𝜈 ∈ {0, 100, 500, 1000, 10000}).
To learn and generate these sequences based on the current state, we have trained a viscosity network 𝐷 (i.e., including
the viscosity term in the PITT embedding as input to a residual neural network) to match similarities between fluid
characteristics (e.g., viscosity) and their corresponding velocities. Between each reference keyframe generated by the
explicit solver, our network 𝐷 interpolates viscosities to generate the substeps which are guided by the computed
velocity field.

4 CONCLUSION

While our approach still relies on a coarse numerical simulation, we are confident that it introduces novel and less-linear
ways of interacting with fluids. In future work, we aim to explore the accuracy of employing Transformer-based
networks like PITT to replace conventional numerical solvers for simulating natural phenomena in visual effects.
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