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Fig. 1. The proposed approach on a sample mesh. In the top row, we show the predicted outputs of our graph network in UV space (a). Additional
post-processing steps (bottom row) improves our results by removing small shells (b) and by adding missing seams (c) reducing shell count and
distortion.

Recently there has been a significant effort to automate UV mapping, the pro-
cess of mapping 3D-dimensional surfaces to the UV space while minimizing
distortion and seam length. Although state-of-the-art methods, Autocuts and
OptCuts, addressed this task via energy-minimization approaches, they fail to
produce semantic seam styles, an essential factor for professional artists. The
recent emergence of Graph Neural Networks (GNNs), and the fact that a mesh
can be represented as a particular form of a graph, has opened a new bridge
to novel graph learning-based solutions in the computer graphics domain. In
this work, we use the power of supervised GNNs for the first time to propose
a fully automated UV mapping framework that enables users to replicate their
desired seam styles while reducing distortion and seam length. To this end,
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we provide augmentation and decimation tools to enable artists to create their
dataset and train the network to produce their desired seam style. We provide a
complementary post-processing approach for reducing the distortion based on
graph algorithms to refine low-confidence seam predictions and reduce seam
length (or the number of shells in our supervised case) using a skeletonization
method.
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learning approaches.
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1 INTRODUCTION
UV mapping is a fundamental task in computer graphics that involves
the projection of 3D surfaces to 2D representations. This process

Preprint, Vol. 0, No. 0, Article 0. Publication date: 2020.

ar
X

iv
:2

01
1.

13
74

8v
2 

 [
cs

.G
R

] 
 3

 D
ec

 2
02

0

https://doi.org/xxxx
https://doi.org/xxxx
https://doi.org/xxxx
https://doi.org/xxxx


0:2 • Teimury et al.

requires unwrapping the 3D mesh from the surface for texture and
colour assignment. Although different evaluation metrics exist for
UV Mapping, prior methods [Li et al. 2018; Poranne et al. 2017;
Sheffer and Hart 2002] solely focus on optimizing two critical met-
rics: distortion and seam length. The main difference between earlier
and more recent methods for UV Mapping is that the earlier methods,
such as [Sheffer and Hart 2002], use separate steps for optimizing
seam length and distortion since these parameters have different
natures (distortion is continuous, and seam length is discrete). In
contrast, recent methods [Li et al. 2018; Poranne et al. 2017] employ
iterative frameworks to optimize seam length and distortion jointly.

Although these methods have demonstrated promising perfor-
mance that minimizes distortion and seam length, they usually pro-
duce a single shell. Producing UV maps with semantic boundaries
is a critical goal, and to our knowledge, this goal has not been ad-
dressed so far. Moreover, artists usually ask for a framework that can
mimic similar seam styles on objects within the same category. For
example, the seam style for a collection of humanoid models should
be consistent. Ideally, the framework should also spend the same
amount of time for each model.

Polygonal meshes have many intrinsic similarities with graphs, and
this motivated us to build our proposed method using state-of-the-art
graph learning approaches. Graph-based neural network architectures
(e.g., graph convolution networks and graph attention networks) have
been widely used recently in the machine learning community [Kipf
and Welling 2016; Veličković et al. 2018] and have proved promising
for analysis of data on graphs and point clouds. Our proposed method
represents the first application of such learning techniques for seam
detection in the UV Mapping context. Moreover, the supervised
nature of these algorithms enables the proposed method to reproduce
similar styles on test objects, a feature that artists are always looking
for. In addition, the translation of the distortion minimization task
to the graph learning context allows us to propose a post-processing
algorithm based on the Steiner tree problem [Sheffer and Hart 2002]
and skeletonization [Abu-Ain et al. 2013; Yang et al. 2019; Youssef
et al. 2015]. The post-processing step helps to produce seams that
align with semantic boundaries and reduces the number of shells.

Although we demonstrate our framework’s efficiency using a spe-
cific dataset (Autodesk®Character Generator), we appreciate that
there is a great variation between 3D models and seam style based
on the dataset type. On the other hand, the artist’s task is usually to
define a particular seam style over a large set of objects, optimisti-
cally taking months to complete. So, we provide augmentation and
decimation tools to enable artists to train the proposed network with
any type of objects or seam style they require. We suggest that artists
apply their desired seam style on a few models manually and then use
our augmentation tools to create their dataset. The main motivation
for producing seam cuts manually is that defining optimal cuts and
seam style depends on multiple factors such as curvature, distortion,
and the UV space. Providing manually labeled examples means that
artists will generate a superior training dataset for graph networks.
In summary, our main contributions are:

(1) we leverage the supervised nature of graph learning methods to
mimic semantic seam style in UV Mapping;

(2) we incorporate dual graphs and state-of-the-art graph-based learn-
ing methods to address seam detection as an edge-classification
task;

(3) we suggest key informative edge features for our framework
which provide a considerable improvement in all 3D mesh edge-
based networks;

(4) we restate the distortion minimization problem in UV Mapping
in terms of graph connectivity; and

(5) we then propose a post-processing procedure based on the Steiner
Tree problem [Sheffer and Hart 2002] and skeletonization to
improve seam detection network results.

2 RELATED WORK
Surface parametrization is the projection of a surface to 2D space
and is central to a broad spectrum of problems in the computer
graphics and animation communities. Surface parametrization can
be addressed via two separate pipelines: (i) specifying seams and (ii)
minimizing distortion [Desbrun et al. 2002; Julius et al. 2005; Kho-
dakovsky et al. 2003; Sander et al. 2003; Sheffer and Hart 2002]. Ini-
tial UV mapping methods either considered only one of the problems
or considered both but addressed them via two sequential pipelines.
Recent methods have started to focus on addressing minimizing dis-
tortion and seam detection simultaneously [Li et al. 2018; Poranne
et al. 2017]. In this section, we briefly review initial methods that
address one of the tasks of specifying seams [Julius et al. 2005; Kho-
dakovsky et al. 2003; Sander et al. 2003; Sheffer and Hart 2002] or
minimizing distortion [Desbrun et al. 2002; Khodakovsky et al. 2003]
and then focus on the state-of-the-art methods that simultaneously
address both [Li et al. 2018; Poranne et al. 2017].

Specifying cuts on the surface is the initial step to reach the surface
parametrization. The papers [Julius et al. 2005; Khodakovsky et al.
2003; Sander et al. 2003; Sheffer and Hart 2002] propose different
architectures that specify seams as the initial step and then minimize
distortion by adding more cuts. None of these frameworks is capa-
ble of preserving semantic boundaries automatically; they rely on
guidance from a user. The aim of parametrization approaches that
strive to minimize distortion is to preserve angles and areas in order
to produce isometric mappings[Desbrun et al. 2002; Khodakovsky
et al. 2003; Liu et al. 2008; Sander et al. 2001]. The main limitation
of all of these pipelines is that the nonlinearity of the optimization
function is not satisfactorily addressed.

The difference between the nature of distortion and cuts (i.e., dis-
tortion is continuous and cuts are discrete) has hampered the design
of an architecture that optimizes both parameters at the same time. So,
in all the above-mentioned methods, the parametrization is mainly
dependent on specifying cuts and then if the cuts do not produce the
desired distortion value, the architecture needs to suggest a new set
of cuts. Recently, [Poranne et al. 2017] proposed Autocuts, which
is a fully automated architecture that minimizes distortion and opti-
mizes cuts using an energy-based solver that is capable of iteratively
and jointly converging on soft constraints such as distortion met-
rics. Later, [Li et al. 2018] proposed the OptCuts algorithm that starts
from an arbitrary initial embedding and satisfies the distortion bounds
requested by the user.
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The main deficiency of these methods is that the final cuts do not
preserve semantic boundaries. Although [Li et al. 2018; Poranne
et al. 2017] simultaneously optimize distortion and cuts, they gener-
ate results with very few shells (e.g., a single shell for our Character
Generator dataset) while losing semantic boundaries. Another draw-
back of the state-of-the-art methods is the mesh resolution scalability.
Based on our experiments, meshes with more than 2000k polygons
require extensive resources. State-of-the-art methods construct a
matrix of high-resolution meshes that requires a huge amount of
memory and leads to expensive computations throughout the opera-
tion of their iterative solvers. Eventually, it is desirable to incorporate
these algorithms in interactive tools used by artists and designers;
due to the very high computational and memory requirements of
existing techniques, the proposed methods struggle to be adequately
responsive. In addition to these two limitations, neither Autocuts nor
OptCuts guarantee convergence and whether meaningful results are
obtained or not depends heavily upon the initializations. In other
words, without very carefully chosen manual inputs from the user,
even if the algorithms do reach convergence, the end-results might
be unusable in practice.

3 PROBLEM STATEMENT
Our main goal is to address UV mapping for 3D meshes. Since
different evaluation metrics exist for UV mapping such as distortion
(ratio of 2d area to 3d area or the ratio of 2d perimeter to 3d perimeter
for each face), the number of UV shells, semantic boundaries, 2d
layout efficiency (what percentage of the UV space is occupied), we
address our problem via two different pipelines. In the first pipeline,
we focus on finding a good initial seam placement, and in the second,
we refine the seams to minimize the distortion.

3.1 Seam detection
We have access to a set of 3D meshes,𝑀𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐹𝑖 ) 𝑖 ∈ 1, 2, . . . , 𝐾
with |𝑉𝑖 | = 𝑁𝑖 nodes. 𝐸𝑖 ∈ 𝑉𝑖 × 𝑉𝑖 denotes the set of edges, and
𝐹𝑖 ∈ 𝑉𝑖 ×𝑉𝑖 ×𝑉𝑖 denotes the set of triangle faces for the 𝑖-th mesh.
Let 𝑋𝑖 ∈ 𝑅𝑁×𝑓 be the node feature matrix where 𝑓 is the number
of features of every node. 𝐴𝑖 ∈ 𝑅𝑁𝑖×𝑁𝑖 is the adjacency matrix
corresponding to the original mesh, and 𝐿𝑖 ∈ (0, 1)1×𝐸𝑖 is the edge
label vector for all edges in the mesh 𝑖. A value of 0 indicates that the
edge is not a seam and 1 indicates that it is. In our setting, we have a
labelled training set and a test set where both the meshes and labels
of the test set are unavailable during training. The task is to predict
all edge labels for meshes in the test set.

3.2 Distortion Minimization
Each mesh is defined as 𝑀 = (𝑉 , 𝐸, 𝐹 ) where 𝑉 is a set of nodes (in
our context these are vertices), 𝐸 is a set of edges, and 𝐹 is a set of
faces in the mesh. Also, we have access to a vector 𝐿 ∈ (0, 1)1×|𝐸 |
which corresponds to proposed edge labels (i.e., seam or non-seam),
and a vector of face distortions 𝐷 𝑓 ∈ 𝑅1×|𝐹 | in which each element
is a distortion value for a face of the mesh 𝑀 in the UV space. The
task is to produce new edge labels 𝐿′ ∈ 𝑅1×|𝐸 | that represent a
modification, including both addition of missing seams and removal
of spurious seams, to the initial edge labels 𝐿, with the goal of
reducing distortion in the shells.

4 BACKGROUND
4.1 Graph Neural Networks (GNNs)
In the past years, there has been intensive research into the devel-
opment of neural networks that can be applied to graph-structured
data[Defferrard et al. 2016; Estrach et al. 2019; Henaff et al. 2015;
Levie et al. 2018]. At a high level, the core difference between con-
ventional neural networks and GNNs is the need for more flexibility
in the convolution (or aggregation) operations that take place at each
layer. Since graphs are irregular and there is no ordering or position
associated with each node, the aggregation operator should be invari-
ant to the ordering of the nodes in the neighbourhood. Also, since
nodes have different degrees, the size of the neighbourhoods vary.
We now review the GNNs that we have experimented with in our
proposed framework.

Graph Convolutional Network (GCN). The GCN [Kipf and Welling
2016] is one of the simpler GNN approaches. Let 𝐴𝐺 = 𝐷−1/2 (𝐴 +
𝐼 )𝐷−1/2 be a normalized adjacency matrix, where 𝐼 is the identity
matrix, 𝐴 is the original adjacency matrix of the graph 𝐺 , and 𝐷
is the degree matrix. Let 𝜎 be a non-linear activation function and
denote by𝑊 (𝑘) the neural network weights at layer 𝑘 . Denoting the
output of layer 𝑘 as 𝐻 (𝑘+1) and letting 𝑋 be the input feature matrix,
the graph convolution operation for a GCN can be written as follows:

𝐻 (1) = 𝜎
(
𝐴𝐺𝑋𝑊

(0)
)

𝐻 (𝑘+1) = 𝜎
(
𝐴𝐺𝐻

(𝑘)𝑊 (𝑘)
) (1)

Graph Attention Networks (GAT). While GCN [Kipf and Welling
2016] uses a simple mean aggregation function, a GAT[Veličković
et al. 2018] adopts an attention mechanism to learn how much weight
a node should place on another node in its neighbourhood when
performing the aggregation. The graph convolution operation in a
GAT can be expressed for node 𝑣 as:

ℎ
(𝑘)
𝑣 = 𝜎

©­«
∑︁

𝑢∈𝑁 (𝑣)∪𝑣
𝛼
(𝑘)
𝑢𝑣 𝑊

(𝑘)ℎ (𝑘−1)𝑢
ª®¬ , (2)

where 𝑁 (𝑣) is the (possibly multi-hop) neighborhood of node 𝑣 ,
ℎ
(0)
𝑣 = 𝑥𝑣 is the input feature vector, and 𝛼 (𝑘)

𝑢𝑣 is the attention weight
that node 𝑣 associates with node 𝑢. The attention weight can be
calculated via the equation:

𝛼
(𝑘)
𝑢𝑣 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑔

(
𝑎𝑇

[
𝑊 (𝑘)ℎ (𝑘−1)𝑣 | |𝑊 (𝑘)ℎ (𝑘−1)𝑢

] ))
. (3)

where [·| |·] denotes concatenation of two vectors, 𝑔 is the Leaky
RELU activation function and 𝑎 is the vector of learnable parame-
ters. The 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function is used for attention weight normaliza-
tion. There are other possible choices for constructing the attention
function. Multi-head attention can be used to improve prediction
performance.

GraphSAGE. Many deeper GNNs suffer from over smoothing
(aggregation occurs over too large a neighborhood). The size of a
multi-hop neighborhood can expand exponentially, and this can make
training for very large graphs extremely slow. GraphSAGE [Hamilton
et al. 2017] addresses these two issues by using residual (skip) con-
nections to prevent oversmoothing and employing neighbor sampling

Preprint, Vol. 0, No. 0, Article 0. Publication date: 2020.



0:4 • Teimury et al.

to place limits on the size of the neighborhood used for computations.
The method allows for a variety of different aggregation mecha-
nisms, including concatenation, max-pooling, and LSTMs. We can
summarize the GraphSAGE structure by:

ℎ
(𝑘)
𝑣 = 𝜎 (𝑊 𝑘 · 𝑓(𝑘) (ℎ

(𝑘−1)
𝑣 ,

{
ℎ
(𝑘−1)
𝑢 ,∀𝑢 ∈ 𝑆𝑁 (𝑣)

}
)) . (4)

Here ℎ0𝑣 = 𝑥𝑣 is the input feature vector for node 𝑣 , 𝑓𝑘 (·) is the
aggregation function and 𝑆𝑁 (𝑣) is the set of sampled neighbors of
the node 𝑣 .

Graph Isomorphism Network (GIN). In [Xu et al. 2019], Xu et al.
highlight the inability of common GNNs such as the GCN and GAT
to learn different node embeddings to distinguish between different
graph structures. Xu et al. demonstrate that a maximally powerful
graph neural network can be constructed by using a multi-layer per-
ceptron for the the aggregation combined with an irrational scalar.
This GNN, called a Graph Isomorphism Network (GIN), is maxi-
mally powerful in the sense that if any GNN can distinguish between
two different graphs, then GIN is also capable of distinguishing be-
tween them. Note that this power is not equivalent to performance
on learning tasks such as node or edge classification. Denote by 𝜖 (𝑙)

the irrational scalar associated with layer 𝑙 and let 𝑀𝐿𝑃 (·) represent
a multi-layer perceptron. The aggregation step in GIN can be written
as:

ℎ
(𝑘)
𝑣 = 𝑀𝐿𝑃 ((1 + 𝜖 (𝑘) )ℎ (𝑘−1)𝑣 +

∑︁
𝑢∈𝑁 (𝑣)

ℎ
(𝑘−1)
𝑢 ) . (5)

4.2 Dual Graph Convolutional Neural Networks
In this section, we first introduce dual graphs and then we provide a
brief explanation of methods that generalize graph neural networks
via dual graphs.

Dual Graphs. Let 𝐺 = (𝑉 , 𝐸) be the original undirected graph.
The dual graph (also known as line graph) of 𝐺 , denoted by 𝐺 =

(𝑉 = 𝐸, 𝐸), is constructed such that every vertex of the dual graph 𝑣̃
corresponds to an edge (𝑖, 𝑗) ∈ 𝐸 in the original graph 𝐺 . Consider
any two dual vertices 𝑣 = (𝑖, 𝑗) and 𝑣 ′ = (𝑖 ′, 𝑗 ′) ∈ 𝑉 in the dual
graph 𝐺 . If these are connected by an edge in dual graph, then the
corresponding edges (𝑖, 𝑗) and (𝑖 ′, 𝑗 ′) must share an endpoint in the
original graph 𝐺 . The definition can be extended to directed graphs,
but we focus on the undirected case because there is no direction
associated with 3D mesh edges.

The GNN architectures can be directly applied to the dual graph
or can be extended to learn jointly over both the original and dual
graphs [Jepsen et al. 2019; Monti et al. 2018; Zhang et al. 2019;
Zhuang and Ma 2018]. Application on the dual graph is beneficial
when the goal is classification or regression of edges. Joint learning
can improve performance because the architecture can more readily
learn structural relationships between both edges and nodes. Since
one of our tasks is classifying edges as seams, it is natural to perform
learning on the dual graph.

4.3 Steiner Tree[Sheffer and Hart 2002]
A Steiner tree for a set of vertices (terminals) in a graph is a connected
sub-graph containing all the terminal vertices [Skiena 1998]. A mini-
mal Steiner tree is a Steiner tree with minimal sum of edge weights.

The problem of finding the minimal Steiner tree is NP-Complete
[Skiena 1998]. The following is a standard algorithm to approximate
the minimal Steiner tree. It has been proven to be within a factor of
2√
3

of the optimum[Skiena 1998].

(1) For each 𝑛,𝑚 ∈ 𝑇 where 𝑇 is the tree, compute the shortest
path 𝑃 (𝑛,𝑚) between vertices 𝑛 and𝑚.

(2) Define a new graph where 𝑇 are the vertices and there is an
edge between each pair of vertices. The new weight for each
edge is set to the weight of the shortest path between the two
terminals.

(3) Compute the minimal spanning tree on the new graph.

5 METHODOLOGY
Our proposed method consists of two separate blocks: seam detection
and minimizing distortion and thinning seam lines. A more detailed
pipeline of our approach is shown in Figure 2.

5.1 Graph Learning for Seam Detection
Polygonal meshes have many intrinsic similarities with graphs, and
indeed, can be fully specified by an annotated graph. With such a
representation, the seam detection task can be expressed as edge
classification.

State-of-the-art graph learning methods such as GAT and GCN
focus primarily on addressing node or graph classification. On the
other hand, UV mapping aligns more naturally with edge classifica-
tion. Instead of using the feature matrix and adjacency of the original
graph, in which every element corresponds to a node, we construct
an edge feature matrix and consider the dual graph.

Our suggested framework is flexible and can be applied to any
edge feature matrix, but we propose a specific edge feature matrix in
Section 5.2. We choose edge features that we have found experimen-
tally to be particularly useful when trying to discriminate between
seams and non-seams.

5.2 Edge Classification
When performing edge classification, we first create a node feature
matrix using normalized vertex coordinates (𝑥,𝑦, 𝑧), vertex normals
(𝑣𝑛𝑥 , 𝑣𝑛𝑦, 𝑣𝑛𝑧) obtained from the object content, and discrete vertex
Gaussian curvature 𝑣𝐾 , a vital distortion related feature that has been
used in [Sheffer and Hart 2002]. To prepare the edge feature matrix
𝑋̃ , we used concatenation of the two endpoints node features for each
edge. For example, 𝑥𝑣̃=(𝑖, 𝑗) = [𝑥𝑖 | |𝑥 𝑗 ] where 𝑥𝑖 is the node feature
corresponding to node 𝑖.

A concern with the strategy outlined above is that during the con-
catenation procedure, we must choose the ordering of the two nodes
that form an edge. Since there is no ordering in the graph and edges
are undirected, this can lead to ambiguity. To resolve this, we follow
the procedure of [Monti et al. 2018] and construct an augmented dual
graph. Each original edge is mapped to two nodes in the augmented
dual graph. For an edge (𝑖, 𝑗) in the original graph, the feature vec-
tors associated with these two dual nodes are [𝑥𝑖 | |𝑥 𝑗 ] and [𝑥 𝑗 | |𝑥𝑖 ],
respectively. Both nodes are connected to all nodes that share a com-
mon endpoint in the original graph (𝑖 or 𝑗). During experiments, we
observe that this process, although desirable in terms of ensuring a
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Fig. 2. Pipeline overview of the proposed approach.

unique representation, has minimal effect on performance. We there-
fore report the results achieved by assigning a random ordering to
the nodes and using the standard dual. Because the constructed graph
is smaller and sparser, the computational demands are considerably
less, which is important for large meshes.

After constructing the dual graph, we apply a graph neural network,
choosing the aggregation strategy that best matches the characteristics
of the seam detection task. In particular, we find that it is critical
to avoid over-smoothing and the loss of local information. For this
reason, we incorporate residual connections after every layer in all
of the GNNs we employ[He et al. 2016; Huang and Carley 2019; Li
et al. 2019b,a; Zhou et al. 2020].

5.3 Distortion Minimizing Steiner Tree
After applying the seam detection procedure, we have a vector of
edge probabilities 𝐿𝑝 ∈ 𝑅1×|𝐸 | where |𝐸 | is the number of edges.
These probabilities are the softmax outputs of the GNN, and indicate
how likely an edge is to belong to a seam. We can apply a threshold
to these probabilities to derive binary classifications. The threshold
determines the number of connected components that will be derived,
and should be adjusted according to the size of the mesh and the
desired number of shells.

We do not provide explicit encouragement to the GNN to produce
contiguous seams, although there is implicit encouragement through
the graph aggregation process. As a result, seams can be incomplete,
missing a handful of critical edges. We address this problem by
considering the graph connectivity. First, we separate the original
graph into connected components by performing cuts along the edges
labelled as seams. In each connected component, there is a path
between any two nodes.

After this step, we reason that within one of these connected
component, all remaining seam edges should be connected — a seam
is supposed to define a boundary and there should not be isolated,
incomplete seams. We are thus motivated to construct a tree that
connects all of the nodes (in the original graph) that have been
identified as belonging to one or more seam edges. We formulate
this task as a Steiner tree problem, assigning edge weights in order
to reduce the distortion. We then use the approximate algorithm

presented in Section 4.3 to derive the tree. The edges identified in
this tree are considered to be the new seams.

In order to reduce the distortion, we define the edge weights based
on the face distortion in the UV space. We cut the mesh using the edge
labels produced by the seam detection network, then construct the
UV map and calculate the distortion value for every face in the mesh.
The normalized distortion value for a face is the ratio of face area in
UV space to the face area in 3D space, assuming that UV space has
been scaled so that the total area of all faces matches that of 3D space.
As a result, a face distortion value of 1 corresponds to no distortion,
values higher than one correspond to areas of magnification in UV
space, and values less than 1 correspond to minification. We define
the face distortion vector as 𝐷𝐹 ∈ 𝑅1×|𝐹 | where |𝐹 | is the number of
faces in the mesh𝑚. Every edge 𝑒 in a manifold triangulated mesh is
incident on two faces. We define the edge weight as follows:

𝑙𝑒 = 1 −
��𝐷 𝑓 1,𝑒 − 𝐷 𝑓 2,𝑒 �� (6)

where 𝐷 𝑓 1,𝑒 and 𝐷 𝑓 2,𝑒 correspond to the normalized face distortion
values of the first and second face neighbors of the edge 𝑒 (the
ordering is irrelevant since we are taking the absolute value of the
difference). If there is a significant difference between the distortion
values for the two faces, then the edge is a a good candidate for a
seam. The assigned weight is low, so the approximate Steiner tree
algorithm is encouraged to include them when constructing the seam
tree.

Skeletonization. The seam prediction network often produces thick
regions of several candidate edges connected to each other, whereas
we require seams to be topologically 1-dimensional curves. To ad-
dress this, we incorporate an additional step that refines and thins
the seam detection predictions. We use a relatively straightforward
adaptation of the idea of skeletonization of graphs and images [Abu-
Ain et al. 2013; Yang et al. 2019; Youssef et al. 2015]. This first
requires the estimated edge probabilities to be converted to a prob-
ability value per vertex, which is simply the maximum probability
of any edge incident on the vertex. The user supplies a threshold to
define the set of candidate vertices which will be thinned. A value
between 10% to 30% is typically a good selection, and the particular
choice will affect the topology of the seams somewhat, with higher
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values producing more loops in the result. The skeletonization then
proceeds by repetitively removing the lowest probability vertex of
this set whose removal does not change the connectivity of the set of
vertices, which corresponds to the essence of the image-based skele-
tonization algorithms. In order to avoid reducing long thin regions to
a single vertex at the centre, a vertex is not allowed to be removed
if it would then make the distance from one of the deleted vertices
to the remaining vertices higher than a user-defined threshold. This
threshold is typically set to the distance of about two to four edges.
In this way, the essential loops and branches of the candidate seams
are preserved, but guaranteed to be exactly one edge thick. The skele-
tonization step also explicitly eliminates tiny shells that only include
one or two triangles, using another user-defined threshold.

Fig. 3. We present the effect of the proposed post-processing steps
on the UV shells of three (3) test 3D models, respectively from top
to bottom: Ken, Sibilla, and Xena. The UV shells are color-coded
to describe the resulting distortion at each step where blue shows
compression and red stretching.

6 EXPERIMENTAL RESULTS
6.1 Dataset
We conducted experiments on the Autodesk® Character Generator
(CG) dataset [Autodesk 2014]. CG dataset consists of procedurally
generated 3D humanoid models, and includes seam labels generated
using a specific seam style. Technical artists within Autodesk® have
provided ground truth seams for the 3D models. Also available are
geometric features such as vertex normals and vertex coordinates.
The dataset is provided in commonly used file formats for data (e.g.,
OBJ and PLY). The CG dataset consists of 93 training objects and 3
validation objects and 3 test objects. We decimated all the objects to
10000 faces resolution using the Autodesk® decimation tool, and in

Fig. 4. Comparing our GAT-based method with DST refinement (c)
with Autocuts (a), OptCuts (b), and ground truth (d).

the remainder of the paper, we will refer to this decimated dataset as
CG10000. We provide a visualization of the resulting UV shells of the
test objects in Figure 3. In addition, we employ an augmentation tool
to produce many augmented meshes. This tool creates new meshes by
adding Gaussian random noise to the coordinates of random vertexes
of the original mesh. In this setting, users can choose the number
of augmented objects and the mean and variance of the Gaussian
random noise. Since we are conducting supervised inductive learning
for UV mapping for the first time, there is no benchmark dataset
currently available. Autodesk® Character Generator is available for
users, allowing for experimentation with the dataset.

6.2 Baseline Methods
We compare the performance of our approach with state-of-the-art
energy-based UV Mapping methods, Autocuts [Poranne et al. 2017]
and OptCuts [Li et al. 2018]. We compare to these algorithms in two
ways. First, we apply them directly on the 3D models (i.e., without
any seam initialization). This allows us to evaluate how well our
proposed method compares to the state-of-the-art as an automated
tool for UV mapping. We compare quantitatively using the distortion
metric and the number of generated shells. We also conduct a qualita-
tive assessment of whether the methods are able to identify semantic
boundaries. Secondly, we evaluate how well Autocuts and OptCuts
perform as post-processing methods to improve the quality of seams.
We apply our proposed seam detection method to provide an ini-
tial seam specification. This allows us to compare to our proposed
Distortion Steiner Tree algorithm.

6.3 Proposed Methods
We experimented with a selection of graph neural networks, employ-
ing modified versions of GCN [Kipf and Welling 2016], GAT [Veličković
et al. 2018], GraphSAGE (GS) [Hamilton et al. 2017], and GIN [Xu
et al. 2019]. We used the inductive learning implementation of GAT
provided by the Deep Graph Library (DGL) [Wang et al. 2019] and
we implemented inductive versions of the rest of the baselines using
DGL similar to an inductive GAT implementation to provide a fair
comparison. Moreover, we add skip connections to every layer of
each architecture. The task of seam detection is binary classification,
but the classes are imbalanced (fewer than 10% of the edges are seam
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Table 1. Performance of seam detection and UV mapping. Seam
detection is evaluated using false positive rate (FPR), true positive rate
(TPR) and accuracy (Acc.). UV maps are evaluated based on average
distortion and number of shells both before post-processing (BPP) and
after (APP).

Method Perf. Metrics (%) Avg. Dist. # Shells
FPR TPR Acc. BPP APP BPP APP

Ground Truth - - - 0.294 - 10 -
OptCuts - - - 0.107 - 1 -
Autocuts - - - 0.282 - 1 -
Prop-GCN 3.62 87.36 96.01 1.493 0.310 280 385
Prop-GAT 0.34 99.00 99.63 0.524 0.135 30.6 68
Prop-GS 0.04 98.56 99.90 0.424 0.125 9 36
Prop-GIN 0.85 71.74 98.05 3.829 0.371 36 89

edges). We therefore employ a weighted cross-entropy loss, using
weight 100 for seams and 1 for non-seam edges.

Hyperparameters. We used grid search for hyper-parameter tun-
ing, using the validation set of 3 objects. The search grids are speci-
fied in the supplementary material. For each GNN architecture we
use 3 layers with 64 hidden units per layer. In GAT [Veličković et al.
2018] structure, the number of hidden attention units is 3, the number
of output attention units is 5, and the attention drop is 0.2. For Graph-
SAGE [Hamilton et al. 2017], we use an LSTM aggregator. Results
for other GraphSAGE aggregators are reported in the supplementary
material. GIN [Xu et al. 2019] has two extra MLP layers with 64
hidden units. For all the models, the early stop threshold is 50 and
the learning rate is 0.0005. Learning is conducted using the Adam
optimizer.

6.4 Results and Discussion
GNN-based Seam Detection. Table 1 compares the performance of

the proposed method with different GNNs to Autocuts and OptCuts.
These methods do not perform seam detection in the supervised
manner as our proposed method, but instead perform an optimized
mapping after seams have been specified by a user. In this table, we
compare to the single-shell solution derived by these algorithms.

The seam detection results suggest that the simple averaging ag-
gregation of the GCN is inadequate for the task. The attention mecha-
nism of GAT, the LSTM aggregator of GraphSAGE, and the MLP of
GIN provide the learning power to derive much better performance.
The methods employing GraphSAGE and GAT perform best. In
terms of UV mapping, OptCuts produces the lowest distortion map.
OptCuts provides a lower distortion map than any of the proposed
GNN-based algorithms before application of the post-processing
Distortion Steiner Tree algorithm. After applying this, the GAT and
GraphSAGE maps provide similar distortion values to the OptCuts
map.

More importantly, unless seams are provided by a user, the energy-
based baselines produce solutions with a single shell. The specifi-
cation of seams is one of the most burdensome components of UV
mapping for an artist, so both Autocuts and OptCuts are missing
critical functionality. By contrast, the proposed GNN-based methods
identify multiple shells and do a much better job of identifying se-
mantic boundaries (consistent with those recognized by the artists

providing ground-truth). Figure 4 provides an example of the quality
of the maps produced by the approaches.

Prior to the post-processing step, the proposed algorithms fail
to separate some of the larger shells identified in the ground truth.
The Distortion Steiner Tree algorithm accomplishes the separation,
both reducing the distortion and producing smaller shells that more
closely match those identified by the artists in the ground truth. The
disadvantage is that the method leads to many more single shells.

Distortion Steiner Tree Algorithm. Table 2 examines post-processing
performance, comparing our proposed Distortion Steiner Tree algo-
rithm to Autocuts and OptCuts (when these are used to refine the
initial seams produced by our GAT-based seam detection procedure).
The proposed algorithm leads to UV maps with considerably lower
distortion.

Fig. 5 depicts the evolution of the UV maps when using Autocuts
for post-processing. Autocuts performs iterative unwrapping opera-
tions (unfolding and optimizing the UV layout). We provide initial
boundaries using the most probable seams from the graph-learning
seam detection (i.e., using a threshold of 𝛼𝑝 ≥ 0.9). By iteration 25,
Autocuts has separated the upper body from the thighs, and after
iterations 50 and 100, the energy-based solver has managed to sepa-
rate the arms from the upper body. After iteration 100 there are few
modifications, although eventually the head is separated from the
neck.

Fig. 4(c) shows the UV map derived by using the GAT-based seam
detection followed by the Distortion Steiner Tree algorithm. Com-
paring this to the map derived by post-processing with Autocuts in
Fig. 5, we see that the proposed GAT-DST method manages to pro-
duce a single shell for the torso, following the ground-truth provided
by the artists. In contrast, Autocuts divides the torso into several
shells. We observe similar behaviour for multiple examples (please
see the supplementary section), indicating that our proposed DST
(using face distortion vector information) can better reproduce and
preserve artist-specified semantics.

Table 2. Comparison of our post-processing method with baselines
Autocuts and OptCuts. We report average distortion and number of
shells metrics before (BPP) and after post-processing (APP). Autocuts
and OptCuts are initialized with the best GNN seam detection result
based on GAT. Our proposed method is initialized with GNN seam
detection using GAT, GCN, and GraphSAGE (GS) and applies the
Distortion Steiner Tree algorithm (DST). The last row shows the effect
of Skeletonization (SK).

Method Step(s) Avg. dist. # Shells
BPP APP BPP APP

Autocuts

it. 25 0.524 0.443 30.6 33
it. 50 0.524 0.422 30.6 35.3
it. 100 0.524 0.382 30.6 35
it. 200 0.524 0.404 30.6 36.3

OptCuts

it. 25 0.524 0.453 30.6 31.3
it. 50 0.524 0.435 30.6 34.3
it. 100 0.524 0.377 30.6 35
it. 200 0.524 0.322 30.6 37

Prop-GAT DST 0.524 0.135 30.6 68
Prop-GS DST 0.424 0.125 9 35.6
Prop-GCN DST 1.493 0.310 280.3 385
Prop-GCN DST SK 1.493 0.271 280.3 19.3
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Fig. 5. Evolution of UV maps using Autocuts for post-processing, with initialization by GAT-based seam detection method.

The final row of Table 2 shows the importance of the skeletoniza-
tion for the GCN-based method, which is more prone to producing
thick seams than the other GNNs. The average number of shells is
reduced from 280.3 to 19.3. The effect is depicted in the second
column of Fig. 3.

7 CONCLUSION AND DISCUSSION
We have proposed a novel methodology for the task of UV mapping
in computer graphics by leveraging graph learning approaches. The
proposed technique uses the dual graph and state-of-the-art graph
learning frameworks to address seam detection as an edge classifi-
cation task. In contrast to existing baselines[Li et al. 2018; Poranne
et al. 2017], the proposed algorithm produces a solution with mul-
tiple shells. Visualization of the results suggests that the algorithm
manages to mimic the seam style of the training data.

In order to further reduce the distortion and to catch any seams
that the GNN-based method failed to detect, we proposed a graph
algorithm based on the Steiner Tree [Sheffer and Hart 2002] to mini-
mize the distortion. Our results demonstrate that application of this
algorithm during post-processing considerably reduces the distortion
of the UV maps. Furthermore, it performs better than application dur-
ing post-processing of the energy-minimization methods, Autocuts
and OptCuts.

We developed a skeletonization procedure that can reduce the
number of small shells that are identified by our GNN-based seam
detection procedure. We believe that a promising future direction
involves striving towards incorporating the three methods — seam
detection, post-processing distortion reduction, and skeletonization
— in a single learning framework. This would likely involve the
introduction of a differentiable distortion proxy in the objective and
regularizers that strongly encourage thin, contiguous seams.
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A GROUND TRUTH
We include some additional results and figures that provide further
illustration of the behaviour our proposed approach GraphSeam.

In this section we are providing ground truth visualizations (Fig. 6)
for the test set of the Character Generator 10000 dataset (CG10000).

(a) Ken:obj (b) Ken:UV (c) Sibilia:obj

(d) Sibilia:UV (e) Xena:obj (f) Xena:UV

Fig. 6. Visualization of objects and their corresponding UV maps in
the test set

B AUGMENTATION TOOL
To provide better insight into our proposed augmentation tool, we
illustrate five different augmentation visualization for Ken(one of our
test models) in Fig. 7. All the augmentations are produced via adding
Gaussian noise that varies vertex positions up to 20%.

(a) Original model (b) Augmentation 1 (c) Augmentation 2

(d) Augmentation 3 (e) Augmentation 4 (f) Augmentation 5

Fig. 7. Visualization of 3D model Ken and its augmentations.

C DECIMATION TOOL
To provide better insight into our proposed decimation tool, we
illustrate five different resolutions for Ken(one of our test models) in
Fig. 8. This tool needs a predefined face resolution and, by removing
or adding vertices and edges to the initial object, produces a new
object with the predefined resolution.

(a) Res:10000f (b) Res:8000f (c) Res:6000f

(d) Res:4000f (e) Res:2000f (f) Ken:500 f

Fig. 8. Visualization of different resolution of 3D model Ken using
decimation tool. Reported resolutions are based on the number of
triangulated faces(f).

D POST-PROCESSING WITH AUTOCUTS AND
OPTCUTS WITHOUT INITIALIZATION

This section provides the UV Mapping visualization (Fig. 9) using
Autocuts [Poranne et al. 2017] and OptCuts [Li et al. 2018] on our
test set objects. As illustrated below, Autocuts and OptCuts only
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(a) Ken:Autocuts (b) Sibilia:Autocuts (c) Xena:Autocuts

(d) Ken:Optcuts (e) Sibilia:Optcuts (f) Xena:Optcuts

Fig. 9. Visualization of the UV maps of the test set of CG10000 using
Autocuts (top row) and OptCuts (bottom row) approaches without
initialization.

produce a single shell (i.e., without manual assistance provided by a
skilled artist) and cannot preserve semantic boundaries.

E AUTOCUTS AND OPTCUTS POST-PROCESSING
INITIALIZED WITH GAT OUTPUT SEAM LABELS

When used during post-processing, Autocuts [Poranne et al. 2017]
and OptCuts [Li et al. 2018] can produce UV maps with fewer shells
that those derived using our proposed minimum distortion Steiner
Tree (DST) algorithm. However, our proposed approach derives
results that are closer to the artist-specified ground truth semantics.
For example, our approach derives a single shell for the entire upper
body while Autocuts and OptCuts break this into multiple shells.

Figure 15 shows the evolution of the maps produced by post-
processing using Autocuts and OptCuts, respectively, when the GAT-
based [Veličković et al. 2018] seam detection result is used for ini-
tialization.

F VISUALIZATION OF GRAPHSEAM OUTPUTS FOR
THE CG10000 TEST SET

In this section, we provide the results for all the objects in the test
set for our proposed method, GraphSeam, using GNNs including
GCN, GAT, GraphSAGE and GIN for the seam detection block.
The visualizations are derived after applying of our suggested post-
processing approach, Distortion Steiner Tree (DST). Figures 10 to
14 display visualizations of the derived UV maps.

Based on the results, it is clear that the attention mechanism in GAT
and the more powerful aggregation method in GraphSAGE (we use
the LSTM aggregator) play a critical role in producing good results
for seam classification. GCN, which uses only a simple averaging
aggregator, produces much poorer initial UV maps. GIN is known to
perform excellently for graph classification and captures the graph
structure as well as most other GNNs. Its performance for node or
edge classification tasks can be poorer, because it can be important

(a) Ken:GCN (b) Sibilia:GCN (c) Xena:GCN

(d) Ken:GCN-DST (e) Sibilia:GCN-DST (f) Xena:GCN-DST

Fig. 10. Visualization of UV maps for GCN [Kipf and Welling 2016]
(top row) and GCN-DST (bottom row) on CG10000 test objects.

to place more emphasis on local features. This probably explains the
considerably weaker performance for the seam detection task, which
we formulate as edge classification.

All of the results clearly show how applying DST to the outputs of
the seam detection block dramatically improves the final UV maps
and leads to better preservation of semantic boundaries.

Figure 11 provides UV map visualizations that show the result of
applying the proposed skeletonization(SK) procedure on the GCN
output. Comparing to Fig. 10, we see that by thinning the edges there
is a dramatic reduction in the number of small shells. The single large
shell produced by GCN is decomposed into more meaningful shells,
providing a better initialization for the DST algorithm.

(a) Ken:GCN-SK (b) Sibilia:GCN-SK (c) Xena:GCN-SK

(d) Ken:GCN-SK-DST (e) Sibilia: GCN-SK-DST (f) Xena:GCN-SK-DST

Fig. 11. Visualization of UV maps for GCN-SK (top row) and GCN-SK-
DST (bottom row) on CG10000 test objects.
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(a) Ken:GAT (b) Sibilia:GAT (c) Xena:GAT

(d) Ken:GAT-DST (e) Sibilia:GAT-DST (f) Xena:GAT-DST

Fig. 12. Visualization of UV maps for GAT[Veličković et al. 2018] (top
row) and GAT-DST (bottom row) on CG10000 test objects.

(a) Ken:GS (b) Sibilia:GS (c) Xena:GS

(d) Ken:GS-DST (e) Sibilia:GS-DST (f) Xena:GS-DST

Fig. 13. Visualization of UV maps for GraphSAGE[Hamilton et al.
2017] and GraphSAGE-DST on CG10000 test objects.

G ROBUSTNESS OF OUR METHOD
G.1 Using random splits
In the main paper we provide our experimental results for a single
validation/test split. To explore robustness to different data splits,
we conducted experiments using five (5) random validation and test
splits. The results are reported in Table 5. We observe that although
there is some variability in performance, our proposed seam detection
method achieves high accuracy and low FPR for all splits when using
GAT and GraphSAGE.

G.2 Using augmentation on datasets
We have developed two tools for artists to create datasets that can be
used to train the GraphSeam method. We employed the decimation

(a) Ken:GIN (b) Sibilia:GIN (c) Xena:GIN

(d) Ken:GIN-DST (e) Sibilia:GIN-DST (f) Xena:GIN-DST

Fig. 14. Visualization of UV maps for GIN[Xu et al. 2019] and GIN-DST
on CG10000 test objects.

tool to produce meshes with 10000 faces resolution for the CG10000
dataset.

In this section, we explore the use of the augmentation tool to
produce a dataset that is twice the size of the original CG dataset.
The augmentation tool is based on adding random Gaussian noise to
the original vertex positions. For this set of experiments, the amount
of noise varies vertex positions up to 20%, leading to a much more
varied dataset and making the seam detection and mapping tasks
harder.

Table 3. Performance of seam detection using false positive rate (FPR),
true positive rate (TPR) and accuracy (Acc.) on CG10000 with aug-
mentation.

Method Perf. Metrics (%)
FPR TPR Acc.

Prop-GCN 3.30 94.83 96.62
Prop-GAT 0.17 99.08 99.80
Prop-GS (pool) 0.12 97.01 99.76
Prop-GS (mean) 1.13 97.57 98.81
Prop-GS (GCN) 4.64 95.80 95.37
Prop-GS (LSTM) 0.03 98.20 99.89
Prop-GIN 1.00 82.06 98.36

To provide a fair comparison, we are using the same split for
training, validation and test set as we reported in the paper and we
use the augmentation method on each set separately to ensure there
is no overlap between splits.

Table 3 reports the results of the GraphSeam seam detection al-
gorithm for the augmented dataset. Despite the increased variability
in the dataset, the results are very similar to those achieved for the
original CG10000 dataset. This carries through to the derived UV
maps after post-processing, so we do not show the results here.
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(a) Initial: 𝛼𝑝 = 0.9 (b) 25 iterations (c) 50 iterations (d) 100 iterations (e) 200 iterations

Fig. 15. Evolving state of a UV mapping generated using GAT [Veličković et al. 2018] edge probabilities as an initialization step for Autocuts [Poranne
et al. 2017] (top row) and OptCuts [Li et al. 2018] (bottom row) approaches on the 3D model Ken.

G.3 Creating stylized datasets
To show the power of the augmentation tool, we build our new dataset
using 19 random original 3D models from the initial training set of
CG10000 and via augmentation we increase the new training set to
93 (the same size as the original CG10000 training set). To provide
a fair comparison we are using the same validation and test set as
CG10000. It is required to mention that we did not make use of the
augmentation tool in the main paper, because professional artists had
already provided a sufficient number of labelled 3D models.

Our goal in providing this set of results is to show that our proposed
augmentation method enables artists to create their dataset based on a
few original models containing manual seams using the augmentation
tool. As shown in Table ??, seam detection results illustrate similar
performance to that obtained with the original CG10000 dataset.

Method Perf. Metrics (%)
FPR TPR Acc.

Prop-GCN 7.89 92.54 92.13
Prop-GAT 0.57 97.57 99.35
Prop-GS (pool) 0.75 92.43 98.97
Prop-GS (mean) 1.21 92.88 98.55
Prop-GS (GCN) 10.25 92.99 89.88
Prop-GS (LSTM) 0.10 93.76 99.64
Prop-GIN 2.41 82.33 97.51

Table 4. Performance of seam detection using false positive rate (FPR),
true positive rate (TPR) and accuracy (Acc.) on CG10000 containing
fewer train models.
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Table 5. Performance of seam detection is evaluated using false positive rate (FPR), true positive rate (TPR) and accuracy (Acc.) on different
random validation and test splits.

Split Method GCN GAT GraphSAGE (LSTM) GIN
FPR TPR Acc. FPR TPR Acc. FPR TPR Acc. FPR TPR Acc.

Random 1 3.62 87.36 96.01 0.34 99 99.63 0.04 98.56 99.9 0.85 71.74 98.05
Random 2 5.11 90.22 94.70 0.39 99.74 99.52 0.56 98.22 99.39 5.77 92 95.94
Random 3 4.07 90.69 95.72 0.62 98.78 99.35 0.083 98 99.84 1.89 86.93 97.95
Random 4 3.83 96.72 96.18 0.37 98.94 99.6 0.04 99.05 99.92 1.2 91.45 98.68
Random 5 8.83 95.72 91.35 0.67 97.5 99.26 0.08 95.67 99.75 3.47 90.12 97.21
Average 5.09 92.14 94.79 0.47 98.79 99.47 0.16 97.90 99.76 2.63 86.44 97.56
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