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Abstract

Parametric Computer-Aided Design (CAD) is the dominant paradigm for modern
mechanical design. Training generative models to reason and generate parametric
CAD can dramatically speed up design workflows. Pre-trained foundation models
have shown great success in natural language processing and computer vision. The
cross-domain knowledge embedded in these models holds significant potential
for understanding geometry and performing complex reasoning about design. In
this work, we develop generative models for CAD by leveraging pre-trained lan-
guage models and apply them to manipulate engineering sketches. Our results
demonstrate that models pre-trained on natural language can be fine-tuned on engi-
neering sketches and achieve remarkable performance in various CAD generation
scenarios.

1 Introduction

Parametric Computer-Aided Design (CAD) stands as the prevailing paradigm in the field of me-
chanical engineering for crafting modern physical objects. The creation of engineering sketches
necessitates a profound understanding of geometry and often relies heavily on a substantial repository
of reference CAD designs. A recent body of work has explored the generative modeling of engi-
neering sketches, with a particular emphasis on employing Transformer-based architectures[4, 5, 6].
Despite their potential, these models have struggled to capture the intricate geometric reasoning
inherent in engineering sketches, rendering their application to real engineering design a challenging
endeavor. Large language models, renowned for their versatile abilities in various domains and their
capability to process a plethora of data forms, present a promising avenue. Given that engineering
sketches can be converted into a string format representing points and their connectivity, we scrutinize
the potential of these models in engineering sketch design. Our contributions are as follows:

1. We establish a comprehensive pipeline to model CAD sketches by finetuning a pre-trained
foundational language model.

2. We introduce three novel evaluation metrics for CAD generative models: Entity Accuracy,
Sketch Accuracy, and CAD F1 score.

2 Method

Engineering Sketch Definition. Sketches, varying from millimeters to meters, are centered at the
origin within a 1-meter width bounding box to reduce ambiguity. Continuous parameters are converted
to discrete variables through 6-bit uniform quantization for flexible modeling of diverse shapes.
Normalization and quantization is similar to [5]. Each sketch is formatted as S = (e1, e2, ..., eN ),
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where N is the number of entities in the sketch. Each entity ei is represented by position parameters
(p1, ..., pk), where pk represents the normalized coordinate parameters of the points forming the
entity. We have three types of entities: line, arc, and circle. We represent them with two, three and
four points respectively as in [6] allowing each sketch to be viewed as a sequence of tokens.

CAD AutoCompletion Task. We introduce a generative model to address the CAD AutoCompletion
task, for automating routine CAD design procedures. The objective of this task is to complete a given
partial sketch, thereby generating a fully realized design. The task can be expressed as:

L(Φ) = −
∑

logΦ(S|Sp) = −
∑

logΦ(pi:N |p<i), (1)

where Sp = (e1, ..., ej) represents a randomly sampled sequence consisting of 20% to 80% of the
entities in the complete sketch S.

We utilize open-source natural language pretrained Transformer models for CAD sketches, with a
focus on the T5 models[3]. Additionally, we compare with finetuning GPT 3.5 [1]. Our experimental
results indicate the presence of cross-domain knowledge transfer across each pretrained model.

Evaluation Metrics To quantitatively evaluate the CAD generative models, we propose three CAD-
specific evaluation metrics: Entity Accuracy, Sketch Accuracy, and CAD F1. Sketch and Entity
Accuracy show the probability of generating the correct full remaining sketch or at least one entity in
the ground truth, respectively. CAD F1 is a balance between Entity Accuracy and Sketch Accuracy,
calculated as:

CAD F1 =
2× precision × recall
(precision + recall)

, precision =
Nc

Np
, recall =

Nc

N
,

where Nc represents the number of correct entities in the completed sketches, Np is the total number
of entities in the completed sketches, and N is the number of entities in the labeled sketch.

Figure 1: Example for CAD sketch. The left one is the
uncompleted prefix sketch, right one is the full sketch.

Model Entity acc Sketch acc CAD F1

Vitruvion 0.407 0.030 0.113

ChatGPT 0.413 0.068 0.212

CAD-LLM 0.689 0.225 0.440

Table 1: Performance Comparison of different mod-
els. The input prefix for all three models is randomly
selected between 20% to 80% of the full sketch. Here
ChatGPT is finetuned on 15% portion of the data. For
all metrics, the bigger the better. The best results are
shown in bold. More results are in the supplmentary.

3 Experiments

We use SketchGraphs[4] dataset for all our experiments and select Vitruvion as the baseline method,
which is the SOTA for CAD generation tasks. The results are shown in Table 1. Limited by the high
cost of ChatGPT finetuning, we only finetuned a small portion of the data (1%, 7% and 15%). And
we found that performance didn’t change dramatically with the increase of data or training epochs.
We assume the reason is that GPT3.5 is being finetuned using PEFT (e.g. LORA)[2] methods. The
T5 model, with 770m parameters, as our CAD-LLM base model, achieves the best results across all
prefix ratio settings. Remarkable performance on all three metrics is achieved with training for only
20 epochs. These results demonstrate that foundational pre-trained models can indeed aid in CAD
representation and generation tasks.
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4 Supplementary Material

Here we provide more experimental results. Covering different masking ratios and multiple fine-tuned
versions of GPT3.5(i.e. ChatGPT)

Model Prefix ratio Entity acc Sketch acc CAD F1

Vitruvion

20% 0.341 0.00059 0.085
40% 0.408 0.0071 0.110
60% 0.414 0.035 0.119
80% 0.424 0.146 0.125

random 0.407 0.030 0.113

ChatGPT-15%
random

0.413 0.068 0.212
ChatGPT-7% 0.438 0.076 0.222
ChatGPT-1% 0.431 0.065 0.225

Ours

20% 0.468 0.013 0.179
40% 0.662 0.108 0.362
60% 0.728 0.308 0.528
80% 0.741 0.518 0.638

random 0.689 0.225 0.440

Table 2: Performance Comparison of different models and prefix ratio. For all metrics the bigger the better.
Prefix ratio shows the partial input sketch to full sketch ratio
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