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Abstract

In program synthesis, an intelligent system takes in a set of
user-generated examples and returns a program that is logi-
cally consistent with these examples. The usage of Rational
Speech Acts (RSA) framework has been successful in build-
ing pragmatic program synthesizers that return programs
which – in addition to being logically consistent – account
for the fact that a user chooses their examples informatively.
However, the computational burden of running the RSA al-
gorithm has restricted the application of pragmatic program
synthesis to domains with a small number of possible pro-
grams. This work presents a novel method of amortizing the
RSA algorithm by leveraging a global pragmatic ranking –
a single, total ordering of all the hypotheses. We prove that
for a pragmatic synthesizer that uses a single demonstration,
our global ranking method exactly replicates RSA’s ranked
responses. We further empirically show that global rankings
effectively approximate the full pragmatic synthesizer in an
online, multi-demonstration setting. Experiments on two pro-
gram synthesis domains using our pragmatic ranking method
resulted in orders of magnitudes of speed ups compared to
the RSA synthesizer, while outperforming the standard, non-
pragmatic synthesizer.

Introduction
For intelligent systems to be accessible to end users, it is im-
portant that they can infer the user’s intent under ambiguity.
Imagine a person asking an AI assistant to generate a regular
expression that matches the string (123)456-7890. It would
be unhelpful if the AI assistant simply returned the regular
expression Σ∗ – the expression that matches all strings –
although it is technically correct. The rational speech acts
model (RSA) of pragmatics (Frank and Goodman 2012)
gives an algorithm for resolving ambiguities by modeling
the user as choosing examples that are informative to the
system, by using recursive Bayesian reasoning. Given sev-
eral competing responses, for instance regex1 = 3.3.-4. and
regex2 = Σ∗, RSA would reason that it is more likely that an
informative user would use the utterance “(123)456-7890”
to describe regex1 over regex2, allowing it to prefer the in-
tended regex. Recent works (Pu et al. 2020; Vaithilingam,
Pu, and Glassman 2023) have leveraged the RSA algorithm
to build pragmatic program synthesizers – interactive sys-
tems that take in user given examples (e.g. strings) and re-
turn programs (e.g. regexes) that are both logically consis-

Figure 1: Rather than using the RSA algorithm directly in a
synthesizer (left), our approach uses the RSA algorithm to
generate a simulated communication dataset of partial rank-
ings. We then distill the dataset of partial rankings into a
global pragmatic ranking – a single, total ordering of all pro-
grams. This global ranking is then used to build a fast prag-
matic synthesizer, which is both effective at communicating
with end-users and faster than the RSA synthesizer.

tent and take into account that the users tend to select infor-
mative examples.

A known limitation of the RSA algorithm is its inference
speed – exact inference in RSA needs to marginalize across
all possible examples (e.g. all strings) and hypotheses (e.g.
all regexes) multiple times – making it difficult to scale to
domains with a large number of utterances and hypotheses.
This drawback is significant in building interactive systems,
in which the users expect the system to respond in real-
time. Prior works in scaling up RSA computation (Monroe
et al. 2017; Andreas and Klein 2016) have largely focused
on sampling and re-ranking, curbing RSA’s computation to
a small subset of hypotheses and utterances. In this work,
we show a simple yet effective way of amortizing RSA via
a global ranking – a total ordering of hypotheses that is held
constant across every possible set of examples. At training
time, the expensive RSA algorithm is used to generate train-
ing data in the form of partial rankings, and the global rank-
ing is fitted to be consistent with this partial ranking as much
as possible, and cached for use at interaction time (Figure 1).
Then, at testing / interaction time, the global ranking is used
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to disambiguate different hypotheses, without the expensive
RSA overhead. For instance, the regex Σ∗ would be ranked
very low in the global ranking, making it unlikely to be er-
roneously chosen compared to other hypotheses.

This work makes the following contributions. First, we
prove that in the case of single demonstration RSA with
boolean lexicons, studied in works such as (Mukherjee,
Hawkins, and Fan 2019; Vogel et al. 2013; Monroe and Potts
2015; Smith, Goodman, and Frank 2013), there always ex-
ists a single global ranking that perfectly models the RSA
algorithm. Second, we show that in the case of interactive
RSA – where the user provides examples one after another
– studied in (Cohn-Gordon, Goodman, and Potts 2018b;
Pu et al. 2020; Vaithilingam, Pu, and Glassman 2023), a
global ranking gives a close approximation for the RSA al-
gorithm in practice. We show that ranking enables scaling
(Vaithilingam, Pu, and Glassman 2023) to a larger regex do-
main, and we conduct a small user study which confirms
that end-users can interact effectively with a ranking based
program synthesizer. Further, we conduct a simulated user
study by replaying the human interactive synthesis data from
(Pu et al. 2020) and (Vaithilingam, Pu, and Glassman 2023),
finding that our pragmatic ranking method resulted in orders
of magnitudes of speed ups compared to the RSA synthe-
sizer, while outperforming the non-pragmatic synthesizer.

Background and Motivation
In this section, we provide background on a reference game
framework of program synthesis, which affords building a
pragmatic synthesizer that can infer a user’s intended pro-
gram from few examples (Pu et al. 2020). We illustrate this
framework using a toy example from a small version of the
regular expression domain of this work. We then give an in-
formal overview of how one can use a global pragmatic or-
der, the contribution of this paper, to make pragmatic synthe-
sis scalable to more complex domains, such as unrestricted
regular expressions.

Figure 2: A boolean lexicon for a small reference game of
regular expressions. The rows are the utterances (strings)
and the columns are hypotheses (regexes), and each entry
denotes if a string is consistent with a regex.

Synthesis as a Reference Game
Consider the problem where a user gives a few example
strings to a synthesis system, and asks the synthesizer to find

a regular expression that can match them. This process can
be modeled as a reference game, where a speaker (the user)
chooses a few utterances (strings) to give to the listener (the
synthesizer), with the intention that the listener can infer the
correct hypothesis (regular expression). This reference game
is characterized by the lexicon M , a boolean matrix of 1s
and 0s (Figure 2). In M , each row corresponds to an ut-
terance and each column corresponds to a hypothesis, and
1s indicating consistency of its corresponding utterance and
a hypothesis: whether the regular expression matches the
string. As we can see, a given utterance (such as 001) may
be consistent with multiple hypotheses (0+{1}, 0{2}1+, and
0+1*).

A Literal Program Synthesizer

Figure 3: Given the utterance 01, a naive synthesizer L0 will
predict 0+1{1} and 0+1* as equally probable

How might we build a system that takes an utterance (say
01) and produces the intended hypothesis 0+1{1}? As 01
is consistent with multiple hypotheses (0+1{1} and 0+1*), a
naive strategy is to treat these two as equally likely. A syn-
thesizer built this way is a literal listener L0 (Bergen, Levy,
and Goodman 2016), which we can construct by normal-
izing the rows of the matrix M , resulting in a probability
distribution over hypotheses W given utterances u.

L0(w|u) =
M [u,w]∑
w′ M [u,w′]

The result of this normalization is shown in Figure 3.1 As we
can see, given the utterance 01, this listener predicts an equal
probability of 0+1{1} and 0+1* being the intended program.
However, as Pu et al. (2020) find, end users do not com-
municate effectively with L0, requiring longer interactions
compared to a model that reasons about how users choose
utterances informatively.

A Pragmatic Program Synthesizer
A key insight to improving on the literal synthesizer is
to consider that a user is cooperatively choosing an utter-
ance to be informative about the intended program to the

1Note that in synthesizers for more complex domains, we can-
not explicitly enumerate the entire lexicon M , which may be ex-
tremely large or infinite, and have to generate and score programs
dynamically.



Figure 4: The RSA framework performs alternating normal-
ization of the literal listener (L0) distribution in Figure 3 to
first derive a pragmatic speaker, S1, which models how a
user chooses utterances informatively, and then a pragmatic
listener, L1, which models how the synthesizer should infer
programs assuming an informative user. Given the string 01,
L1 identifies 0+1{1} as the most probable intended program.

synthesizer. The Rational Speech Acts (RSA) framework
models this informative choice of utterances using recur-
sive Bayesian reasoning (Frank and Goodman 2012). By
reasoning about why a speaker(user) might have chosen a
particular utterance(examples), rather than possible alterna-
tives, the listener(synthesizer) can disambiguate the hypoth-
esis(program) to which the speaker was referring. Formally,
the RSA framework produces a chain of alternating listen-
ers and speakers beginning with the L0 model above, each
of which reasons about the previous agent in the chain.

S1(u|w) =
L0(w|u)∑
u′ L0(w|u′)

L1(w|u) =
S1(u|w)∑
w′ S1(u|w′)

Applying this framework amounts to normalizing the
columns of the L0 matrix to obtain S1, the normalize the
rows of S1 to obtain a pragmatic listener (synthesizer), L1.
The result is shown in Figure 4. As we can see, given the ut-
terance 01, this listener prefers 0+1{1} over 0+1*, reflecting
the reasoning that if the user wanted to refer to 0+1*, they
might have provided an example that highlights the possibil-
ity of no 1s in the string.

Reference Games with Multiple Utterances

So far, we have considered the problem of inferring a hy-
pothesis based on the speaker producing a single utter-
ance. However, in complex domains such as regular ex-
pressions, the users will have to clarify their intent interac-
tively, by giving a sequence of utterances in multiple turns
u = u1, u2, . . . , un. The synthesizer must infer the intended
program after every turn. This is an instance of incremen-
tal RSA (Cohn-Gordon, Goodman, and Potts 2018b), which
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Figure 5: An incremental pragmatic listener that identifies
0+1{1} as the most probable intended program given a sec-
ond utterance 001. The S1 distribution for this utterance
builds on the distribution computed in Figure 4. The utter-
ances inconsistent with the first utterance are omitted.

models the informative speaker S1 as follows:

S1(u|w) = S1(u1, u2, . . . , un|w)

=

n∏
i=1

S1(ui|w, u1, . . . , ui−1)

=

n∏
i=1

L0(w|u1, . . . , ui)∑
w′ L0(w′|u1, . . . , ui)

The synthesizer L1(w|u) is defined recursively on top of S1

in the same manner as its single-utterance case. The result of
the RSA computation is shown in figure 5. As we can see,
providing an additional utterance 001 after the first utter-
ance 01 makes the incremental L1 listener prefer the correct
hypothesis 0+1{1} even more.

The Issue: RSA is Slow
In computing L1 using RSA, it needs at worst case O(|W |)
calls to S1. Each call to compute S1 requiresO(|U |) calls to
L0, which in turn requires O(|W |) operations to determine
a set of consistent programs. In small domains, the results
of each computation – L0, S1, L1 – can be stored explic-
itly in matrix form, as we’ve shown in Figure 3 and Figure
4. However, in incremental domains with a large number of
hypotheses and utterances, it becomes infeasible to cache all
the computation results explicitly, forcing the L1 listener to
recompute from scratch. In practice, the pragmatic synthe-
sizer L1 runs in O(|W |2|U |) time. In the incremental RSA
setting with multiple (say l) utterances, the run-time of L1 is
O(|W |2|U |l). As the number of hypotheses and utterances
becomes large in a program synthesis domain, it becomes
infeasible to compute L1 at a speed required for end-user
interactions. For instance, Vaithilingam, Pu, and Glassman
(2023) were only able to build a pragmatic synthesizer for
the regex domain consisting of 350 regular expressions.

This Work: Pragmatic Synthesis using Rankings
We are now in a position to explain our work – using a global
pragmatic ranking to amortizing the RSA inference. Imag-
ine we had a pre-computed, global ranking of programs, we
would simply need to find consistent programs and rank
them, which requires only O(|W |) steps. Consider the ex-
ample from earlier where a speaker provides the utterance



01. If we had determined that the global ordering of pro-
grams was 0{1} ≻ 0+1{1} ≻ 0{2}1+ ≻ 0+1*, we could
identify 0+1{1} as the most preferred program that was con-
sistent by progressing through the list, and checking consis-
tency. Even after providing a second utterance 001, the out-
come of this remains unchanged and still correct. In the rest
of this paper, we describe how, for the case of single utter-
ance (the user can only provide 1 string, e.g. 001), such a
ranking provably exists. And for the case of multiple utter-
ances (the user provides multiple strings incrementally, e.g.
001,01), even though we may not have guarantees, we em-
pirically verify that we can compute and use such a ranking
to make pragmatic program synthesis much more efficient.

Global Pragmatic Ranking
We formally define a global pragmatic ranking, and show
how it can be used to construct a rank-based listener.

Global pragmatic ranking A global pragmatic ranking
σL for a listener L is an ordering of hypotheses such that:

∀w,w′, u. if L(w|u) > 0 ∧ L(w′|u) > 0.

then L(w|u) > L(w′|u) ⇐⇒ σL[w] ≻ σL[w
′]

(1)

Which is to say, for any two competing hypotheses w,w′

given utterance u, if both have non-zero probabilities under
L(·|u), then both σL and L(·|u) will sort these two hypothe-
ses in the same order.

A global ranking is utterance agnostic The most salient
feature of a ranking σ is that it is utterance agnostic: the
same ranking is used to order all the hypotheses irrespective
of the utterance given. This is counter-intuitive, because one
might expect that given different utterances u, u′, it is pos-
sible for a listener L to give different rankings for w and w′,
even if both hypotheses are consistent with both utterances:

L(w|u) > L(w′|u) > 0 ∧ L(w′|u′) > L(w|u′) > 0 (2)

However, we will show that – in the case of boolean lex-
icons with a single utterance and an RSA listener as de-
scribed in the previous section – a global pragmatic ranking
σL consistent with L must exist, and in the case of multiple
utterances, a global ranking σ̃L can well approximate the
true L ranking empirically.

Rank-based listeners Given any ranking σ, one can use it
to construct a rank based listener Lσ : U ⇒ W ∗, that takes
in an utterance u and returns a sorted list of all satisfying hy-
potheses by progressing through the list of ranked hypothe-
ses in σ and filtering for consistency with u. As we can see,
both the time and space complexity of Lσ are O(|W |).

Existence of Ranking for Single Utterance
We prove that in the case of boolean lexicons, a global prag-
matic ranking must exist for any listeners L0, L1, . . .

2.

2one can derive the same result for pragmatic ranking of speak-
ers by taking a transpose of M

Theorem: For a sequence of listeners in the RSA algo-
rithm L0, L1, . . . over a boolean-valued lexicon M , there
exists a sequence of global pragmatic rankings σL0

, σL1
, . . .

such that:
∀w,w′, u. if Li(w|u) > 0 ∧ Li(w

′|u) > 0.

then Li(w|u) > Li(w
′|u) ⇐⇒ σLi [w] ≻ σLi [w

′]
(3)

Let M be a boolean lexicon of size m rows and n columns.
Let r0 = r10 . . . r

m
0 be the row-normalizing vector such that

rj0 = (
∑

M [j, :])−1, which is to say, each element rj0 is the
normalization term for row j of L0. Let *↔ denotes row-
wise multiplication:

L0 = M *↔ r0

Which is to say, starting from M , L0 can be obtained by
scaling each row j by their respective normalization constant
rj0. Let c1 = c11 . . . c

n
1 be the col-normalizing vector such

that cj1 = (
∑

L0[:, j])
−1, which is to say, each element cj1 is

the normalization term for column j of S1. Similarly, let *↕
denotes column-wise multiplication

S1 = L0 *↕ c1 = M *↔ r0 *↕ c1

Computing Li under RSA amounts to applying row and col-
umn normalization alternatively multiple times:

Li = M *↔ r0 *↕ c1 . . . *↕ ci−1 *↔ ri

Let ∗ be element-wise multiplication, let⊗ be outer-product,
we can rearrange the terms:

Li =M ∗ ((r0 ∗ · · · ∗ ri)⊗ (c1 ∗ · · · ∗ ci−1))

=M ∗ (r0...i ⊗ c1...i−1)
(4)

Here, r0...i = r0 ∗ · · · ∗ ri is a vector of size m, and
c1...i−1 = c1 ∗ · · · ∗ ci−1 is a vector of size n. As we can
see, following the RSA algorithm, Li can be decomposed to
to multiplication of 2 parts: the lexicon M , and a matrix that
is formed by the outer product r0...i ⊗ c1...i−1.

Claim: The ordered indexes of c1...i−1 is the global prag-
matic ranking σLi

:

σLi [w] ≻ σLi [w
′] ⇐⇒ c1...i−1[w] > c1...i−1[w

′]

Proof: We show both sides of the ⇐⇒ in 3. Suppose
that for some w,w′, u, both Li(w|u) > 0 and Li(w

′|u) > 0
(i.e. M [u,w] = M [u,w′] = 1).

(1) Show⇒: Suppose Li(w|u) > Li(w
′|u). We have

Li(w|u) = Li[u,w] = r0...i[u] ∗ c1...i−1[w]

Li(w
′|u) = Li[u,w

′] = r0...i[u] ∗ c1...i−1[w
′]

As r0...i[u] is a constant, we have

Li(w|u) > Li(w
′|u)⇒ c1...i−1[w] > c1...i−1[w

′] □.

(2) Show⇐: Suppose c1...i−1[w] > c1...i−1[w
′].

c1...i−1[w] > c1...i−1[w
′]

M [u,w] ∗ r0...i[u] ∗ c1...i−1[w] >

M [u,w′]∗r0...i[u] ∗ c1...i−1[w
′]

Li[u,w] > Li[u,w
′]

Li(w|u) > Li(w
′|u) □.

Thus, c1...i−1 is the global ranking σLi
as claimed ■.



S→ RP | S RP

RP→ ‘[01]’ OP | ‘0’ OP | ‘1’ OP

OP→ ‘*’ | ‘+’ | ‘{1}’ | ‘{2}’

Figure 6: Grammar for the regex domain

Approximate Ranking for Multiple Utterances
In the case of multiple utterances given incrementally, the
orderings of hypotheses are utterance dependent: for some
hypotheses, their orderings can swap depending on utter-
ances (Equation 2). In this section, we give a simple approx-
imation algorithm that attempts to find a global ordering that
is maximally consistent with the ordering given by an RSA
listener L, consisting of first obtaining a communication
dataset D consisting of orderings, then annealing a global
ordering to be as close to the orderings in D as possible.
This ordering is obtained offline during training, and cached
for interaction with users. We sample a dataset of interac-
tions between a speaker and a listener by unrolling the inter-
action and having the speaker select each utterance greed-
ily based on the utterances given up to that point. We then
obtain a ranking over programs using the listener probabil-
ities given the utterances. This is detailed in Algorithm 1.
We then use the dataset of interactions we collect to anneal
a global ranking, as shown in Algorithm 2.

Algorithm 1: Algorithm to obtain a dataset of simulated in-
teractions between a speaker S and listener L. For each turn
of each interaction, a ranking of programs is obtained.
Require: Set of programs P
Require: Length of specification to generate N
Require: Speaker model S(u|w,u)
Require: Listener model L(w|u)
Require: Function MAKERANKING that ranks samples

from a distribution based on the probability
D ← {}
for p in P do
u← [ ]
for i = 1 to N do
unext ← argmaxu S(u|p,u)
u← u+ [unext]
σ̃ ← MAKERANKING(L(·|u))
D ← D ∪ {(p, σ̃,u)}

end for
end for
return D

Experiments
To validate the usefulness and efficiency of an approximate
ranking listener Lσ , we perform the following two sets of
experiments. First, we conduct a small (n = 8) human ex-
periment by building a ranking based synthesizer in a reg-
ular expression synthesis domain, a domain where it is in-
feasible to run the vanilla RSA algorithm L1 at interaction
time. Second, we conduct two replay studies taking the hu-

Algorithm 2: Algorithm to infer a global order σ based on a
dataset of simulated interactions
Require: Dataset of simulated interactions D
Require: Validation frequency V
Require: Patience t
Require: Convergence threshold T
D ← {}
σ ← randomly initialized ranking
converged← FALSE
Nswaps ← [ ]
nswaps ← 0
i← 0
while not converged do
(p, σ̃,u) ∼ D
Sample programs p1, p2 in σ̃
if σ̃ [p1] ≻ σ̃ [p2] and σ [p1] ≺ σ [p2] then

Swap σ [p1] , σ [p2]
nswaps ← nswaps + 1

end if
i← i+ 1
if i ≡ 0 mod V then
Nswaps ← Nswaps + [nswaps]
nswaps ← 0
if maxNswaps [−t :]−minNswaps [−t :] < T then

converged← TRUE
end if

end if
end while
return σ

man interaction data from Vaithilingam, Pu, and Glassman
(2023) and Pu et al. (2020). We seek to answer the follow-
ing two research questions. Q1: is Lσ performant, in terms
of communication accuracy when communicating with hu-
mans, compared to the naive synthesizer L0 and the vanilla
RSA synthesizer L1? Q2: is Lσ efficient, in terms of infer-
ence time, compared to L0 and L1?

Human Experiment
To validate the efficacy of the ranking-based listener in inter-
action with users, we conducted a user study where people
interacted with the ranking-based Lσ and literal synthesizers
L0 on the domain of regular expression synthesis.

The Regex Domain The regex domain is a scaled up ver-
sion of Vaithilingam, Pu, and Glassman (2023), where they
considered a total of 350 regular expressions from their
grammar (Figure 6; this subset forms the hypothesis space
W ). They built L1 and L0 models based on RSA, and found
in their experiments that L1 is better. For this study, we ex-
panded the space of programs to 3500 regular expressions
from the same grammar – a setting that would make live
interaction infeasible with the L1 synthesizer they propose
based on RSA.

Participants We recruited 8 participants from our institu-
tion, with 7 males and 1 female. 6 participants reported they
had 2–5 years of experience with regular expressions, and
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Figure 7: Success rate of the literal and ranking-based syn-
thesizers in the human experiments. The ranking-based syn-
thesizer achieves a success rate of 93.75%, while the literal
synthesizer achieves only 65.63%. The ranking-based syn-
thesizer also achieves higher success with fewer utterances.

2 participants reported less than a year of experience using
regular expressions. Each received a $20 gift certificate.

Procedure Each participant was given a short tutorial on
how to use the interface, then completes a total of 4 com-
munication tasks. For each task, the participant was asked
to communicate a target regex using examples to both the
literal L0 and the ranking Lσ synthesizer, anonymized as
simply a “green robot” and a “blue robot”, one after another
in a randomized order. For each regex, the participants can
take any numbers of turns (each turn consists of providing an
additional example string) until the regex is recovered by the
synthesizer, or give up early. The communication is interac-
tive: When the participant adds a new example, they are im-
mediately shown the current top-1 guess of the synthesizer,
which allows them to adjust the next example accordingly.

Results Figure 7 shows the communication success rate
over turns for both the literal and ranking-based synthesiz-
ers. As we can see, not only does the ranking-based synthe-
sizer eventually succeed more often than the literal synthe-
sizer (with the user successfully communicating about X%
of targets to the ranking-based synthesizer as opposed to Y%
to the literal synthesizer), but it also achieves a higher suc-
cess rate for smaller numbers of turns, allowing the user to
successfully communicate at a lower cost. We conclude that
Lσ performs better than L0 for the regex domain (Q1).

Replay Studies
We also compare Lσ vs L1 and L0 by replaying the inter-
action data collected from (Vaithilingam, Pu, and Glassman
2023) and (Pu et al. 2020) – small pragmatic program syn-
thesis domains where it is feasible to use the vanilla RSA
synthesizer L1.

Replay Data During the human studies of (Vaithilingam,
Pu, and Glassman 2023) and (Pu et al. 2020), a human H
is given a target hypothesis w, and attempt to get the syn-
thesizer (L0 or L1) to infer the target using a sequence of
examples u = u1, u2, . . . . Thus, two sets of data are gen-
erated, one where the human is interacting with the literal
synthesizer L0, which we term H0, and one where the hu-
man is interacting with the pragmatic synthesizer L1, which
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Figure 8: Results for the animals replay experiment. On H0

data, Lσ (71.65%) outperforms L0 (63.78%) and almost
matches L1 (74.80%). However, on H1 data, the gaps are
more start with Lσ (49.82%) beating L0 (15.46%) by a large
margin, but still trailing L1 (91.75%).
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Figure 9: The wall clock time for each synthesizer given se-
quences of utterances of varying lengths (t utterances at turn
t). We see that L1 is consistently much slower than either
Lσ or L0 in both domains. Note that time is on a logarith-
mic scale for the animals domain.

we term H1. Specifically, from each domain we extract the
following dataset {(w,uj

i )|w ∈ Ws, j ∈ P, i ∈ {0, 1}}.
Here, Ws are the set of hypotheses used for the human study
(the stimuli), P is the set of participants, and i indicates if
the participant is communicating with L0 or L1.

Experiment Setup We can simulate an user interaction
by using the replay data. Given a datapoint w,u, we cre-
ate a simulated user that iteratively gives the utterances
u1, u2, . . . in multiple turns to communicate a given tar-
get hypothesis w. At every turn, the synthesizer returns the
top-1 responses, Ltop-1(u1), L

top-1(u1, u2), . . . , and we can
check if any of them matches the target hypothesis w. If
they do, we mark the communication as successful and stop
early. Otherwise, we keep adding utterances until the u runs
out, and we mark the communication as unsuccessful. Note
that our evaluation cannot account for a user adapting their
choice of examples to L, as the simulated user can only give
scripted utterances according to the replay data.

Domain 1: Animals Pu et al. (2020) uses a domain of
grid patterns generated by an underlying domain-specific
language (see Appendix for the grammar of the DSL and
semantics). The space contains 17,976 semantically distinct
programs and 343 possible examples, where a user uses
a sequence of multiple examples to communicate a target
program. They conducted a study with 48 human subjects,
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Figure 10: Results for the regex replay experiment. On H0

data, Lσ almost matches L1, achieving a success rate of
81.67% vs L1’s 88.33%. On H1 data, the gap is slightly
larger with Lσ achieving 68.33% vs L1’s 81.67%. How-
ever, in both cases, Lσ performs substantially better than L0

(28.33% on H0 and 13.33% on H1).

collecting data for 10 programs (10 distinct grid patters).
The data includes interactions between humans and both a
literal synthesizer (H0 − L0) and a pragmatic synthesizer
(H1−L1). In total, there are 254 interactions from H0−L0

and 291 interactions from from H1−L1, where each interac-
tion consists of multiple turns until either the target program
is successfully communicated or the user gives up.

Results The results are shown in Figure 8, as we can see,
the ranking synthesizer Lσ outperforms the literal listener
L0 (Q1), and is close to the L1 listener if the speaker is H0.
The gaps of performance is greater for H1 as a speaker when
compared to H0. We attribute the smaller gaps between lis-
teners on H0 to the utterances being informative even to a lit-
eral listener. These utterances narrow down the space of con-
sistent programs aggressively, making any ranking more ef-
fective. In another word, the random rankings induced from
L0, the pragmatic ranking from L1, and the approximated
ranking from Lσ make little difference under H0. On the
other hand, H1 expressly rely on a particular ranking for the
listener (namely, L1) and the performance highly depends
on whether the ranking closely resembles that of L1 (which
Lσ does a better job at than L0). Figure 9a shows that the
ranking-based synthesizer requires approximately the same
time as L0, and far less time than L1 (Q2).

Domain 2: Regular expressions
Vaithilingam, Pu, and Glassman (2023) study the usability
of pragmatic program synthesizers in the domain of binary
regular expressions. The space contains 350 distinct regular
expressions. A sample of 2000 strings was used to compute
the S1 and L1 distributions. Their study included 30 partici-
pants interacting with both L0 and L1 models. In total, there
are 60 interactions from H0 − L0 and 60 interactions from
from H1 − L1, where each consisting of multiple turns.

Results Fig 10 shows that the global pragmatic ranking
performs very similarly to the original pragmatic synthesizer
(L1), and does much better than the L0 model. In Figure 9b,
we see that the ranking-based synthesizer is much faster than
L1, requiring approximately the same time as L0.

In Conclusion In the human study, end users are more
successful at interacting with the ranking based synthesizer
compared to the non pragmatic synthesizer (Q1). In the re-
play experiment, for both domains, the ranking based syn-
thesizer Lσ significantly out performs the non-pragmatic
synthesizer L0, while being orders of magnitudes faster than
the exact inference L1 synthesizer (Q1, Q2).

Related Work

Rational Speech Acts (RSA) The RSA framework (Frank
and Goodman 2012) models human cognition as coopera-
tive Bayesian inference, and has been successfully applied
to model a variety of human communicative and linguis-
tic behaviour (Goodman and Frank 2016; Kao, Bergen, and
Goodman 2014; Kao et al. 2014; Wang et al. 2020).

The closest work to ours is a pragmatic approach to pro-
gram synthesis developed by Pu et al. (2020). Their work,
however, is limited to a domain that affords simple programs
and demonstrations which are efficiently enumerable. We
show that our ranking-based approach also produces prag-
matic behavior on this domain (Animals), but also allows us
to scale to the more realistic regular expressions domain.

RSA has also been applied to improve the performance
of language interfaces in a variety of other domains, such as
image description (Andreas and Klein 2016; Cohn-Gordon,
Goodman, and Potts 2018a,b), instruction generation and in-
terpretation (Fried, Andreas, and Klein 2018; Fried et al.
2018), and grounded interaction (Fried, Chiu, and Klein
2021; Lin et al. 2022). As exact RSA inference in these do-
mains, like in our synthesis domain, is intractable due to a
large space of utterances and hypotheses, these approaches
all use approximations which normalize over a smaller set of
utterances or hypotheses, which are sampled from a proposal
model trained on data from people (Monroe et al. 2017). Our
approach, in contrast, requires no human-produced data. On
the other hand, sampling a subset of utterances and hypothe-
ses can be easily adopted into our framework during the gen-
eration of interaction data, in case the full RSA algorithm is
too slow even for generating training data.

Ranking Functions in Synthesis Prior works on resolv-
ing ambiguity in program synthesis typically fall into two
categories: using a human crafted ranking function and
learning from human generated data. Works such as Singh
and Gulwani (2015); Polozov and Gulwani (2015) use scor-
ing functions to penalize certain properties of programs (e.g.
discouraging the use of constants), effectively inducing a
global ranking over all programs; Ellis and Gulwani (2017)
uses a set of hand-crafted features to learn a naturalistic
ranking from data. Synthesis algorithms that use a large neu-
ral code model to sample a large number of programs (Chen
et al. 2021) implicitly rank the programs based on their nat-
uralistic distributions in its training data. Our work is unique
in that (1) the learned ranking is rooted in efficient commu-
nication rather than hand-crafted and (2) our approach does
not require human annotated training data.
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Appendix
Code

Code for this work can be found at https://github.com/
evanthebouncy/pragmatic synthesis ranking

Simulated Studies
Ranking Always Exists
We empirically validate that in the case of single utterances,
a ranking can always be found. See simulation/single utter/
exp exists orders.py

Stability of Ranks Across RSA Iterations
We’ve shown that for every L0, L1, . . . , there exists a cor-
responding global, utterance agnostic ranking σL0

, σL1
, . . . .

We now explore the relationship between these rankings as
a function of the RSA iteration i. Specifically, how stable is
the relative ranks of w and w′ once it is formed?

Stable Order A pair-wise order between w and w′ is sta-
ble from iteration i onward if:

stable(i, w ≻ w′) ⇐⇒
∧

j∈i,i+1,...,∞
σLj

[w] ≻ σLj
[w′]

Which means the relative ranking of σLi
[w] ≻ σLi

[w′]
holds true for every subsequent iterations until σL∞ . Let the
minimal-index of a stable pair-wise ordering be the first iter-
ation i such that w ≻ w′ becomes stable:

imin(w ≻ w′) = argminjstable(j, w ≻ w) (5)

As σL1
is the first time any ranking can exist (L0 is a

uniform distribution over valid hypotheses, i.e. no rankings),
we explore the following: For a lexicon M , what fraction of
stable orderings have a minimal-index of 1?

frac-stableL1
(M) =

|{w ≻ w′ | imin(w ≻ w′) = 1}|
|{w ≻ w′ | ∃i. stable(i, w ≻ w′)}|

(6)

Simulation We measure stableL1(M) on a population of
sampled random boolean lexicons. We sample square lexi-
cons of size lexicon size ∈ 2× 2 . . . 100× 100. Each lex-
icon is sampled with Ptrue ∈ {0.1, 0.2, 0.5}, where larger
value of Ptrue makes the lexicon have more 1s. We make
sure each sampled lexicon is valid in the following sense: (1)
all rows are unique – every utterance must communicate a
unique subset of valid hypotheses (2) all columns are unique
– every hypothesis has a unique set of utterances that can re-
fer to it. For every combination of (Ptrue, lexicon size)
we randomly sample 100 lexicons. As it is infeasible to run
RSA until iteration ∞, we run RSA for 100 iterations for
each lexicon (i.e. L100 ≈ L∞). We measure stableL1 for
each sampled lexicon. The result is shown in 11. As we
can see, of all the stable pair-wise orderings, a large fraction
(> 0.8) are formed during σL1

, this is increasingly true as
we (1) increase Ptrue, making the boolean lexicons having
more number of 1s – i.e. the lexicon is more ambiguous for
a literal speaker and listener and (2) increase lexicon size.

Figure 11: Fraction of stable orders that were formed in σL1

as a function of increasing lexicon size. Points are raw sam-
ples (n=100 per lexicon size and Ptrue), bars are 95% boot-
strapped CI (nboot = 1000). Overall, increasing Ptrue and
lexicon size increases the fraction of stable orders that were
formed in σL1

We suspect this is due to faster “mixing time” of the RSA
algorithm under these conditions, but this is just a guess.

Takeaway This study may provide an alternative expla-
nation as to why humans do not perform RSA for more
than few iterations (Franke and Degen 2016). In addition
to it being computationally expensive, it is also not neces-
sary as the majority of top-k orderings becomes available at
σL1

, and remains stable for all subsequent iterations of the
RSA algorithm. In another word, Ltop−k

1
∼= Ltop−k

i>1 . Code
in simulation/single utter

Animals domain
In the Animals domain, a program is a pattern on a grid
formed from a set of objects. These objects may be a colour-
less pebble, or a chicken or pig that may be red, green or
blue. An utterance reveals one square on the grid, and the
speaker has to communicate the pattern by choosing which
square to reveal. The pattern is formed according to rules
specified in the domain-specific language in Figure 12. Ex-
amples of programs shown in Figure 13. The description of
the domain-specific language and the examples are due to
Vaduguru, Ellis, and Pu (2022).

Human study interface
The interface for the human study on regular expression pro-
grams is shown in Figure 14.



Program → ⟨Shape, Colour⟩
Shape → Box(Left, Right, Top, Bottom, Thickness, Outside, Inside)

Left → 0 | 1 | 2 | 3 | ... | 6

Right → 0 | 1 | 2 | 3 | ... | 6

Top → 0 | 1 | 2 | 3 | ... | 6

Bottom → 0 | 1 | 2 | 3 | ... | 6

Thickness → 1 | 2 | 3

O → chicken | pig

I → chicken | pig | pebble

Colour → [red , green , blue][A2(A1)]

A1 → x | y | x + y

A2 → λz:0|λz:1|λz:2|λz:z%2|λz:z%2+1|λz:2*(z%2)

Figure 12: Grammar of the DSL

(a) [·, ·, 1 , 5, 1, 6, 2, chicken , pebble, ·, x , λz:z%2] (b) [·, ·, 0 , 5, 1, 6, 2, pig , pebble, ·, y , λz:z%2]

Figure 13: Two patterns in our layout domain and their corresponding programs, represented as a sequence of production rules:
[Program, Shape, Left, Right, Top, Bottom, Thickness, O, I, Colour, A1, A2]. The symbol · indicates rules which only have
1 choice of expansion (Program, Shape, and Colour). The rules where these two programs differ are marked with a box .



Figure 14: User interface for the regex domain


