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Figure 1: The Experiential Views user interface with (a) a floor plan visualization and (b) its integration in a WebGL-based
3D-viewer with a dynamic view of the building.

ABSTRACT
Experiential Views is a proof-of-concept in which we explore a
method of helping architects and designers predict how building
occupants might experience their designed spaces using AI tech-
nology based on Vision-Language Models. Our prototype evaluates
a space using a pre-trained model that we fine-tuned with photos
and renders of a building. These images were evaluated and labeled
based on a preliminary set of three human-centric dimensions that
characterize the Social, Tranquil, and Inspirational qualities of a
scene. We developed a floor plan visualization and a WebGL-based
3D-viewer that demonstrate how architectural design software
could be enhanced to evaluate areas of a built environment based
on psychological or emotional criteria. We see this as an early step
towards helping designers anticipate emotional responses to their
designs to create better experiences for occupants.
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1 INTRODUCTION
Recent developments in artificial intelligence (AI), including large-
language models (LLMs) and vision-language models (VLMs), have
opened multiple opportunities for developing new paradigms in
design computing. An industry we anticipate to benefit from this
disruption is architecture and building design. Creative profession-
als whose work involves building design such as architects and
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Figure 2: Sample scenes from our dataset composed of photos of the space and 3D renderings.

architectural designers1 use Computer-Aided Design (CAD) soft-
ware like AutoCAD [1] or Building Information Modeling (BIM)
tools like Revit [2] to render designed spaces and get a sense of
their look-and-feel. Extracting helpful insights about these spaces
is challenging, especially insights about how a space is or will be
experienced by its occupants. While some tools provide simula-
tions of the physical environment (e.g., lighting and airflow) that
designers can use to gain insights into how occupants might expe-
rience a space, there exists a gap regarding possible psychological
or emotional responses to a space [13, 20].

Human-computer interaction has a long history of modeling
human emotional responses [3] as part of computing systems such
as affective computing research [7]. This has been expanding to
include emergent research regarding emotional responses [9] com-
bined with LLMs and other AI techniques. For instance, Andres
et al.’s “System of a Sound” looked into the relationships between
human activity, the built environment, and the surrounding natu-
ral environment using an LLM-based engine that interprets emo-
tions [5]. Other work has modeled users’ scene perception using
graphs [19] and statistics [18]. Thus, we believe that there is po-
tential for AI and machine-learning techniques to help incorporate
the psychological or emotional responses of people in the design
of built environments.

As a preliminary exploration, we developed a proof-of-concept
application—Experiential Views. Similar to previous work using
VLMs for visual sentiment analysis [8, 11, 16], Experiential Views
leverages a pre-trained VLM that we fine-tuned with our own la-
beled data. Our aim is to help designers predict how people might
experience the spaces that they design based on a preliminary set
of human-centric criteria (dimensions). Photos or renders of a space
(scenes) are evaluated and given a score by the application. We
developed two main methods to interact with Experiential Views:
(1) floor plan visualization – This interface shows the building floor
plan where designers can see select evaluated scenes visualized (Fig-
ure 1a). (2) 3D viewer - This interface integrates Experiential Views

1For simplicity, we will refer to architects and architectural designers as designers in
this paper.

into an existing WebGL-based 3D model viewer in which designers
can dynamically evaluate their building design (Figure 1b).

To our knowledge, there is currently a lack of tools or methods
that leverage VLMs to help designers assess possible emotional
responses to their designed spaces. Thus, we contribute:

(1) A method that uses a VLM to predict how people might
experience a designed space, and

(2) The Experiential Views application that demonstrates our
approach with a floor plan visualization interface and an
integration into an existing 3D interface.

2 METHODOLOGY
To explore the feasibility of our concept, we decided to evaluate
the design of an office building that we have access to and are
personally familiar with. The building’s office space has two floors
(2F and a mezzanine, 2M) composed of desk areas, working spaces,
meeting rooms, kitchens, hallways, etc. We used real photos and 3D
renders of the space in two datasets, each further split into training
and testing sets. We refer to these images of the space as “scenes”
(Figure 2).

2.1 Preliminary Human-Centric Dimensions
Our main goal in developing Experiential Views is to help designers
consider human experiences and emotional responses more readily
while designing a built environment. Hence, we sought to fine-
tune a pre-trained VLM with images we labeled according to the
following set of three human-centric dimensions:

• Social dimension - whether a scene looks
“social” or “isolating.”

• Tranquil dimension - whether a scene looks
“tranquil” or “distracting.”

• Inspirational dimension - whether a scene looks
“inspirational” or “boring.”

We chose these dimensions because they seemed (1) sufficiently
distinct from one another, (2) applicable to a wide range of building
types including offices as well as university campuses, community
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Figure 3: A comparison of the accuracy of the original CLIP
model vs our fine-tuned CLIP model (on photos).

hubs, eldercare homes, and housing developments, and (3) consis-
tent with recurring themes in both academic literature and online
media concerning interior, architectural, and urban design for psy-
chological comfort and human well-being. The Social dimension is
supported by studies associating positive social interactions, high-
quality gathering places, and a sense of community with positive
outcomes for physical and mental health [12, 17]. The Tranquil and
Inspirational dimensions are loosely based on ideas from the bio-
philic design community, which encourages the creation of spaces
that are “calming,” “relaxing” and tend to “reduce stress,” as well as
spaces that feel “fresh, interesting, stimulating and energizing” [10].

2.2 Model Fine-Tuning
To fine-tune a pre-trained VLM for evaluating spaces based on
our human-centric dimensions, our method involved representing
scenes as pairs of image and text; we conveyed the view of the
space through an image (photo and 3D render), while we expressed
the experience of the space as text (using our dimensions as key-
words). We then let the model evaluate the scenes by computing
the similarity scores between the images and text descriptions.

We chose to use OpenAI’s CLIP model [21] because it can take
an image and a set of text prompts as input and return a normalized
score between 0.0 and 1.0 for each of the text prompts, reflecting the
alignment between the content of the image and the corresponding
text prompt (the closer it is to 1.0, the more aligned the image and
the text are). Large pre-trained VLMs such as CLIP have shown
great potential in learning representations that are transferable
across a wide range of downstream tasks [24]. Furthermore, [11]
showed evidence that CLIP can “learn to perform visual sentiment
analysis with minimal training effort.”

We then fine-tuned this model with our training datasets of
photos and renders, respectively, to get specialized classifiers for
our dimensions. One of the authors captured over 150 photos within
the office space. Two of the authors selected 100 of these photos
for evaluation and 50 photos for training while removing images
that were sufficiently similar to be considered duplicates. These
two authors then manually evaluated and classified the 150 selected
images. At the inference phase, we provided the model with an
image that was not included in the training dataset. For each of

our three human-centric dimensions, we characterized the two
extremes of the dimension with two words, for instance; we used
the opposing words “social” vs. “isolating” for the Social dimension.
We query the fine-tuned model with the image and the text prompts
“this feels like an x space,” with x being either of the two words, and
obtain scores for both text prompts. We then normalize the two
scores to get the final score for the dimension.

The original CLIP model was trained on a dataset with diverse
images that are mostly different from the views of an office building.
This original model could return scores for the type of images and
text in our dataset; however, the accuracy of the scores relative
to the manual evaluations was ~58% on our testing sets, which is
too low for our application. After fine-tuning with 50 photos from
our training dataset2, the accuracy increased to ~78% (Figure 3).
The accuracy scores are computed using the evaluation set of 100
photos disjoint from the training set of 50 photos. We utilized the
fine-tuned CLIPmodel as a central component of Experiential Views
to evaluate new scenes, resulting in a higher level of accuracy.

If a VLM model of this nature were to be made available to
practicing designers, we anticipate that it would be fine-tuned
using a larger and more diverse set of images representing a greater
variety of buildings. A designer would then have the option to
further refine the model by supplying their own classified images,
but they would not be required to do so.

3 THE SYSTEM: EXPERIENTIAL VIEWS
We developed two methods of interacting with Experiential Views
that evoke common CAD/BIM environments:

(1) A floor plan visualization, which is a dedicated interface that
collects and visualizes all the evaluated scenes in a single
view (Figure 4) and

(2) An integrated UI to a WebGL-based 3D viewer, which demon-
strates how our concept can merge with preexisting BIM
tools (Figure 5).

3.1 Floor Plan Visualization
The floor plan visualization displays the location and view cones
of all of the evaluated scenes on a floor plan/map of the entire
space. Figure 4 visualizes scenes in the office building that we
evaluated to demonstrate our concept. In this interface, each scene
is represented by a circle that is placed in the location where the
scene was captured. The direction of the view for each scene is
represented by a cone attached to its circle. This enables designers
to see, at a glance, how much of the entire space has been evaluated
in a way that is similar to the score map visualization by Li et
al. [19]. More details about the scene are shown through a tooltip
that contains the photo and 3D render of the scene and the scores
produced by our fine-tuned model for each dimension (represented
as bars).

Figure 4d shows the list of evaluated scenes as icons containing
the scene photo and score bars. Clicking or hovering over these
icons shows their location on the floor plan by activating their
corresponding circle and tooltip. Designers can sort this list by
selecting an option from the sort menu (Figure 4e). Selecting a
dimension will sort the scenes based on their scores for the selected
2Note that each image can occur in multiple image-text pairs.
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Figure 4: The Floor Plan Visualization is composed of (a) a floor plan containing (b) evaluated scenes represented as circles
with a cone corresponding to the direction of the scene’s view. Hovering over a circle brings up the (c) tooltip containing the
photo and render of the scene and its scores. (d) A list of the evaluated scenes. (e) Sort menu and floor picker.

dimension in descending order. This is also reflected on the circles
on the map—for the selected dimension, high-scoring scenes will
appear more green, while low-scoring ones will appear more red.

3.2 3D Viewer Integration
We integrated Experiential Views with a widely used WebGL 3D
model viewer to enable designers to dynamically navigate through
their designed spaces and evaluate scenes (see Figure 5). This in-
terface can be useful for evaluating the design of a space that has
not yet been built. Using this interface, the designer can navigate
through a model of a building and repeatedly evaluate the current
view. When the user clicks the “Score View” button, the current
view gets sent to a web service hosting our fine-tuned model. The
model then computes the scores and sends them back to the viewer
where they are displayed on the left (Figure 5b). Previous scenes
and their scores are displayed underneath to facilitate comparisons
between different views (Figure 5c). In future iterations, when the
response time of the model becomes faster, the scoring can be
performed in real time whenever the view changes.

4 DISCUSSIONS AND FUTUREWORK
The development of Experiential Views raises a number of issues
regarding the practicality of the concept and the selection of human-
centric dimensions. We discuss these topics and outline how future
work might overcome the current limitations of the prototype.

4.1 Examining the Practicality of our Concept
While we were able to show a proof-of-concept that a VLM could be
leveraged to evaluate spaces based on human-centric criteria, there
are still some areas of improvement to ensure the practicality of
our approach. For instance, we need to evaluate this concept with
architects and designers to investigate how they might incorporate
such a tool into their current workflows. We must also expand the
scope of this work by including other types of buildings beyond
office spaces and fine-tuning the model with considerably more
data (photos and/or renderings).

Since our current implementation evaluates an already-built of-
fice space, another interesting direction is to explore how designers
might use this concept to evaluate buildings before they are built.
Our tool can theoretically handle this use case by evaluating 3D
renders; in practice, however, we found that our 3D renders score
less accurately than real photos of the space (see Figure 6). One
possible reason could be that during the early stages of architec-
tural design, it is common for 3D models to lack certain elements
such as furniture, realistic wall colors, and decor. Consequently, the
renderings obtained from these 3D models might fail to accurately
portray realistic lighting conditions, color schemes, and furniture
arrangements. The result is that the rendered spaces do not feel
“lived in”, which can greatly impact how people experience a space
as well as undermine a predictive model. To investigate this issue,



Experiential Views CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 5: Experiential Views’ 3D viewer integration interface showing (a) the 3D model of the space, (b) scene capture button
and scores, and (c) a minimalist view of previously evaluated scenes and their scores.

we experimented with Stable Diffusion, a deep-learning text-to-
image diffusion model [6, 22], as a means of adding stylization and
detail to the renderings. The stylized renderings were not entirely
faithful to the actual geometry of the building, but they tended to
bring out the character of the actual real-world spaces. We noted
that, at least in some cases, this technique resulted in improved pre-
diction accuracy. Figure 6 provides a comparison of scores between
a scene depicted as a basic 3D render and one that was enhanced
using Stable Diffusion. Following the enhancement there was a
noticeable increase in the “inspirational” score of the scene, better
aligning with how we would evaluate the actual space.

It is worth noting that both architectural and interior design
elements have been found to affect human experience in build-
ings [15], suggesting that it is important to predict the eventual
qualities of a space before architectural decisions are finalized and
only furnishing and decorating decisions remain. Future studies
can look into how different stylistic renderings could affect how
people perceive a space compared to scores given by a system like
Experiential Views.

4.2 Choosing Human-Centric Dimensions
One question that arises with our proposed system is how to deter-
mine the dimensions and criteria for evaluating designed spaces.
The selection of Social, Tranquil, and Inspirational dimensions for
our initial exploration was influenced and supported by the ex-
isting literature [10, 12, 17], but also influenced by our personal
preferences and potentially affected by cultural norms. It could
be argued that any attempt to characterize psychological or emo-
tional responses will be somewhat arbitrary and susceptible to bias,
though lessons can be learned from recent efforts to crowdsource
experiential data in a systematic manner.

In a study by Coburn et al. [14], roughly 800 online participants
were recruited to collectively evaluate 200 photos of architectural
interiors according to 16 subjective questions. Rather than pre-
grouping similar questions, the authors used principal component
analysis to determine a set of three dimensions that collectively
explained most of the variance in the respondents’ ratings of the
scenes. The authors named one of the dimensions “Hominess”,
which appears similar to our Tranquil Dimension. The other two
dimensions were named “Coherence”, and “Fascination”, which
seem to overlap with our Inspirational dimension. The concept of
a space feeling “social” was largely absent from the 16 questions
that generated the Hominess-Coherence-Fascination framework. It
was later found that different groups of participants—specifically
design students, participants with autism spectrum disorder, and
a neurotypical control group—expressed different preferences on
average for homey, coherent, and fascinating spaces [23].

The Hominess-Coherence-Fascination framework is interesting
in that it was obtained through scientific observation and statistical
analysis, though it is possible that a set of dimensions based on
values could prove easier for designers to interpret and apply. Altaf
et al. [4] use crowdsourced data to evaluate photos of spaces at a
university campus according to their three chosen “constructs of
well-being”: belonging, self-efficacy, and environmental efficacy.
This study is notable for its use of indirect questions, such as “I
would pick up litter that is not my own in this space.” We observe
that their concept of belonging appears more closely related to our
Social dimension than the dimensions in the Hominess-Coherence-
Fascination framework.

Regardless of what framework or set of dimensions is chosen
for human experience evaluation of designed spaces using VLMs,
crowdsourcing data from a diversity of participants around the
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Figure 6: Comparison scores of a scene represented as a plain 3D render and one that was stylized through Stable Diffusion.
After the stylization, the score of the scene for “inspirational” noticeably improved.

world will likely improve the robustness of the prediction system
and reduce bias. It may also be beneficial to display some form of
diversity or uncertainty output, informing designers when people
with different cultural backgrounds, neurodiversity or life experi-
ences will likely experience radically different responses to a given
space. Ideally, the system would support a diversity of languages,
and allow the evaluated criteria to be customized based on a design
team’s objectives or even personalized according to an occupant’s
individual preferences.

5 CONCLUSION
We presented Experiential Views, a proof-of-concept application
that envisions how designers might evaluate designed spaces based
on the possible experiences of the people who will inhabit them.
Experiential Views leverages a pre-trained VLM (OpenAI CLIP) to
predict these experiences according to a set of pre-selected human-
centric dimensions. We demonstrated the approach by fine-tuning
this VLM with scenes of an office space that we labeled as social
or isolating, tranquil or distracting, and inspirational or boring. We
also developed two interfaces—a floor plan visualization and a 3D
Viewer Integration—that explore how building designers might ap-
ply this human experience prediction technology while navigating
CAD/BIM models and viewing photos and renders.

Future work to make the system practical must include user
studies, a dedicated open-source effort to collect data from a di-
versity of building types, and further investigation of rendering
enhancement techniques. Strategies for choosing alternative sets of
human-centric dimensions, and measuring psychological and emo-
tional responses accordingly, also deserve serious consideration.

It is worth noting that our prediction model proved surprisingly
effective despite the fact we only used 50 images to fine-tune the
VLM. The accuracy of the predictions improved from roughly 58%
to 78% with the fine-tuning on the dataset of photos. This shows the
potential of large pre-trained VLMs to be easily customized with
only a small set of user data, encouraging further investigation of
the approach as a whole.

We see Experiential Views as an early step towards novel tools
and applications that take advantage of recent AI technology to
enable human experience evaluation of designed spaces. The pre-
sented prototype represents a new opportunity to help designers
improve the experiences of people in built environments.
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