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Abstract. Real-world design problems are a messy combination of con-
straints, objectives, and features. Exploring these problem spaces can
be defined as a Multi-Criteria Exploration (MCX) problem, whose goals
are to produce a set of diverse solutions with high performance across
many objectives, while avoiding low performance across any objectives.
Quality-Diversity algorithms produce the needed design variation, but
typically consider only a single objective. We present a new ranking,
T-DominO, specifically designed to handle multiple objectives in MCX
problems. T-DominO ranks individuals relative to other solutions in the
archive, favoring individuals with balanced performance over those which
excel at a few objectives at the cost of the others. Keeping only a single
balanced solution in each MAP-Elites bin maintains the visual accessi-
bility of the archive – a strong asset for design exploration. We illustrate
our approach on a set of easily understood benchmarks, and showcase
its potential in a many-objective real-world architecture case study.
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1 Introduction

Architecture projects must balance a dizzying array of objectives: daylight,
views, noise, wind, cost, open spaces, carbon footprint, and ease of construc-
tion, to name a few – along with less easily optimized subjective considerations
like aesthetics and comfort. In generative design (GD), where algorithms aid
design exploration by producing candidate designs, the desired result is not a
single solution, but a variety of high performing options [4]. A variety of options
is required because the problem has more than one objective, which means there
may be many possible solutions. Perhaps more importantly, a varied choice high-
lights design concepts to stakeholders and decision makers who then select and
modify them according to messy human compromises.
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Fig. 1. Calculating the Tournament Dominance Objective (T-DominO)

Though it may resemble multi-objective optimization (MOO) [10], the prob-
lem this work focuses on for GD and similar domains is different. We define the
problem as a Multi-Criteria Exploration (MCX) problem, whose goals are to:

1. Produce a catalog of diverse solutions
2. with high performance across many objectives
3. while avoiding low performance across any objectives

MCX can be considered an exploratory form of MOO, just as Quality-
Diversity (QD) [8,39], is an exploratory form of single-objective optimization. In
contrast to MOO, in MCX we do not strive for either uniform coverage of the
Pareto front, nor precise proximity to it. Uniform coverage of the front implies
coverage of the extremes of the objective space – where solutions earn their place
in the Pareto front by dominating on only a subset of objectives. These solu-
tions are uninteresting for MCX, as solutions which disregard user preferences
by ignoring some objectives are not useful in practice. Proximity to the front is
also less important for exploration – the goal is to generate starting points, not
end points. Generated solutions are rarely used without modification, reducing
the effort of finding the precise front to an expensive distraction.

The QD approach seems, at first, ideal for solving MCX problems. QD algo-
rithms provide a way of explicitly searching for diversity as defined at a high
level by users. Whereas MOO strives for a maximum spread in the objective
space, QD searches for spread in a user-defined ‘feature’1 space. As opposed to
objectives, these features correspond to different ways of solving the problem,
not quantities to be minimized. In architecture the number of buildings in a
building complex or the distance between them can be explicitly explored with
QD in a way that is not possible with MOO.

But QD is designed to explore several features, not to optimize multiple
objectives. MAP-Elites [7,33], the most widely used QD algorithm, divides the
feature space and searches for the best solution in each partition. The result is
a set of optimized designs organized by high level features; the performance of
this collection can then be viewed as heat map projected on to the feature space,
illuminating the relationship between features and performance.
1 Also referred to in the QD literature as a behavior, descriptor, outcome, or measure.
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Recent work has proposed combining MOO and QD by computing a Pareto
front in every partition [38]. In the MCX case this ‘all of the above’ approach
is not satisfying – MAP-Elites’ intuitive way of organizing, summarizing, and
presenting the results depends on finding a single best solution for each partition.
An alternate method of reconciling the approaches must be found.

In this work we leverage the insight that the diversity in objective space
produced by MOO mechanisms such as crowding distance [12], or reference vec-
tors [11] are unneeded when diversity is enforced by QD. In QD, users can choose
the type of variety to explore, and trade-offs in objectives will naturally arise
from those choices. When exploration of the objective space is no longer pri-
oritized, non-domination – which favors the extremes of the front to the same
degree as the center – ceases to be the most desirable attribute of a solution.
In MCX, balanced solutions which perform well on all objectives are preferred.
Our second insight is that the ‘balance’ of a solution can be defined in relation
to a population, and that the solutions contained in the MAP-Elites archive can
act as that population.

Our approach extends MAP-Elites to the exploration of problems with
multiple objectives by introducing the Tournament Dominance Objective (T-
DominO), which ranks individuals in a population according to an approxima-
tion of their distance to the center of the Pareto front. T-DominO awards poor
scores to non-dominated solutions at the extremes of the objective space – those
which excel at one objective while doing very poorly at the other – while those
at the center of the front receive the highest scores (Fig. 1).

Optimizing MAP-Elites according to T-Domino provides an elegant approach
to tackle MCX problems. A simple alternate ranking causes minimal disruption
to the core algorithmic machinery while allowing MAP-Elites to discover varied
design concepts which balance multiple objectives. Approaches which assume a
single objective and single solution in each bin, such as CMA-ME [14], can still
be used. Crucially, T-DominO tackles multiple objectives without sacrificing
MAP-Elites’ intuitive visualization and analysis of solutions, features, and their
interaction with objectives – the true goal of the algorithm when used for design.

2 Background

2.1 Generative Design

In design and architecture, experiments with human-machine collaboration are
common [2,4,18,26,35,41]. Recent work has demonstrated the viability of GD
in real-world applications, from office retrofits [35], large scale trade-shows [36],
to neighborhood scale planning [34]. The number of conflicting constraints, pref-
erences, and objectives in these projects makes ‘solving’ them an ill-defined and
impossible task. Optimization tools are typically used at the beginning of the
design process rather than the end. Optimization algorithms are not used solve
problems, but to explore them [4,31].

The purpose of GD is less optimization and more communication. Search
algorithms are used to understand the possibilities and potential of a problem
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space. Objectives serve as proxies for preferences, goals, and features of interest
that are often difficult or impossible to define mathematically. These objectives
signify criteria of a good design or ways of counter-balancing those criteria to
prevent extreme solutions which are not aligned with designers intent.

Results are then filtered and categorized in an effort to find qualitatively
different design concepts. Typically designs are judged visually first, and only
once a set of interesting and varied designs identified is their performance exam-
ined. This can be a clumsy process, and for GD to have real success accessibility
must be a consideration at every step of the process, including optimization. An
intuitive GD approach would not only find a set of solutions which balance per-
formance over several objectives, but explicitly search for the high level diversity
that sets solutions apart from each other. This is the goal of MCX.

2.2 Exploration and Optimization with Non-objective Criteria

MOO approaches strive to produce a set of non-dominated solutions that is
diverse in the objective space, and as near to the Pareto optimal front as possi-
ble [37], but the diversity that interests designers is often not in objective space.
Other qualities can be induced with ‘helper’ objectives in a process known as
multiobjectivization [25,27,30]. Helper objectives can optimize quantities unre-
lated to performance, such as the type of cross sections in a structural frame [21],
or the similarity to previous solutions [32], but are still performing minimization.
Maximizing or minimizing the number of buildings on a site makes little sense,
but understanding the effect of the number of buildings is a valuable insight.

QD approaches such as MAP-Elites [7,33] search for solutions along a contin-
uum of user-defined features, making them ideal for exploration. MAP-Elites has
been used for design exploration in domains such as aerodynamics [15–17,23,24],
and game design [1,5,19,20], but has been restricted to consideration of a sin-
gle objective. MAP-Elites operates by first discretizing the feature space into
bins, collectively known as a map or archive. Each bin contains a single solu-
tion and its corresponding fitness value. New solutions are created by selecting
and varying solutions from the map. These new solutions are evaluated and two
values produced: a performance measure and a set of coordinates in the feature
space. These coordinates indicate the bin to which the solution belongs. The
solution is placed in the bin if it is empty, or if the candidate solution has higher
performance than the current occupant of the bin, it replaces it.

The elitist nature of MAP-Elites, with only one solution per bin, puts it at
odds with the idea of the Pareto front. A concurrent work [38] bridges this gap
by introducing a Pareto front in each bin, and replacing fitness tournaments
with non-domination. Though this technique is able to find a large set of Pareto
fronts, it sacrifices the elegant method of communicating the results. Rather than
viewing individual designs and correlations between features and objectives, we
are left with a mass of summary statistics – useful for MOO, but not for MCX. In
our work we maintain the the elitist nature of MAP-Elites, and instead replace
the Pareto front with an alternate formulation of multi-objective performance.
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Fig. 2. Using anchor points to calculate T-DominO.

3 Method

When tackling MCX problems, our interest lies in finding solutions which per-
form well on all objectives in each region of a QD feature space. The Tournament
Dominance Objective (T-DominO), introduced here, ranks solutions according
to an approximation of their distance to the center of the front, with the most
balanced solutions ranking highest. This approximation is calculated through a
series of tournaments between a solution and a set of existing points in objective
space, or anchor points (Fig. 2). An individual is compared to each anchor point
on a single objective, and for every anchor point with a lesser or equal objective
value one point is awarded. This count is made for every objective, and these
counts multiplied.

The T-DominO score of solution with objective values x, compared to a set
of anchor points with objective values A is more precisely defined as:

T-DominO(x,A) =
objs∏

n=1

anchors∑

m=1

f(xn, Amn), f(x, a) =

{
1, x ≥ a

0, else
(1)

where objs and anchors is the number of objectives and anchor points.2

The integration of T-DominO into MAP-Elites can be summarized as follows:

1. a new individual, based on its feature coordinates, is assigned a bin.
2. a set of anchor points are collected from the history of elites in that bin, the

k neighboring bins, and the new individual itself.
3. the T-DominO of the current elite and the challenger are computed based on

these anchor points.
4. if the challenger has a greater T-DominO score it replaces the current elite,

and the objective values of the replaced elite are stored in the bin to serve as
a future anchor point.

2 Or in python: numpy.prod(numpy.sum(objs >= anchors,axis=0)).
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When individuals in a population are ranked according to T-DominO the
result is a ranking from the center of the front outwards (Fig. 2, right). This
ranking allows the combination of multiple objectives into a single score which
rewards solutions with the highest balanced performance, without the need for
penalty functions or arbitrary weighting of objectives.

T-DominO is based around comparisons to anchor points, and the MAP-
Elites archive provides a ready source. Existing elites in the archive can be used
as a sampling of the objective space, and act as anchor points distributed across
both objective and feature space. Selection pressure toward improved T-DominO
scores creates high performing solutions which in turn act as anchor points, in
a virtuous cycle that leads to ever higher performance.

However, when selection pressure is organized around only the current pop-
ulation, cycling can occur. In some circumstances a challenger solution which
is better on one objective can replace the current elite, which can in turn be
replaced by the original. To prevent this behavior and ensure progress towards
better solutions we track the objective values of the previous elites. While each
bin continues to contain only a single elite, the objective values of previous elites
are maintained to act as anchor points, preventing cycling and creating further
refinement of the T-DominO landscape. A simple FIFO buffer of the objective
values of a handful of past elites is sufficient.

Neighboring partitions typically have similar performance potential, and so
are necessary for creating more fine-grained landscapes, but bins with solutions
that dominate all or none of the solutions in the a bin provide no signal to
inform selection pressure, and so we can safely limit the anchor points to those
contained in the k nearest neighboring bins.

T-Domino allows the simultaneous optimization of several objectives with a
single measure, relying on QD diversity mechanisms to prevent convergence on a
single point. The output of T-Domino MAP-Elites is ideal for MCX – an archive
with a single best balanced solution in each bin. Having a single solution in each
bin allows the effects of solution features on that balance to be easily understood
and visualized and so contribute to the understanding of the underlying problem,
such as the correlation of features and objectives. The creation of a library of
designs organized by high level features of the users choosing provides an ideal
set of starting points for further refinement.

4 Benchmarks

4.1 Setup

We validate the expected behavior of MAP-Elites with T-DominO on a series of
established multi-objective benchmark problems. The purpose of these tests is
to validate our claims that T-Domino will:

1. Discover high performing, if not optimal, solutions
2. Produce balanced solutions whose performance does not come at the cost of

large trade-offs in a subset of objectives
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Benchmark Functions
RastriginMOO. To judge the performance of T-DominO on Multi-Objective QD
problems, we test on a version of RastriginMOO as introduced in [38]. The
Rastrigin function is a classic optimization benchmark, often used to test QD
algorithms because it contains many local minima [6,14]. Here it is converted
into a multiobjective benchmark by optimizing a pair of Rastrigin functions
with shifted centers. We use a 10-D version with constants added so that every
discovered bin has a positive effect on the aggregate QD Score. These objectives
can be explicitly defined as:

⎧
⎪⎪⎨

⎪⎪⎩

f1(x) = 200 − (
n∑

i=1

[(xi − λ1)2 − 10 cos(2π(xi − λ1))])

f2(x) = 200 − (
n∑

i=1

[(xi − λ2)2 − 10 cos(2π(xi − λ2))])
(2)

where λ1 = 0.0 and λ2 = 2.2 for f1 and f2. All parameters are limited to the
range [−2, 2], with the feature space defined by the first two parameters.

ZDT3. When spread across the objective space is desired, objectives themselves
could be used as features. This use case is demonstrated with the ZDT3 bench-
mark, a 30 variable problem from the ZDT MOO benchmark problem suite [42]
whose hallmark is a set of disconnected Pareto-optimal fronts, and whose first
parameter is value of the first objective. Parameter ranges span 0–1 with the
first two parameters used as features, enforcing a spread of solutions across the
range of the first objective.

DTLZ3. To illustrate T-DominO’s bias toward balanced solutions we analyze its
performance on DTLZ3, a many-objective benchmark with a tunable number of
objectives and variables[13]. We test with 10 parameters and 5 objectives, with
the 6th and 7th parameters use as features.3.

Baseline Approaches
ME Single. MAP-Elites [33] optimizing only a single objective is used to estab-
lish an upper and lower bound of performance we can expect from MAP-Elites.
Blind to the second objective we can expect it to find the top performing solu-
tions for the first. Equally important, the exploration of all bins without regard
to the performance on the second objective establishes a floor for performance
– the performance we could expect for having any solution in the bin.

ME Sum. We compare using the T-Domino objective with MAP-Elites [33] using
the most naive way of combining multiple objective – simply adding them. Our
benchmarks all have well-scaled objectives, but this is typically not the case. To
simulate this difficulty we use a weighted sum, with each additional objective
values increased by an order of magnitude (e.g. ×1, ×10, ×100...).

3 The first n parameters are explicitly linked to the first n objectives as in ZDT3 –
later parameters are used to avoid explicitly exploring the objective space.
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NSGA-II. NSGA-II [12] is used as a benchmark for conventional multi-objective
optimization without feature space exploration, reaching near the Pareto front
on these simple benchmarks. Though it is not our goal to compete with MOO
algorithms, they provide a useful metric to contextualize the difference between
exploratory approaches and pure optimizers.

Settings. In all MAP-Elites approaches the feature space is partitioned a
20× 20 grid, with 2 CMA-ME improvement emitters [14] performing optimiza-
tion. T-Domino was computed using the neighbors from 4 bins away, using a
history of the 10 most recent elites in each bin. Hyperparameters for NSGA-II
were kept comparable, a population of 400 matched the 400 bins of the MAP-
Elites grids, with the same number of new solutions generated per generation
for the same number of generations. A standard implementation of NSGA-II
from the PyMoo library [3] is used, as well as the library’s formulations for the
ZDT3 and DTLZ benchmarks whose the exact formulation is included in the
online supplemental. The PyRibs [40] library was used as a basis for all MAP-
Elites experiments, with T-DominO implemented as a specialized archive type.
All experiments were replicated 30 times, additional plots are provided in the
Supplemental.

4.2 Result

Figure 3 illustrates the explored regions of objective and feature space in a sin-
gle run. Using the NSGA-II solutions to outline the true Pareto front we can
see where each MAP-Elites approach concentrates. In the RastriginMOO case,
though each version of MAP-Elites explores identical areas of the feature space,
the range of possible values in objective space is large. T-Domino produces solu-
tions in the middle of the front, with solutions that strike a balance between
the two objectives. In the ZDT3 case we see that by explicitly exploring one of
the objectives we can force spread over the objective space, and provide high
performing solutions in the other objective.

With more than two objectives the balance seeking property of T-DominO
becomes even more pronounced. Parallel coordinate plots (Fig. 3, top right),
which plot each solution as a line with one vertex per objective, make clear the
differing selection pressure of T-DominO and non-dominated sorting. In contrast
to the spiky lines denoting high performance on some objectives and low perfor-
mance on others, T-DominO’s solutions form a flat band of even performance.

The difference of balance is critical when approaching MCX problems. To
spread across the five dimensional front, solutions found by NSGA-II must span
many areas with solutions that perform poorly on some objectives. If we divide
the range of objective values found by NSGA-II into quartiles, only 25% of the
solutions found by NSGA-II perform over the bottom quartile on all objectives.
If all of these objectives are valued by the user, that means that three quarters
of solutions may be discarded immediately – and this will only worsen as the
number of objectives grows. In contrast, when T-DominO MAP-Elites’ results
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Fig. 3. Benchmark results. Top: Objective space as explored by each approach. Bot-
tom: Feature space as explored by T-DominO MAP-Elites and NSGA-II. T-DominO
points are colored by T-DominO score compute with the entire archive as anchor points.

are judged on the same scale, 99% of the solutions found by T-DominO MAP-
Elites perform over the bottom quartile on all objectives.

Visualizing the distribution of found solutions in feature space (Fig. 3, bot-
tom) gives a stark illustration of the main motivation for using a QD approach.
The solutions produced by NSGA-II cluster in a tiny portion of the feature space.
This region may be Pareto optimal, but QD gives us the ability to explore areas
of our choosing.

5 Case Study

5.1 Setup

As a study of the applicability of T-DominO MAP-Elites to MCX problems we
explore its use in optimizing building layouts for real-world residential complex.
Solutions are produced using wave function collapse (WFC) [22], a popular tool
for tile-based procedural content generation in games. WFC is a constraint sat-
isfaction approach which extracts local patterns from a small set of samples, and
transforms them into a set of local constraints. The constraints drive generation,
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Fig. 4. Objectives, Features, and Constraints of building layout study. Shaded
regions indicate portion of building site which cannot be built on. For details on com-
putation of each metric see the online supplemental.

ensuring that every local patch of the output also exists in the set of input exam-
ples. We adapt the implementation here [28,29]. Constrained generation systems
like WFC are particularly appropriate for the semi-constrained design systems
often used in residential building, such as modular or prefabricated units, and
do not require the extensive curated datasets of valid designs.

WFC, though constrained, is a stochastic process. At every iteration a tile
is ‘collapsed’, or fixed, with the type chosen stochastically from a list of valid
tiles, and new constraints applied to its neighbors. To make this encoding more
amenable to optimization we have introduced an evolvable genotype of tiles
which are fixed at the beginning of this collapsing process. Children inherit
these fixed tiles from parents, in addition to fixing an additional tile from the
design produced by the parent or removing one of the tiles that were fixed by the
parent. Fixing tiles freezes key portions of the parent design and saves progress
toward interesting designs - while still allowing substantial deviation from the
parent, as the remainder of the tiles are generated stochastically with WFC. See
the supplemental material for set of used tiles and example designs.

The resulting designs are evaluated according to 4 objectives, 1 constraint,
and explored along 3 features (illustrated in Fig. 4, more details in the online
supplemental). The constraint was handled in a tournament fashion as in [9] –
in any tournament where one solution follows the constraint and the other does
not, the solution which follows the constraint wins regardless.
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Fig. 5. Exploring building layouts generated with T-DominO MAP-Elites.
Top: 2D views of 3D feature space, solutions in groups of four are identical, colored in
each view by each objective (darker is better). Bottom: A walk through designs that
vary along one feature dimension, with accompanying objective values. Petal plots are
scaled to the final min/max objective value found in the archive. (Color figure online)

5.2 Result

Once a set of designs has been produced, we can extend on MAP-Elites’ intuitive
way of optimizing, organizing, and displaying solutions to multiple objectives.
To better understand our 3D feature space we ‘flatten’ it into a set of 2D views
by creating a set of new 2D archives with the desired feature axes and inserting
all of the solutions from the 3D archive, forcing competition based on only two
features. The result is one map for each pair of the three features (Fig. 5, top).

Each of these views can in turn be split into one map for each objective,
collectively allowing correlations along feature axes and objectives to all be seen
at a glance. Obvious relationships such as an increase in open area resulting
in more units are clear, along with less appreciated connections: with fewer
buildings ventilation is worse – unless buildings have longer facades.

Clear organized grids of solutions open up many avenues for intuitive nav-
igation of the produced solutions. Here we show one possibility, browsing rows
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or columns of designs. An area of the map can be selected, and the individual
designs displayed along with their performance across objectives. Drilling down
on a subset we can see the qualitative differences between large and small open
areas (Fig. 5, Center), and the kinds of layouts they each represent. A combined
view allows us to see large difference in objective values that may not have been
apparent from a qualitative glance: even with the same amount of open area
we can see there is huge amount of variation in the number of units that can
fit on a site, that increasing this amount of units comes at the cost of natural
ventilation, and that qualitatively this trade-off is between a few thick buildings,
or several small ones (Fig. 5, Bottom).

6 Discussion

In this work we have defined a new class of problem, the MCX problem, tailored
specifically to the needs of generative design. A chief aim of the generative design
is to spark ideas and explore concepts, and results are typically explored by
browsing designs not objectives. The measure space of MAP-Elites provides
an intuitive way of creating and exploring sets of solutions with varied and
understandable high level features.

T-DominO allows MAP-Elites to maintain these visual and organizational
capabilities in the complex multi-criteria scenarios where they are most useful.
Keeping a single solution in each bin rather than a front is about more than
computational cost, it is about maintaining visual accessibility. Having a single
solution in each bin simplifies browsing and selecting interesting designs. When
objectives and features are correlated, the possible objectives values for each
feature combination is constrained to a range – so though balanced solutions are
found, the larger pattern of objective/feature relations are still clear.

T-DominO allows us to optimize for multiple objectives in a QD setting
without making any other fundamental changes to the algorithm. Simple to
implement, without adding any appreciable computational burden, T-DominO
can be easily integrated into existing approaches. By leaving its elitist character
untouched, T-Domino allows MAP-Elites to handle multiple objectives while
maintaining its core visualization and presentation strengths. Equipping MAP-
Elites with T-DominO allows us to generate diverse sets of well-rounded high
performing solutions, creating a powerful tool for tackling MCX problems.
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Supplemental Material and Code. Supplemental material and code available at:

https://github.com/agaier/tdomino ppsn.

https://github.com/agaier/tdomino_ppsn
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