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Multi-split configuration design
for fluid-based thermal
management systems
High power density systems require efficient cooling to maintain their thermal perfor-
mance. Despite this, as systems get larger and more complex, human practice and insight
may not suffice to determine the desired thermal management system designs. To this end,
a framework for automatic architecture exploration is presented in this article for a class
of single-phase, multi-split cooling systems. For this class of systems, heat generation de-
vices are clustered based on their spatial information, and flow-split are added only when
required and at the location of heat devices. To generate different architectures, candi-
date architectures are represented as graphs. From these graphs, dynamic physics models
are created automatically using a graph-based thermal modeling framework. Then, an
optimal fluid flow distribution problem is solved by addressing temperature constraints in
the presence of exogenous heat loads to achieve optimal performance. The focus in this
work is on the design of general multi-split heat management systems. The architectures
discussed here can be used for various applications in the domain of configuration design.
The multi-split algorithm can produce configurations where splitting can occur at any of
the vertices. The results presented include 3 categories of cases and are discussed in
detail.

Keywords: Design Synthesis, Graph Generation, Optimization, Optimal Flow Control,
Thermal Management System

1 Introduction
Electrification of many systems in various domains has in-

creased over the last few decades [1–3]. These electronic devices
are experiencing intensifying miniaturization [4–9], resulting in
higher power densities. Currently, microprocessors generate heat
fluxes of over 102 W/cm2. Hot spots on microelectronic chips can
also generate heat fluxes of 1 kW/cm2 or more, which result in
excessive temperatures in local regions [4]. When devices are op-
erated at excessive temperatures, their performance and reliability
are negatively affected, resulting in their malfunction in the end
[10,11]. Consequently, the optimal design of thermal management
systems is essential for expediting design processes and achieving
ambitious performance goals [12,13].

Throughout the literature, the design of heat management sys-
tems has largely focused on improving individual components
[14,15]. Yet, optimizing individual components can result in a
sub-optimal overall design. Additionally, the design of a whole
heat management system sometimes is only relevant to a particular
application [16]. Peddada et al. [14] took an important step towards
designing a class of heat management systems that are not limited
to a specific application. However, the systems considered in that
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work are restricted to single-split system architectures, i.e., config-
urations with a single source where thermal-devices of the system
are located in branches that only start from the source. There are,
nevertheless, many instances in which multi-split systems are re-
quired [17]. In a multi-split architecture, branching can occur from
the main source or any thermal-device of the system. In this paper,
we introduce a strategy for the generation and the optimal design of
general multi-split heat management systems using graphs. Here,
spatial considerations are also incorporated into the design prob-
lem; the spatial data of the heat-devices of the system are used
for clustering and defining junctions where branching starts. After
forming the clusters, for each cluster, we find the Euclidean distance
of cluster’s heat-devices from the cluster’s centroid; the heat-device
closest to the centroid is defined as the cluster’s junction, refer to
section 4.2 for more details. The architectures discussed in the pa-
per can be used across a wide range of applications. Additionally,
the design strategy presented here applies to both single-split and
multi-split architectures, supporting quantification of trade-offs be-
tween multi-split system performance improvement and cost and
complexity increases.

Designs of these systems should meet transient response con-
ditions [18] as many electronic devices work in applications with
time-varying workloads [4]. Accurate modeling of the design prob-
lem as an optimization problem, therefore, requires treatment of
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system dynamics, including bounds and constraints on dynamic
behavior, as well as optimal control for active systems. Continu-
ous optimization can be applied to the combined design of physical
and control system design, a well-established problem in Control
Co-Design (CCD) [19–22], for a given system configuration. Dis-
tinct configurations can have fundamentally different dynamics,
design variables, and constraints, so each configuration must be
treated independently. Practical solution of such problems requires
automatic generation and solution of the optimization problem for
each configuration. Here, for every generated unique and feasible
multi-split system configuration a continuous optimization problem
is formulated and solved [14,23,24].

Thermal management system configuration design considered
in this paper belongs to an especially challenging class of op-
timization problems where discrete decisions change the set of
continuous decisions to be made. This necessitates a nested dis-
crete/continuous approach. Furthermore, the very general nature of
these problems prevent the use of established integer programming
methods that can be used for efficient solution of other problem
classes with spatial properties. At least, there are three possible
approaches for solving general physical systems configuration de-
sign problems. The first approach, as described above and used
in the studies presented here, entails enumerating all unique and
feasible configurations for a given design space, solving the con-
tinuous optimization problem for each one, and then producing a
ranked set of design candidates. This is the only approach that
can produce a result that is a confirmed optimum. A second ap-
proach employs a population-based optimization algorithm, such
as a Genetic Algorithm (GA), or other gradient-free search strategy
to navigate the configuration space while still solving the continu-
ous optimization problem for each configuration. A third approach
is to utilize machine learning or artificial intelligence techniques to
restructure the system configuration design space [25,26] such that
it is more tractable, while again nesting continuous optimization
within this search. Recent machine learning strategies have proven
to be only marginally better than random search [26]. General
solution approaches for configuration problems too large for enu-
meration and without special problem structure remains elusive,
and is truly an engineering design grand challenge.

The main contributions of the work presented in this article are:

1 Introduction of a new automated modeling strategy for multi-
split thermal management systems. This strategy has appli-
cations for configuration generation across a wide range of
systems.

2 Employing spatial information to cluster data and to define
junctions.

3 Comparison of multi-split versus single-split configurations,
providing insight into the trade-offs between system perfor-
mance and system complexity

4 In-depth study of multi-split system optimal results and anal-
ysis of the system signals such as flow rates and flow temper-
atures at heat-device locations that led to this optimal solution

This article continues as follows, in Section 2, we discuss the
thermal management system architectures studied in this work. The
dynamic graph based models of the thermal architectures are pre-
sented in Section 3. Section 4 describes the graph-based represen-
tation of multi-split architectures. The formulation of the variable
time horizon dynamic optimization problem is explained in Sec-
tion 5. Section 6 presents case studies using different architectures
and heat loads. Section 7 concludes with a summary of the design
methodology, guidelines for thermal management system design,
and potential future research topics.

2 System Description and Modeling
Figure 1 illustrates the class of problems considered in this ar-

ticle. The purpose of this system is to manage the temperature

Tank Sink

Valve

LLHX

CPHX

Pump

Fig. 1 Class of problems considered in this paper. The sys-
tems include a tank, a pump, valve(s), CPHXs in parallel and
series, a LLHX, and a sink.

of various heat generating devices mounted on Cold Plate Heat
Exchangers (CPHXs) through which a coolant flows. The coolant
is stored in a tank and is transferred to each branch by a pump.
Each branch has several valves and can divide the flow it receives
into its sub-branches. The coolant that passes through heat ex-
changers absorbs heat and transfers it to the thermal sink through
a Liquid-to-Liquid Heat Exchanger (LLHX).

The class of architectures considered in this work produces
multi-split configurations as opposed to the single-split configu-
rations generated in the study by Peddada et al. [14]. A single-split
assumption limits the configuration search space; expanding the
search space to include multi-split configurations may enhance sys-
tem performance. The multi-split enumeration algorithm created
in this work produces configurations where splits may be made at
the pump (source) or at any of the CPHX locations. Sections 3
and 4 describe the graph-based physical modeling of the thermal
systems and the representation and generation of multi-split archi-
tectures. Here the heat load applied to each CPHX, as well as the
inlet temperature and mass flow rate of the thermal sink, have been
assumed to be known exogenous inputs. In addition, heat generat-
ing devices are assumed to have the same temperature as the wall
of the CPHX on which they are mounted. It is assumed that heat
loss through pipes is zero.

An optimal control problem is defined for each fluid-based ther-
mal management systems configuration generated using the multi-
split algorithm. The control problem seeks the optimal flow rate
trajectory for each pipe that maximizes system performance, while
satisfying component temperature constraints. The flow rates are
controlled by valves. Dynamic system models incorporate the ther-
mal physics of advection, convection, and bi-directional advection.
A unique model is generated for each configuration design. We as-
sume that system performance is quantified by thermal endurance,
i.e., the goal is to maximize the time that the device is on while
ensuring that all temperature bounds are met. This is consistent
with the approach in the study conducted by Peddada et al. [14],
supporting direct comparison with earlier single-split studies using
graph-based configuration representations.

The code workflow is illustrated in Fig. 2, providing an overview
of the code structure. In the subsequent sections, each part will
be discussed in detail. The variable Data represents the positions
of CPHX in [𝑥, 𝑦, 𝑧] coordinates. The parameter numLevels deter-
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mines the depth of the graph considered for junction creation. For
example, when set to 1, junctions can only be added to branches
connected to the tank. Multiple graphs are generated based on the
provided Data and numLevels, resulting in different configurations,
such as parallel, series, or a combination thereof. Among a set of
𝑁 graphs, the variable configNum specifies a particular graph. The
variable distrb denotes the heat load at each node. Using the given
Data, Heat Load, and Graph Config, the Base Graph is generated,
representing the connections between the tank, junctions (denoted
as 𝑗2 and 𝑗3 in Fig.2), and other CPHX nodes. Subsequently, a
Physics Graph is created by adding CPHX wall nodes, sink nodes,
and source power (heat load) to the Base Graph, along with the
underlying physics between these nodes, which include convec-
tion, advection, and bidirectional advection. Based on the Physics
Graph, an Optimal Open Loop Control (OLOC) is defined, consist-
ing of three components: system dynamics (f), objective function
(𝐽), and path constraints (𝐺). Here, 𝑡 represents time, 𝜉 denotes
the state, and u represents the control signal. These components
will be discussed in detail in subsequent sections.

j2

2

j3

Tank

30 1

4 5 6 7

j2

2

j3

Tank

30 1

8

9

10

11

Source Power

Convection

Advection

Bidirectional Advection

Fig. 2 The workflow diagram that illustrates the steps in-
volved in the code execution. Starting with the given Data,
Head Load, and Config Number, the base graph and physics
graph are generated. The OLOC problem is then defined and
solved to obtain the objective function value. The objective
value represents thermal endurance, with the incorporation
of a penalty function for control signal smoothness and con-
vergence. Refer to Sec. 5 for a comprehensive discussion

3 Dynamic Graph-Based Modeling
This paper uses the dynamic graph-based modeling framework

discussed in Peddada et al. [14]. Nodes represent components or
fluids, and a temperature is associated with each node. Edges
represent power-flows between nodes. For brevity, model details
are omitted here, but the dynamics governing the main components
are presented in Fig. 3. The model includes advection, convection,
and bidirectional advection. Convection happens between CPHX
wall nodes and fluid nodes, advection occurs between fluid nodes,
and bidirectional advection occurs between the LLHX and sink.
In Fig. 3, 𝑐𝑝 is the specific heat capacitance, 𝜌 is the density of
the fluid, 𝐴𝑠 is the convective surface area, ℎ is the heat transfer
coefficient, and �̇� is the mass flow rate of the fluid.

3.1 Heat-transfer Model of Graph Nodes. The power-flow
type in the tank is advection, which occurs between 1) the tank and
the fluid node on the CPHX, and 2) the tank and the primary side
of the LLHX. Advection and convection are present in the CPHX.

Fig. 3 Notional example to illustrate the elements of thermal
physics included in this system model. Here, a node repre-
sents a temperature and an edge represents a power flow.

Advection occurs between 1) the CPHX fluid node and tank and 2)
the CPHX fluid node and primary side of the LLHX. Convection
occurs between the CPHX fluid and the wall node. The LLHX
involves advection, convection, and bi-directional advection. Ad-
vection occurs between 1) the primary side of the LLHX and tank,
2) the primary side of the LLHX and the CPHX fluid node. Bi-
directional advection takes place between the secondary side of the
LLHX and the sink. Convection occurs between 1) the LLHX wall
node and the primary side of LLHX and 2) the LLHX wall node
and the secondary side of LLHX. These are building blocks of any
larger system. Using these components, a model of the dynamics
of any complex system of the form illustrated in Figure 1 can be
generated.

3.2 Graph-Based Model for Multi-split Architectures. Fig-
ure 4 shows a graph that represent the general class of multi-split
architectures studied in this paper. Here, 𝑃𝑠 represents the heat
load. A simple example problem of this class is shown in Fig. 5.
Each of the two junctions has 3 associated nodes. The first junc-
tion ( 𝑗2) distributes the flow to 3 different branches, and the second
junction ( 𝑗3) distributes the flow to two branches, where 2 nodes in
a branch are in series, and the second branch has only 1 node. In
this figure, states are denoted using the symbol 𝝃; here the states
all correspond to node temperatures. For example, 𝜉1 is the tem-
perature of node 1 and 𝜉𝑤−1 is the wall temperature of the CPHX
connected to node 1. The system involves both independent and
dependant flows, depicted in Fig. 5. Independent flows can be
controlled, whereas dependent flows can be calculated based on
the independent flows (see Fig. 5 for these equations). In the fig-
ure, the edges that carry dependent power flows are shown with
dashed-lines.

3.3 State Equations for the Graph-Based Model. The state
equations for the thermal management systems are obtained by
using a methodology similar to the one introduced in references
[14,27]. The methodology described there has been extended to
accommodate multi-split configurations. Equation (1) shows the
state equation for this system. Here T(𝑡) is the vector of node
temperatures (states), 𝑇 𝑡 represents the sink temperature, which is
considered to be a constant value and is known, �̇�𝑝 (𝑡) is the pump
flow rate, �̇�𝑡 (𝑡) is the sink flow rate, ṁ𝑓 (𝑡) is composed of the sub-
branch flow rates, and P𝑠 (𝑡) is the vector of component heat loads.
Here, C is the diagonal matrix of heat capacitance, and D repre-
sents the connection of external sources to the system. Matrix A is
calculated using 3 matrices: 1) M, a matrix derived from the graph
incidence matrix representing the structural mapping from power
flows to the states, 2) a weighted incidence matrix corresponding
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Fig. 4 Graph-based model for multi-split architectures stud-
ied in this article.
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Fig. 5 Graph illustrating the variables for a simple example
multi-split configuration. Types of power flow are illustrated,
including the distinction between independent and depen-
dent flows.

to convective power flow, and 3) C. Matrix B1 is obtained from
M and C. B2 is obtained from a weighted incidence matrix corre-
sponding to advective and bidirectional advective power flows. For
a detailed explanation of these matrices, please refer to reference

[14].

�̇� (𝑡 ) = 𝑨

[︃
𝑻 (𝑡 )
𝑇 𝑡 (𝑡 )

]︃
+ 𝑩1

⎛⎜⎝𝑑𝑖𝑎𝑔 ⎛⎜⎝𝒁
⎡⎢⎢⎢⎢⎣
�̇�𝑝 (𝑡 )
�̇�𝑓 (𝑡 )
�̇�𝑡 (𝑡 )

⎤⎥⎥⎥⎥⎦⎞⎟⎠⎞⎟⎠𝑩2

[︃
𝑻 (𝑡 )
𝑇 𝑡 (𝑡 )

]︃
+𝑪−1𝑫𝑷𝑠 (𝑡 )

(1)

4 Generating Multi-split Spatial Graphs
4.1 Graph Representation. The system configurations here can be

represented by acyclic undirected connected graphs where any two nodes
are connected by only one simple path ( i.e. a tree). In the current repre-
sentation, the tank is always the root node and each CPHX is labeled with
a number from 1 to N. Splittings occur at the root or at any other node. In
the corresponding symbolic representation, branching is shown by paren-
theses and consequent CPHXs, i.e., nodes in one branch are separated by a
comma. Figure 6 shows the representation for two configurations and their
equivalent graphs.

(a)
0 (1, 2) (3)

(b)
0 (1, 2(3, 4) (5) ) (7) (8(9, 10) ) (11)

Fig. 6 Two multi-split representations and their equivalent
graphs.

The number of single-split configurations increases rapidly as the num-
ber of heat-generating devices increases. Figure 7(a) shows the total number
of single-split configurations as a function of number of nodes in graphs.
Equation (2) quantifies the number of generated configurations for this enu-
meration. When splits (or junctions) are added, the total number of con-
figurations increases more. Assuming there is only one-layer of junction
nodes, the number of configurations depends on the number of junctions as
well as the number of non-junction nodes. One can calculate the number of
configurations for a fixed number of non-junction nodes (𝑁 ) and a variable
number of junctions, ranging from 1 to 𝐽 , in a recursive manner. Table 1
summarizes the equations.

𝐺 (𝑁 ) =
𝑁∑︂
𝑘=0

(︃
𝑁

𝑘

)︃ (︃
𝑁 − 1
𝑘 − 1

)︃
(𝑁 − 𝑘 )! (2)

Table 1 Number of graphs for a given number of junctions

Junctions Number of Graphs
J = 1 𝐹1 (𝑁 ) = 𝐺 (𝑁 )
J = 2 𝐹2 (𝑁 ) =

∑︁𝑁
𝑀=1

(︁𝑁
𝑀

)︁
𝐺 (𝑀 )𝐹1 (𝑁 − 𝑀 )

J = J 𝐹𝐽 (𝑁 ) =
∑︁𝑁

𝑀=1
(︁𝑁
𝑀

)︁
𝐺 (𝑀 )𝐹𝐽−1 (𝑁 − 𝑀 )

Figure 7(b) presents the number of configurations generated for graphs
with N = 5, 10, and 15 when J varies from 1 to N. Figure 7(c) shows the
number of graphs as a function of N and J. To find the total number of
graphs with one junction layer (J = 1 to N) , we need to sum up all the
graphs generated for different number of junctions; see Fig. 7(d) for an
illustration of this growth.

The addition of junction nodes and layers leads to a rapid growth in
the number of graphs. It is desirable to impose constraints in a way that
meaningfully limits this growth. One strategy is to recognize that these
graphs represent physical designs, and that spatial system information can
be leveraged to reduce problem complexity. Here we employ a spatial
clustering method to group the nodes in sub-domains and enumerate the
sub-branches only in the nearby neighborhoods; this procedure is detailed
in Section 4.2. This approach, however, cannot access all possible designs
(as can enumeration). Therefore, we examine a second strategy where the
junction locations are enumerated. Exploring the trade-offs between perfor-
mance improvement and reducing problem complexity is explored in this
article as in some cases enumeration may be worth the added computational
cost.
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Fig. 7 (a) Number of single-split graphs vs. number of non-
root nodes, (b) The number of multi-split graphs for graphs
with N = 5, 10, and 15 nodes when the number of junctions
varies from 1 to N , (c) 3D surface illustrating the number of
graphs as a function of the number of vertices and junctions,
and (d) the total number of multi-split graphs with only one
junction layer as a function of N .

4.2 Generation of Multi-split Spatial Graphs. Algorithms 1– 4 de-
scribe the multi-split graph generation framework of this work. The gener-
ation procedure passively choose junction nodes during run-time instead of
employing all the nodes in enumerations from the beginning. It performs
recursion for refinement. The enumerations can cover (i) tank-junctions,
(ii) junction-CPHXs, and (iii) both, based on the specific requirements of
the optimization problem; this study focuses on class (ii).

Algorithm 1 Selecting Number of Clusters to form Super-Nodes
1: 𝑁 ← number of nodes
2: for 𝐾 in range(1, 𝑁 ) do
3: cluster nodes into 𝐾 clusters via K-means
4: if the clustering is stable, stop
5: return 𝐾 and the corresponding nodes of each cluster

Algorithm 2 Generation of Hierarchical Tree of Super-Nodes
1: 𝑇 ← tree
2: super-node[0]← {𝑃 [0], 𝐷 [0] } here 𝑃 [0] is Tanks and 𝐷 [0] is the spatial data

of all nodes
3: 𝐿 [0] includes super-node[0]
4: 𝑛𝑢𝑚𝐿 ← number of levels in the tree
5: 𝑚← number of super-nodes in 𝑇
6: for 𝑙 in range(1, 𝑛𝑢𝑚𝐿) do
7: 𝐼𝑑𝑠 ← index of all super-nodes in 𝐿 [𝑙 − 1]
8: for 𝑖 in 𝐼𝑑𝑠 do
9: cluster super-node 𝑖 into 𝐾 [𝑖 ] clusters using Algorithm 1

10: for 𝑘 in range(1,K[i]) do
11: 𝑚 = 𝑚 + 1
12: 𝑃𝑘 ← the closest node to centroid of 𝐷 (𝑘 ) (𝑃𝑘 is junction.)
13: 𝑃 [𝑖 ] ← [𝑃1 , 𝑃2 , ..., 𝑃𝑛 , 𝑃𝑘 ]
14: remove 𝑃𝑘 from 𝐷 (𝑘 )
15: 𝑇 [𝑚] ← {𝑃 [𝑘 ], 𝐷 [𝑘 ] }
16: 𝐿 [𝑙 ] ← add 𝑇 [𝑚]
17: return Tree T with numL levels

T T
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X

T

X

X

T

X

X

T

X

X
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x

x
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X
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

T

Fig. 8 Clustering and the creation of a sample configuration
for a set of nodes. Figure shows (a) the spatial locations of
source (T) and 17 nodes, (b) first-level clusters, (c) centroid
of each cluster, (d) chosen junctions and a routing from T
to junctions, (e) second-level clusters, (f) the centroid and
the corresponding junctions of the second-level, (g) a rout-
ing from first-level to second-level junctions, (h) a sample
enumeration in the internal cluster with more than 1 node.
Figure (i) presents the generated sample graph.

Algorithm 3 Graph Enumeration
1: 𝑁 ← number of nodes
2: 𝑒𝐺 [0] ← [[0] ] ⊲ each sub-list represents the adjacency list of a graph
3: 𝑒𝐺 [1] ← [[ (0, 1) ] ]
4: for 𝑛 in [2, 𝑁 ] do
5: 𝑃𝑎𝑟𝑒𝑛𝑡𝑠[𝑛] ← [1, . . . , 𝑛 − 1]
6: for 𝑔 in 𝑒𝐺 [𝑛 − 1] do
7: for each 𝑁𝑜𝑑𝑒 in 𝑔 do
8: if 𝑁𝑜𝑑𝑒 belongs to 𝑃𝑎𝑟𝑒𝑛𝑡𝑠[𝑛] then
9: add edge (𝑁𝑜𝑑𝑒, 𝑛) to 𝑔 and add the adjacency list of the new

graph to 𝑒𝐺 [𝑛]
10: return all enumerated graphs 𝑒𝐺 [𝑁 ]

Algorithm 4 Graph Generation for a Selected Tree Level
1: 𝑙 ← Tree level selected for graph generation
2: 𝐼𝑑𝑠 ← index of all super-nodes in 𝐿 [𝑙 ] for tree generated by Algorithm 2
3: for 𝑖 in 𝐼𝑑𝑠 do
4: 𝑄 ← parents of the super-node (𝑃 [𝑖 ])
5: 𝑔1[1 : 𝑗 ] ← enumerate super-node[𝑖 ] using Algorithm 3 with its junction

as its root
6: 𝑔2← the circular graph of 𝑄 with (𝑃 [−1], 𝑃[0] ) edge removed
7: 𝑔[𝑖, 1 : 𝑗 ] ← merge 𝑔2 with every 𝑔1[1 : 𝑗 ]
8: combine a sub-graph selected from each super-nodes of level l to generate all the

graphs

Algorithm 1 initially creates trees using nodes spatial data. The nodes
data are clustered to form super-nodes in a recursive manner. Here, a
level represents the levels of splitting in an architecture tree. A junction
node is defined for each super-node by choosing the node with the smallest
Euclidean distance from the cluster’s centroid, see Figure 8 and Algorithm
2. Note that a junction represents a CPHX node where the coolant flow
splits into branches. Next, we enumerate all sub-graphs of a selected tree-
level. This means, for a chosen super-node in that tree level, its nodes
are enumerated to form all possible sub-graphs; Algorithm 4 describes
how the enumeration algorithm works. Afterwards, we connect the root
node (Tank) and the corresponding junction nodes of the super-node to its
sub-graphs, see Algorithm 3. This process is performed for all super-nodes
of the selected level. Finally, an architecture graph is created by choosing
and merging one sub-graph from the pool of sub-graphs generated for each
super-node in that level, refer to Algorithm 4. Note that various sub-
clusters can be defined within a cluster to form multiple layers of junction
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nodes.
In addition to the above mentioned graph generation algorithm, we also

generated graphs using a second strategy where the locations of junctions
in the trees are enumerated. The main difference between the first and
second graph generation strategies is in topological locations of junction
nodes in the architectural graphs.

Prior research performed by some of the authors on holistic design for
3D spatial packaging and routing of interconnected systems [28–32] will
be employed in future work to capture the spatial aspects of the multi-
split configurations via optimal placement of junction nodes and cooling
circuit components such as the CPHXs, pumps, valves, and the tank with
simultaneous optimization of 3D lengths of the branches (or pipe segments)
while satisfying volume and multi-physics constraints. This can lead to a
more complete definition of the real-world multi-split configuration fluid-
based thermal system problem.

We generate all configurations within a class, evaluate the performance
of each configuration, and choose the optimal one. Figure 9 shows all
13 configurations made by the single-split algorithm for 3 nodes. The
figure depicts the base graphs and the extended physics graphs generated
for simulations. Figure 10 shows two examples configurations and their
physics models for a multi-split system with 19 nodes (root, 6 junction
CPHXs, and 12 CPHXs nodes).

Fig. 9 (a) Base and (b) complete physics graphs for single-
split systems with 3 CPHXs

Fig. 10 Two sample configurations for a multi-split system
with 18 CPHXs. Figures (a) and (b) show the base graphs,
and Figs. (c) and (d) show the complete physics graphs for
the base graphs (a) and (b), respectively.

5 Optimal Flow Control Problem (OLOC)
The objective of the optimal control problem is to maximize the ther-

mal endurance while satisfying limits on temperatures and mass flow rates.
When any of the node’s temperatures (defined as states) reaches the upper
bound, the OLOC terminates, and the final time is recorded as the thermal
endurance. Figure 11 shows the OLOC structure. Here, we seek to deter-
mine a control trajectory 𝑢(𝑡 ) for each independent flow that maximizes the
objective function while satisfying constraints. Within this figure, Eq. (𝑐1)
presents the system states (𝝃), encompassing the vector of temperature
nodes (𝑻 ), and the flow rate of independent branches (�̇�indp). The dynam-
ics that shows how these states evolve over time are shown in Eq. (𝑐8).
Equation (𝑐2) defines the control signals as the rate of change of the valve
flow rates in independent branches. The flow rate in dependent branches
is determined by an algebraic equation that ensures input flow rate of each
branch is equal to the output flow rate of that branch. This equation can be
represented as a matrix multiplication, as shown in Eq. (𝑐3), where matrix
𝑀 maps the flow rate of independent branches (�̇�indp) to the flow rate of
dependent branches (�̇�dp). A practical illustration of this calculation is
provided in Figure 5. In Eq. (𝑐4), the total flow rate of all branches is pre-
sented, comprising both independent and dependent flow rates. It is worth
mentioning that the order of combining independent and dependent flow
rates depends on the graph structure. For simplicity, in this case, we first
incorporate the independent flow rates and then the dependent flow rates.
The initial conditions for the temperature nodes are given by Eq. (𝑐5). In
this equation, 𝑻𝑤 represents the wall temperature of the CPHX states, 𝑻𝑓

represents the fluid temperature of the CPHX states, and 𝑻𝑙 represents the
temperature of the Tank and LLHX states. Eq. (𝑐6) presents inequality
path constraints that ensure the operating temperature of each component
remains within an upper bound throughout the entire time horizon. The
first two terms in Eq. (𝑐7) represent the inequality path constraint that guar-
antees the flow rates of both independent and dependent branches remain
within a specified bound. This equation, when combined with Eq. (𝑐3),
ensures that the input flow rate of each branch is equal to its output flow
rate. It also ensures that the maximum flow rate cannot exceed the pump
flow rate (�̇�𝑝). The last term in Eq. (𝑐7) represents the limit on the deriva-
tive of the flow rate, capturing the physical limitations of the valves [14].
Equations 𝑐8 and 𝑐9 show how states defined in Eq. (𝑐1) evolve over time.
In Equation (𝑐10), the objective value is represented, aiming to maximize
the thermal endurance. Similar to the approach in Ref. [14], a penalty term
is incorporated to facilitate solution smoothness and enhance convergence.
The parameter 𝜆 is selected such that the total penalty cost remains below
1% of 𝑡end. Table 2 shows the parameters used in the physical simulations
for the studies in this article.

Fig. 11 OLOC components
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Table 2 Parameters used in the physics modeling of the
thermal systems [14].

Parameter Value
LLHX wall mass 1.2 kg
CPHX wall mass 1.15 kg
Tank fluid mass 2.01 kg

Thermal sink temperature 𝑇 𝑡 15𝑜 C
Tank/LLHX initial temperature , 𝑇𝑙,0 15𝑜 C
CPHX initall wall temperature, 𝑇𝑤,0 20𝑜 C
CPHX inital fluid temperatue , 𝑇𝑓 ,0 20𝑜 C

Thermal sink mass flow rate, �̇�𝑡 0.2 kg/s
Pupmp mass flow rate �̇�𝑝 0.4 kg/s

Valve rate limit �̈�𝑓 ,max 0.05 kg/s2

Penalty parameter, 𝜆 0.01/(𝑁𝑓 �̈�
2
f,max )

There are two main approaches for solving OLOC problems: 1) Indirect
(optimize then discretize) and 2) Direct (discretize then optimize). In the
indirect method, a differential algebraic equation is derived using optimality
conditions (the calculus of variations or the Pontryagin minimum principle).
These equations should then be discretized and solved numerically [33].
In contrast, the direct method first discretizes the problem so it can be
transformed into a nonlinear program (NLP), which can then be solved
by a nonlinear programming solver such as SNOPT [34] or IPOPT [35].
The indirect method provides more information about the structure of the
problem, but solving constrained problem can be challenging with this
method. Alternatively, direct methods use NLP solvers to solve complex
problems successfully; some well-established OLOC software tools based
on the direct method are available, for example GPOPS [36] and Dymos
[37]. This paper uses Dymos to solve the OLOC problems, which is an open
source program developed in Python. The computation cost of solving the
OLOC problem depends on the size of the graph, but on average, it takes
approximately two minutes to solve the problem for each configuration.
Additionally, it is important to highlight that in this article, the evaluation
of the nonlinear optimal control problems for each of the architectures has
been parallelized. This parallelization approach significantly reduces the
computational cost associated with solving these problems. All reported
computational costs were obtained using a workstation with an AMD EPYC
7502 32-Core Processor @ 2.5 GHz, 64 GB DDR4-3200 RAM, LINUX
Ubuntu 20.04.1, and Python 3.8.10.

6 Case Studies
We present three case studies to illustrate how this work can help engi-

neers design optimal thermal management systems. In the first case study
(Sect. 6.1), the goal is to obtain the optimal structure for thermal man-
agement systems having 3 and 4 CPHXs. Here we use enumeration and
compare both single-split and multi-split cases. For 3 and 4 CPHXs sys-
tems, the heat loads are [12, 4, 1] kW and [12, 4, 1, 1] kW, respectively.
In Sect. 6.2, we have shown the results for the multiple-split case under two
disturbances: [5, 5, 5, 5, 5, 5] kW and [5, 7, 6, 4, 5, 5] kW. This example
indicates optimal configuration can change when disturbances are differ-
ent. OLOC signals are also compared for some configurations. While the
main focus of this article revolves around the results obtained from small
graphs for detailed analysis and discussions, it is important to note that the
code is applicable to graphs of any size. This versatility is demonstrated in
Sec. 6.3, where a graph consisting of 18 nodes, with a Tank, 14 CPHXs,
and 3 junctions CPHXs, is studied.

6.1 Comparing single-split and multi-split cases with 3 and 4
CPHX-nodes. Here we aim to find the best architectures among single-
split and multi-split configurations with 3 and 4 nodes. The result for the
first scenario with 3 nodes is shown in Fig. 12. In this illustration, only
the fluid nodes of CPHX and the tank are depicted, while the disturbance
of each CPHX is displayed in its respective node. Here, Multi represents
multi-split cases and Single represents single-split cases. The horizontal
axis in Fig. 12(a) shows the percentile score and the vertical axis shows
thermal endurance. A percentile score represents the relative position of a
value within a dataset by indicating the percentage of values that are lower
than it. Thus, the best case is at the top right, and the worst case is at the
bottom left. As we see, the multi-split architecture yield the best result.
It should be mentioned that the results obtained depend on the heat load.
For example, here, we have an extreme load (12) that is much larger than
other loads. Here, the multi-split configurations usually has a better result
since the node with the maximum disturbance is connected to the tank and
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Fig. 12 Comparison of multi-split and single-split cases
with 3 nodes having di st = [12, 4, 1] kW.

receives the maximum available flow-rate. However, in many other cases,
the flow rate that this node receives is a fraction of the pump flow rate.
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In Fig. 12, three cases are denoted as 𝑀 (Multi-split), 𝑆1 (single-split-1),
and 𝑆2 (single-split-2). The flow rate and wall temperature of these three
cases are studies in Fig. 12(b), and Fig. 12(c). Among the three cases, 𝑆2
exhibits the highest control authority due to its maximum parallel flows (3).
This suggests that the best results can be expected from this configuration.
However, this assumption may not necessarily hold true. A significant
difference between 𝑀 and 𝑆2 lies in how the node with a 12 kW heat
load is handled. In the case of 𝑀, this node receives the maximum flow
rate (pump flow rate) as it is directly connected to the pump. Conversely,
in 𝑆2, the flow received by this node is a fraction of the pump flow rate.
As depicted in Fig. 12(b), the flow rates of these nodes differ across each
graph. Consequently, this disparity impacts the objective function value
and results in varying temperatures. Additionally, Fig. 12(c) demonstrates
that the wall temperature of nodes 12 and 4 reached the upper bounds.
Notably, the case labeled as "𝑀" achieves this upper bound at a later stage
compared to the other cases, indicating a better objective function value
(specifically, 69.9 ◦ C).

As mentioned earlier, one of the advantages of using a multi-split graph
in this case is that the node with the maximum heat load is directly con-
nected to the pump and receives the maximum flow rate. Therefore, one
might expect similar results if all nodes are connected in series directly
to the pump. However, as depicted in Fig. 12(a), when these nodes are
arranged in series with the pump and nodes with higher loads are posi-
tioned closer to the pump (𝑆3), the achieved result, although satisfactory, is
inferior to the multi-split case. This disparity arises because the dynamics
involved in this problem, such as convection, advection, and bidirectional
advection, are also dependent on the graph’s structure. Consequently, even
though the node 12 in both 𝑀 and 𝑆3 receive the pump flow rate, their
distinct dynamics lead to different objective function values. It should also
be noted that even with a fixed structure, altering only the load locations
yields different outcomes. For instance, as illustrated in Fig. 12(a), cases
𝑆3 and 𝑆4 possess the same structure but exhibit substantially different
objective values (𝑡𝑓 ). Furthermore, simply changing the positions of the
12 and 4 heat loads results in significantly different objective values for
the multiple split cases (𝑀 and 𝑀2). In these cases, we generally observe
that when the structure remains fixed, the objective value tends to be bet-
ter when nodes with higher heat loads are positioned closer to the pump.
This can be attributed to the fact that nodes with high heat loads require
cooler fluid to dissipate the heat. When these nodes are closer to the pump,
the fluid reaching them is relatively cooler. However, if these nodes are
located far away from the pump, the fluid reaching them is already hot as
it has absorbed heat from other nodes. Consequently, the objective value
(in this case, thermal endurance) decreases. Such studies provide valuable
insights for engineering purposes, enabling us to extract knowledge from
optimization data. In our future work, we intend to expand upon this idea
to extract interpretable knowledge that is understandable to humans.

Figure 13 presents a similar study, but this time for graphs with 4
CPHXs. In the case where we have two nodes with the same heat load
(1), denoted as 𝑏1 in the first branch and 𝑏2 in the second branch of case
𝑀, we observe that the multi-split case (𝑀) achieves a higher objective
function value compared to the single-split cases. The optimal solution is
found in the multi-split case (𝑀), where the node with the maximum load
is connected to the pump and then divides into two branches. Among the
single-split cases, the best solution is achieved when all nodes are arranged
in series and the nodes with higher heat loads are positioned closer to the
tank (𝑆1). On the other hand, if the order of heat loads is reversed (𝑆3),
the objective value worsens. This is because in this scenario, the node with
the highest heat load receives fluid that is already hot since it has absorbed
heat from other nodes, resulting in a decrease in thermal endurance.

The flow rate and wall temperature characteristics of three graphs,
namely 𝑀, 𝑆1, and 𝑆2, are investigated in Figure 13(b) and Figure 13(c).
One notable difference between 𝑀 and 𝑆1 is that, in 𝑆1, the flow rate in
all nodes is the same as the pump flow rate, whereas in 𝑀, it is not. As
depicted in Fig. 13, the flow rate in node 1𝑏2 of 𝑀 is nearly zero ini-
tially, increases, and then decreases again. An interesting observation is
the change in the wall temperature of node 1𝑏2. As shown in Fig. 13(c),
the wall temperature of this node increases as the flow rate in that branch
increases. This phenomenon can be explained by the fact that node 1𝑏2
has a lower heat load compared to other nodes, and the coolant fluid en-
tering this node is already warmer than its wall. Consequently, the flow
rate in this branch increases to allow the coolant fluid to dissipate some
of its heat to the CPHX of this node. Furthermore, as the flow rate in
1𝑏2 surpasses zero, the coolant flow gets cooler and the rate of change in
the wall temperature of node 12 decreases, resulting in a delayed approach
to the upper temperature bound (45 degrees Celsius) and thus increasing
thermal endurance. As a result, an optimal coordination of coolant fluid
flow rate is achieved, facilitating optimal heat transfer between different
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Fig. 13 Comparison of multi-split and single-split cases
with 4 nodes, having di st = [12, 4, 1, 1] kW.

nodes and the coolant, ultimately leading to the best objective value. A
similar situation was noticed in the case of 3 nodes (see Fig.12) around the
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40.0 second mark. At this point, the flow rate of node 1 was increased to
help dissipate heat from the fluid flow, resulting in cooler fluid. This, in
turn, allowed the other wall nodes to reach the upper bound at a later time,
ultimately improving thermal endurance. Gaining such intuitions through
human experience alone can be challenging. However, optimization studies
like these assist engineers in discovering optimal strategies to solve spe-
cific problems. By leveraging these studies, engineers can avoid the need
for trial and error, thereby significantly reducing the time and resources
required to achieve the desired outcome.

6.2 Multi-split configurations with 6 CPHX-nodes and investiga-
tion of the inner-loop results. In this section we define the locations of
the CPHXs, and then, based on spatial location, the junction nodes are
produced. For this system, the location of the CPHXs are defined as:
[ [2, 0, 0], [2, 1, 0], [3, 1, 0], [12, 12, 0], [15, 10, 0], [13, 13, 0] ]. Two
sets of disturbances are considered: case1 = [5,5,5,5,5,5] kW, case2 =
[5,7,6,4,5,5] kW. In this structure, the locations of junctions and their heat-
load are fixed but all other nodes will vary. Therefore, we have nine dif-
ferent configurations in total, shown in Fig. 14. The result under these two
disturbance sets are shown in Fig. 15. As we see, the optimal configuration
depends on the disturbance values. For example, for the first scenario, the
best result is for the configuration 0, however, for the second scenario, the
best result is for configuration 6.
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Fig. 14 Different architectures produced by the
code when the location of CPHXs are defined as:
[[2, 0, 0], [2, 1, 0], [3, 1, 0], [12, 12, 0], [15, 10, 0], [13, 13, 0]].

To understand what happens to each control and state signal when solv-
ing the OLOC problem, consider Figs. 16 and 17. In the visualization, the
fluid nodes are represented by circles, and the corresponding wall temper-
atures are indicated in the plot legend using the notation 𝑤. For instance,
the wall node linked to the fluid node 0 is denoted as 𝑤 − 0. All nodes are
constrained to a maximum temperature of 45 degrees; if temperature con-
straints are not active, it is possible to increase thermal endurance. Optimal
thermal endurance often occurs when all wall nodes reach the upper-bound
at the same time; if one of the nodes reaches the upper-bound sooner than
the others, the thermal endurance could be increased (the capacity of the
system has not been fully utilized).

Figure 16 compares the optimal control trajectories of the first scenario
for three cases: case 0 (best), case 4 (worst), and case 1 (in between). In the
best configuration, all wall temperature nodes (𝑤) reach the upper-bound
at the same time. for configuration 1, only nodes 0, 1, and 3 reach the
upper-bound, and for configuration 4 only nodes 0 and 2 reached to the
upper bound. This is reasonable because, while all nodes have the same
heat loads, the nodes that are in series get the same flow rate. As a result,
the last node will have a higher temperature, as the fluid there has already
absorbed the heat from the previous nodes. The results obtained for the
flow-rates and all OLOC signals are shown in this figure.
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Fig. 15 Results obtained for the multi-split configurations
shown in Fig. 14 under two different disturbances. The unit
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0

1

3

j3

Tank

2

1

j2

0

4

j2

2

j3

Tank

30 1

j2

2

j3

Tank

0 1

3

Fig. 16 Investigation of the OLOC signals for 3 cases pre-
sented in Fig. 14 and with heat loads = [5,5,5,5,5,5] kW. The
multi-split configuration: 0 has the maximum, 4 has the min-
imum, and 1 has a value in the mid-range of thermal en-
durance.

Figure 17 compares the optimal control trajectories for the second sce-
nario where the disturbances are not the same for all nodes. Here, results
are shown for case 6 (best), case 4 (worst), and case 3 (in between). In
this scenario, the optimal solution is obtained from configuration 6 where
junction 2 with the maximum heat-load is in series with nodes 0, 1, see
Fig. 15(b). In this scenario, configuration 0 is the next optimal solution
among the 9 cases. Figure 17 also shows the control and state signals.
Again for the optimal solution we observe that all the wall nodes reach the
upper-bound temperature at the same times so this configuration has the
maximum thermal endurance. By comparing configurations 6 and 3 we
notice that the only difference between these architectures is the order of
the nodes 0 and 1. In configuration 3, in the first branch where all nodes
are in series, node 0 is the last node and has a larger disturbances than node
1. When the fluid reaches this node, it is already warmer than the fluid in
node 1; therefore, the temperature for that node reaches the upper-bound
temperature sooner than node 1. On the other hand, in optimal configu-
ration (6), node 0 is closer to the tank and receives cooler fluid than does
node 1.

In our future work, we plan to expand this study by considering a wider
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range of graphs and conduct an in-depth analysis. Additionally, we aim
to utilize machine learning techniques to extract human interpretable data
from the optimization results. This approach will enable us to uncover
valuable insights and understand the underlying patterns and relationships
in a more systematic and interpretable manner. By leveraging machine
learning methods, we can enhance our understanding of the optimization
process and gain actionable knowledge that can be applied to further im-
prove the design and performance of such systems.
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Fig. 17 Investigation of the OLOC signals for 3 cases pre-
sented in Fig. 14 and with heat loads = [5,7,6,4,5,5] kW. The
multi-split configuration: 6 has the maximum, 4 has the min-
imum, and 3 has a value in the mid-range of thermal en-
durance.

6.3 A multi-split configuration with 17 CPHX-nodes. In the pre-
vious section, smaller-size graphs were studied to facilitate an easier dis-
cussion of the results. However, the generated code theoretically has the
capability of automatically generating and solving graphs of any size. In
this particular case, we considered a graph with 17 heat-exchanger nodes:
14 CPHXs, and 3 junction CPHXs which were added using the spatial
locations of the CPHXs. Figure 18 displays the generated graph. Some
CPHXs are directly connected to the tank, while others are connected to
the created junctions. All 𝐶𝑝 Fluid nodes have the same heat load of 4
kW, and the heat loads of junctions 𝐽2, 𝐽3, and 𝐽4 are 3 kW, 4 kW, and 5
kW, respectively.

Figure 18 visualises the wall temperature (solid red line), fluid tempera-
ture (dashed-dot green line), and flow rate (dotted-blue line) for each node.
Additionally, the dashed gray line represents the range of these variables,
with temperature ranging from 15 to 45 degrees and flow rate ranging from
0 to 0.4 kg/s. Observing the graph, we can see that the wall temperature of
all nodes at the end of each branch (nodes: 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11,
12, 13) reaches the upper bound simultaneously. Similarly, the wall temper-
ature of 𝐽4, which has the highest heat load among all three junctions, also
reaches the upper bound. Moreover, the flow rate of 𝐽4 is higher than that
of 𝐽2 and 𝐽3. Additionally, since all nodes have the same heat load, nodes
connected to the same junction (or to the tank) exhibit almost identical flow
rate signals. As an example, the flow rate values of all nodes within the
following three categories are identical: {6, 7, 8, 0, 1, 2}, {9, 10, 11}, and
{12, 13}. The objective value of this problem reaches 48.68, indicating
the thermal endurance of this system under the given heat load.

7 Conclusion
This article presents the optimal flow control of fluid-based thermal

management systems with multi-split configurations. Graph-based model-
ing is used to generate different configurations and to automatically con-
struct their dynamic equations. In addition, the spatial information of the
heat-exchangers is used to define junctions and determine the level of com-
plexity of the systems architecture. The presented generative algorithm

Fig. 18 A graph with 18 nodes: 1 tank, 14 CPHXs, and 3
junction CPHXs. Individual plots, adjacent to each node, dis-
play the wall temperature (solid red line), fluid temperature
(dashed-dot green line), and flow rate (dotted blue line). The
plots show temperature (left y-axis) in ◦C and flow rate in
Kg/s (right y-axis) vs time in S (x-axis). The dashed gray
lines indicates the temperature values of 15 ◦C and 45 ◦C ,
and flow rate of 0 and 0.4 Kg/s.

can be used for various applications in the domain of configuration design.
Next, an open-loop optimization problem is posed to solve the problem,
and enumeration is employed to determine the best structure.

The results include 3 parts. Part 1 compares the results of single and
multi-split systems composed of 3 or 4 CPHXs and discusses the results
in detail. Part 2 presents and compares the results for multi-split systems
composed of 6 CPHXs and gives a comprehensive analysis on the inner-
loop optimization. Finally, part 3 studies a larger scale multi-split system
made of 17 CPHXs; an analysis of the results obtain is presented. The
results show that multi-split configurations result in a better configuration
design in some cases. For many optimal cases, all the wall nodes positioned
at the end of CPHX system branches reach the upper-bound temperature
simultaneously. Additionally, we observed that the optimal configuration
depends on the disturbance values. Finally, the results show the possibility
of modeling and analysing large system made of various CPHXs.

In the next step, we plan to use a population-based algorithm and com-
pare its results with an enumeration-based framework. Furthermore, our
goal is to utilize machine learning techniques to extract a knowledge base
interpretable by humans from the optimization data. This knowledge base
can then be utilized to guide designers in the process of designing similar
systems. Some other future work items include using more sophisticated
hydraulic models, performing 3D spatial optimization of the pipe network
with simultaneous energy loss minimization, and application of the pro-
posed design framework to some larger industry-relevant applications.
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