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Extracting Design Knowledge
from Optimization Data:
Enhancing Engineering Design
in Fluid Based Thermal
Management Systems
As mechanical systems become more complex and technological advances accelerate,
the traditional reliance on heritage designs for engineering endeavors is being dimin-
ished in its effectiveness. Considering the dynamic nature of the design industry where
new challenges are continually emerging, alternative sources of knowledge need to be
sought to guide future design efforts. One promising avenue lies in the analysis of design
optimization data, which has the potential to offer valuable insights and overcome the lim-
itations of heritage designs. This paper presents a step toward extracting knowledge from
optimization data in multi-split fluid-based thermal management systems using different
classification machine learning methods, so that designers can use it to guide decisions
in future design efforts. This approach offers several advantages over traditional design
heritage methods, including applicability in cases where there is no design heritage and
the ability to derive optimal designs. We showcase our framework through four case
studies with varying levels of complexity. These studies demonstrate its effectiveness in
enhancing the design of complex thermal management systems. Our results show that
the knowledge extracted from the configuration design optimization data provides a good
basis for more general design of complex thermal management systems. It is shown that
the objective value of the estimated optimal configuration closely approximates the true
optimal configuration with less than 1 percent error, achieved using basic features based
on the system heat loads without involving the corresponding optimal open loop control
(OLOC) features. This eliminates the need to solve the OLOC problem, leading to reduced
computation costs.

Keywords: Thermal Management System Design, Design Synthesis, Optimization, Optimal
Flow Control, Knowledge Extraction, Graph Modeling

1 Introduction
Fluid-based thermal management systems play a critical role in

various industries and applications, highlighting their significant
importance [1,2]. They ensure optimal performance, reliability,
and longevity of components and equipment by regulating and
controlling their temperature. Fluid-based thermal management
systems are especially vital in high-power electronic devices, such
as data centers, electric vehicles, and aerospace systems, where effi-
cient heat dissipation is essential to prevent overheating and poten-
tial failures. These systems ensure the safe operation of electronic
components by effectively managing heat through fluid circulation
and heat exchange mechanisms [3]. This allows heat to be trans-
ferred from hot-spots to areas where dissipation is more efficient,
such as heat sinks, maintaining desired operating temperatures and
improving overall system performance. The significance of fluid-
based thermal management systems extends beyond the realm of
electronics. They are also essential in industrial processes, power
generation, and environmental control systems [4]. In these appli-
cations, efficient heat transfer and thermal regulation are crucial
for maintaining optimal operational conditions, maximizing en-
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ergy efficiency, and reducing environmental impact. In addition,
as technology advances and systems become more powerful and
compact, thermal management becomes increasingly important.
Heat dissipation challenges escalate with higher power densities,
making fluid-based thermal management systems indispensable for
maintaining system reliability, performance, and safety [5].

Thermal management systems consist of various components.
While enhancing each component individually can contribute to an
improved design [6], it may not achieve optimality as this approach
fails to consider the synergy between different components [7].
Conversely, when the configuration design of the entire system is
conducted holistically, it has the potential to yield optimal results
[2,8–10].

Solving a particular configuration design problem is not the only
use of configuration optimization methods. Rich sets of design
data can also be produced that quantify desirable design charac-
teristics across varying system needs and purposes. Such design
data can augment historical design data (descriptions of engineer-
ing systems designed in the past and their resulting performance)
to expand the set of information from which humans can derive
generalizable engineering design knowledge. This is especially
valuable when working to create unprecedented systems without
design heritage [11], and when working to break free of the in-
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cremental progress that is associated with basing new designs on
existing ones. In recent years, engineering design researchers have
utilized data science techniques to extract design knowledge from
past design data [12]. However, these descriptive approaches have
limitations as they require existing design heritage. Furthermore,
these approaches are constrained by fixed data sets, lacking the
ability to create new data sets to improve the quality of knowl-
edge generation. On the other hand, design optimization data may
reveal new patterns that lead us in new non-obvious directions.
Knowledge extraction can be utilized to identify these patterns.

Several automated methods for extracting knowledge from de-
sign data have been explored. These methods encompass var-
ious forms of design knowledge and algorithmic approaches to
facilitate efficient knowledge extraction. For example, Fuge et
al. [12] demonstrated a machine learning approach for recom-
mending appropriate design methods based on historical design
data. Holzinger [13] articulates how artificial Neural Networks
(NN) may be used for knowledge extraction. While NNs are use-
ful for generalization, their complexity makes it difficult to extract
knowledge through its structure [14,15].

For the results to be human interpretable, complexity must be
limited. For example, it might be helpful for engineers to gain a
general sense of how an optimal design solution behaves as design
scenarios change (e.g., loading conditions, design goals, design
requirements). This knowledge is similar to the intuition of an
experienced engineer who understands how to make suitable de-
sign adjustments to accommodate changing design needs based on
the success and failure of previous experiences. Engineers who
gain insight from knowledge extracted from data would then have
a similar advantage to an engineer with deep intuition from expe-
rience. That said, knowledge from experience and insights from
design optimization data do have some fundamental differences.
The knowledge extraction process involves defining an optimiza-
tion problem and solving it many times with different parameters.
Following that, we extract knowledge about the relationship be-
tween the parameters and the results. The knowledge extraction
from optimization data has two key advantages over the design
heritage: 1) it is applicable in cases where there is no design her-
itage, and 2) the design is optimal, while the design derived from
design heritage may not be optimal.

In this article, we made an engineering system configuration de-
sign optimization framework for the investigation of thermal man-
agement systems. This framework is leveraged to generate design
optimization data and perform design knowledge extraction. Vari-
ous knowledge extraction algorithms are investigated to help build
a foundation for designing a specific class of thermal management
systems.

The following are the main contributions of the work presented
in this article:

1 Developing interpretable knowledge based on optimization
data that can be used to guide general design processes for a
class of thermal management systems. This knowledge aids in
estimating the optimal configuration of the fluid-based multi-
split system, considering the given heat loads.

2 Delving into a comprehensive analysis of the optimization
data to aid the interpretation of the acquired knowledge.

3 Leveraging the acquired knowledge to engineer novel and
more intricate heat management systems.

This article continues as follows: In Section 2, we discuss the
thermal management system architectures studied in this work and
the corresponding Open Loop Optimal Control (OLOC) problem.
Section 3 explains the knowledge extraction method utilizing op-
timization data for single-split cases involving 3 and 4 Cold Plate
Heat Exchangers (CPHXs), as well as multi-split cases with 3
CPHXs. Section 4 showcases four case studies aimed at evalu-
ating the knowledge extracted from the previous section and its

applicability in designing more complex heat management sys-
tems. The results demonstrate that the extracted knowledge can be
effectively generalized to enhance the design of complex systems.
In Section 5, the limitations of this work are presented, along with
potential suggestions for future research. Section 6 concludes with
a summary of the design methodology and guidelines for thermal
management system design.

2 System Description and Modeling
Figure 1 illustrates the thermal management system examined in

this article, which aims to regulate the temperature of heat generat-
ing devices on CPHXs through a coolant flow. The system employs
a multi-split configuration approach, as investigated in Ref. [2], un-
like previous single-split studies [16], expanding the search space
for improved performance. An algorithm is developed to gener-
ate multi-split architectures, allowing splits at the pump or CPHX
locations. Optimal control problems are then defined for each con-
figuration, seeking optimal flow rate trajectories to maximize sys-
tem performance while considering temperature constraints. The
models incorporate advection, convection, and bi-directional ad-
vection. The performance measure focuses on maximizing device
operating time to maximize the thermal endurance, denoted as 𝑡end,
while ensuring that temperature and mass flow rate limits are met.

Fig. 1 Class of problems considered in this paper. The sys-
tems include a tank, a pump, valve(s), CPHXs in parallel and
series, a liquid-liquid heat exchanger (LLHX), and a sink.

The general code structure is depicted in Algorithm 1. In this
context, the data refers to the positions of CPHX in [𝑥, 𝑦, 𝑧] coordi-
nates. The parameter numLevels determines the depth at which the
graph is analyzed to create junctions. For example, if numLevels is
set to 1, junctions can only be added to branches connected to the
tank. Multiple graphs are generated based on the provided Data
and numLevels, each having distinct configurations. These config-
urations can be parallel, series, or a combination of both. Within
a set of 𝑁 graphs, a specific graph is indicated by the variable
configNum. The variable distrb represents the heat load at each
node, which is used as a basis for generating the graphs. Based
on the provided data, two types of graphs are generated: the Base
Graph and the Physics Graph. The Base Graph represents the
topology of the thermal system, or how the tanks and the CPHXs
are connected, while the Physics Graph includes additional nodes
such as walls and sinks, and incorporates the dynamics between
these nodes.
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Subsequently, the Optimal Control (OLOC) problem is defined.
In this problem, the control variable is the derivative of the flow
rate for each independent branch, and the state variables include
the node temperatures and the flow rate of independent branches.
Constraints are imposed to ensure that the input flow rate of each
branch is equal to the output flow rate of all its sub-branches.
Additionally, the sum of flow rates in all end branches must equal
the pump flow rate (�̇�𝑝). These constraints are used to determine
the flow rate of dependent branches (�̇�dp).

Furthermore, initial temperatures are defined for the wall (w),
fluid (f), and sink (l) nodes. Path constraints are established to en-
sure that temperature nodes satisfy certain upper bounds through-
out the entire time horizon. Other path constraints are imposed to
restrict the flow rates to be equal or less than the pump flow rate
and to limit the maximum value of the control signal (derivative
of the flow rate) for independent branches.

The convergence of the algorithm is achieved when at least one
temperature reaches the upper bound; the time at which this oc-
curs is reported as the objective function value. Table 1 shows the
parameters used for the studies in this article. In this paper, the
OLOC problem is solved by Dymos [17], an open-source Python
program, using direct method (discretize and optimize) for solv-
ing the optimization problem; this method is suitable for solving
complex problems [18,19]. In the future, Model Predictive Control
(MPC) [20,21] will be investigated for its closed-loop capabilities,

Algorithm 1 Graph Generation, Modeling, and Optimization
Framework

Define CPHX-Position in [x,y,z] coordinates
Ex: 𝐷𝑎𝑡𝑎 = [ [2, 0, 0], [3, 1, 0], [10, 10, 0], [15, 10, 0] ]

Define Heat Load & Graph Config
Ex: 𝑛𝑢𝑚𝐿𝑒𝑣𝑒𝑙𝑠 = 1

𝑐𝑜𝑛 𝑓 𝑖𝑔𝑁𝑢𝑚 = 0
𝑑𝑖𝑠𝑡𝑟𝑏 = [5, 5, 5, 5, 5, 5] kW
𝑝 = Thermal Properties

Generate base graph and then physics graph

j2

2

j3

Tank

30 1

4 5 6 7

j2

2

j3

Tank

30 1

8

9

10

11

Source Power

Convection

Advection

Bidirectional Advection

Run OLOC
Define states: All temperatures and flow rate of independent branches:

𝝃 = [𝑻 , �̇�indp ]
Define controls: Derivative of flow rate of independent branches:

𝒖 = [�̈�indp ]
Define dependent flow rate of independent branches

�̇�dp = M × �̇�indp

Define initial condition, bound, dynamics, and path constraint
𝑻𝑤 (0) = 𝑻𝑤,0 𝑻𝑓 (0) = 𝑻𝑓 ,0 𝑻𝑙 (0) = 𝑻𝑙,0

𝑻𝑤 (𝑡 ) ≤ 𝑻𝑤,max 𝑻𝑓 (𝑡 ) ≤ 𝑻𝑓 ,max 𝑻𝑙 (0) ≤ 𝑻𝑙,max

0 ≤ �̇�dp ≤ �̇�p 0 ≤ �̇�indp ≤ �̇�p |𝒖 | ≤ �̈�𝑓 ,max

�̇� = 𝑨

[︃
𝑻
𝑇 𝑡

]︃
+ 𝑩1

(︄
𝑑𝑖𝑎𝑔

(︄
𝒁

[︄
�̇�p
�̇�𝑓

�̇�𝑡

]︄)︄)︄
𝑩2

[︃
𝑻
𝑇 𝑡

]︃
+𝑪−1𝐷𝑃𝑠

Define objective
max 𝑡end

3 Training Procedure
There are two scenarios in designing a classifier: 1) designing

a simple classifier where the result is interpretable by humans, but
the accuracy is not necessarily very high, and 2) designing a com-
plex classifier with more features with high accuracy where the
result is difficult to interpret. This paper pursues the first scenario
to get optimization data that is interpretable by humans or other

Table 1 Parameters used in the physics modeling of the
thermal systems.

Parameter Value Parameter Value
CPHX wall mass 1.15 kg LLHX wall mass 1.2 kg
Tank fluid mass 2.01 kg Thermal sink temperature 𝑇 𝑡 15𝑜 C

initial temperature , 𝑇𝑙,0 15𝑜 C wall temperature, 𝑇𝑤,0 20𝑜 C
fluid temperatue , 𝑇𝑓 ,0 20𝑜 C Thermal sink mass flow rate, �̇�𝑡 0.2 kg/s

Pupmp mass flow rate �̇�𝑝 0.4 kg/s Valve rate limit �̈�𝑓 ,max 0.05 kg/s2

optimization tools. We aim to use a limited number of features,
without considering OLOC related variables, to estimate the op-
timal configuration. This approach allows designers to estimate
which cases may yield better design solution, without solving the
OLOC problem.

Algorithm 2 gives an overview of the training procedure em-
ployed in this article. Initially, the system is provided with the
population size, heat load range, and number of nodes (CPHXs).
In the algorithm, 𝑛conf represents the total number of configurations
for graphs with 𝑛nodes. Based on the chosen sampling method, a
population of heat loads (disturbances) is generated for each con-
figuration. For each member of the population, the configuration
with the maximum thermal endurance is identified using the code
from Algorithm 1. The best configuration is assigned as the label
to that member of the population. Subsequently, new features are
defined, and a classification algorithm is trained to estimate the
best label based on these features. This training is conducted on
the training data and later tested on the test data.

Algorithm 2 Training Procedure
1: 𝑛pop ← Population size
2: 𝑑range ← Heat load range
3: 𝑛nodes ← Number of nodes
4: 𝑛conf : Compute number of different configurations
5: 𝑑𝑛pop×𝑛nodes : Generate a population of heat load samples
6: 𝐿pop ← 0 (Initialization of best label for each heat load)
7: for 𝑖 in range(𝑛pop) do
8: 𝑑𝑖 ← 𝑑𝑛pop×𝑛nodes [𝑖, :]
9: 𝐽𝑛conf ← Run the code given 𝑑𝑖 and 𝑛nodes and get thermal endurance

10: 𝐿pop [𝑖 ] ← argmax𝑖 𝐽𝑛conf (Get the best label for that disturbance)
11: 𝑛f ← Number of features
12: 𝐷𝑛pop×𝑛f ← Generate features based on 𝑑

13: 𝑛train , 𝑛test ← Set Number of training and test points among a total of 𝑛pop

14: 𝐺 (𝐷𝑛train×𝑛f ) : Train the classifier
15: �̂�𝑛test ← 𝐺 (𝐷𝑛test×𝑛f ) : Test the classifier on the test data

We present classifications of three different scenarios. Section
3.1 investigates single split cases with 3 nodes, comprising a total
of 13 different configurations. These cases are examined under
400 different disturbances. Various machine learning methods are
employed for the data classification. In Section 3.2, we explore
multi-split cases with 3 nodes, encompassing 3 distinct classes.
These cases are also analyzed using the same 400 disturbances as
the ones used in the studies of Section 3.1. Additionally, in Section
3.3, we examine single split cases with 4 nodes, which consist of
73 different configurations. These cases are studied under 200
different disturbances. Finally, the utilization of the trained models
for designing new systems is explained in Section 4.

3.1 Single-Split Graphs with 3 Nodes . Graph consisting
of three nodes are investigated in this section. The disturbance
for each node (i.e. CPHX) is considered within the range of
𝑑𝑖 ∈ [4, 16], kW, where 𝑖, ∈, 1, 2, 3. To explore various distur-
bances, we employ Latin Hypercube Sampling (LHS) method, gen-
erating a population of 400 disturbances. Subsequently, we utilize
the algorithm described in the previous section to solve the OLOC
problem and obtain the optimal objective function value. Each dis-
turbance corresponds to 13 different graphs with distinct configu-
rations, as shown in Fig. 2. This figure showcases all 13 configura-
tions and the conditions under which each configuration represents
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the optimal structure among all others. For instance, configuration
0 is optimal when all disturbances are close together, while config-
uration 12 is the optimal configuration when the first disturbance
is significantly higher than the other disturbances. Throughout this
section, the process of classification and the derivation of knowl-
edge will be demonstrated.

1 2 3
2

1

3 1

2

3 2

3

1

1

3

2 3

1

2

3

2

1

2 13 1 32

3 12 1 23 3 21

2 31

0 1 2 3

4 5 6 7

8 9 10 11

12

Fig. 2 Single-split structures with 3 heat generating compo-
nents. The heat load condition at which each configuration
is optimal is also presented.

In the classification process, to efficiently solve all 13 configura-
tions simultaneously, parallel computation is employed. The values
of the parameters in Algorithm 2 used in this study are shown in
Table 2. Initially, the features, denoted as 𝐷, are selected to be
identical to the disturbances. Subsequently, the normalized value
of disturbances are used to aid generalization.

Table 2 Values of parameters in Algorithm 2 used in Sec. 3.1
for single split cases with 3 CPHXs.

param value param value
𝑛pop 400 𝑑range [4, 16]kW
𝑛nodes 3 𝑛conf 13
𝑛f 3 𝐷 𝑑𝑖 or 𝑑𝑖/Σ𝑑𝑖

𝑛train 350 𝑛test 50
Sampling method LHS

Figure 3 illustrates the generated population in 2D and 3D do-
mains, where each axis represents a disturbance and the legend
displays the corresponding labels for each class. As discussed
previously, each disturbance results in 13 graphs with different
configurations. The label assigned to a disturbance represents the
configuration that yields the maximum objective function value
among the 13 cases. For instance, dark-blue corresponds to a
disturbance where the fourth configuration attains the highest ob-
jective function value.

Upon examining the data based on these raw features, it becomes
apparent that the data points are not easily separable. To address
this issue, we introduce three new features: 𝐷𝑖 = 𝑑𝑖/Σ3

𝑖=1𝑑𝑖 for
i=1,2,3. The utilization of dimensionless values facilitates general-
ization to different scenarios and helps comparing the cases based
on relative disturbance values. For instance, even when two cases
possess entirely distinct disturbances, they can be considered as
representing the same scenario in the feature domain if their rela-
tive values remain consistent. Additionally, the third feature, 𝐷3, is
excluded from the feature set due to its linear relationship with 𝐷1
and 𝐷2 (𝐷3 = 1− (𝐷1 + 𝐷2)). This also helps reduce the number
of feature. During training, it was also noticed that removing this
feature does not negatively impact the accuracy of the model.

d1

4 6 8 10 12 14 16 d24 6 8 10121416

d 3

4
6
8
10
12
14
16

0
1
2
3
4

5
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7
8

9
10
11
12

(a)
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(b)
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8
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12

(d)

Fig. 3 Population obtained from hypercube sampling based
on raw features for single-split cases with 3 CPHXs. All units
are in kW.

Figure 4 displays the population after applying the transforma-
tions based on these features. The x-axis represents 𝐷1, the y-axis
represents 𝐷2, and each color corresponds to the best configuration
among 13 different configurations within the feature space. The
figure includes three guidelines that divide the feature space into
six distinct sections, each represented by a different pattern. These
sections illustrate varying relationships between the magnitudes of
𝐷1, 𝐷2, and 𝐷3. For instance, in the center-top section, the follow-
ing inequality holds: 𝐷2 > 𝐷1 > 𝐷3. These six regions provide
an approximate understanding of the conditions under which each
graph (out of the 13 possible graphs) represents the optimal con-
figuration. For example, a large population of class 4 resides in the
top-center region, indicating that this configuration is optimal when
the relationship between features is expressed as 𝐷2 > 𝐷1 > 𝐷3.
Similarly, class 0 is situated in the center, suggesting that config-
uration 0 is the optimal choice when all features have the same
magnitude, i.e., 𝐷1 ≈ 𝐷2 ≈ 𝐷3.

Figure 4 also includes additional lines indicating the magni-
tude of 𝐷3, with all points on each line sharing the same 𝐷3
value. These lines prove beneficial in enhancing the accuracy
of estimating the optimal configuration within each region. This
is crucial since, in each region, multiple configurations coexist.
For example, in the lower-left region, three configurations domi-
nate: 0, 2, and 10. The value of 𝐷3 serves to discriminate be-
tween these configurations effectively. For instance, within this
region, when 𝐷3 < 0.39, configuration 0 is the most suitable;
when 0.39 < 𝐷3 < 0.47, configuration 2 performs best; and when
0.47 < 𝐷3 < 0.6, configuration 10 becomes optimal. It’s worth
noting that 𝐷3 is not defined as a feature for classification due
to its linear relationship with 𝐷1 and 𝐷2. Consequently, express-
ing 𝐷3 < 0.39 is equivalent to stating 𝐷1 + 𝐷2 > 0.61. During
training, only 𝐷1 and 𝐷2 are considered as features, indirectly in-
dicating the value of 𝐷3. As evident in the figure, the data points
in the feature space become separable, thus significantly aiding the
classification process.

The 13 graphs previously shown in Fig. 2 are now plotted in
the feature domain in Fig. 5. The positioning of each graph in
this plot is determined based on Fig. 4, where the concentration of
each class in a region influences its location. For example, class 0
was predominantly concentrated in the center, where 𝐷1 ≈ 𝐷2 ≈
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Fig. 4 Population obtained from hypercube sampling af-
ter feature selection defined as D1 = d1/Σ

3
i=1di , and D2 =

d2/Σ
3
i=1di , for single–split cases.

𝐷3, and in this plot, graph 0 is appropriately placed at the center
where this condition holds. As observed, graph 0 represents the
configuration where all branches are parallel, positioned right at
the center. In the six different regions surrounding class 0, we find
other configurations with two branches, featuring a single node in
one branch and two nodes in the other branch. Additionally, six
different cases with all three nodes placed in series are positioned
farther away from the center. The placement of these graphs in
Fig. 5 is directly influenced by the concentration of each class in
specific regions within the feature space, accurately representing
the different optimal configurations based on the corresponding
relationships between 𝐷1, 𝐷2, and 𝐷3.

The placement of different graphs based on the feature space
in Fig. 5 seems reasonable. For instance, in the top center region
where 𝐷2 > 𝐷1 > 𝐷3, classes 4 and 7 are considered optimal,
and in both cases, node 2, which experiences the maximum dis-
turbance, is located closest to the tank. Additionally, for class 4,
the difference between 𝐷2 and 𝐷1 is not substantial. However, as
we move to the top left (class 7), 𝐷2 significantly surpasses 𝐷1.
In this situation, with 𝐷2 >> 𝐷1 > 𝐷3, node 2 must receive the
maximum fluid from the pump, which is achieved by placing all
CPHXs in series. Conversely, for class 4, where 𝐷2 is not much
higher than the other disturbances, node 2 does not require max-
imum fluid. Solving the OLOC problem for this condition where
𝐷2 is not much higher than 𝐷1 revealed that this configuration (4)
yields a better objective value function than case 7.

Moreover, in case 4, we observe that node 3 is positioned af-
ter node 2, which is reasonable as node 2 experiences higher
disturbances and must be located close to the pump to receive
cool fluid. The fluid reaching node 3 has already absorbed some
heat from node 2. Similarly, in case 0, where features are close
(𝐷1 ≈ 𝐷2 ≈ 𝐷3), the optimal solution involves placing all
branches in parallel. This configuration grants the system max-
imum control authority since flow rates in each branch can be
altered through valves. While we have discussed specific regions
in Fig. 5, the same concepts and similar explanations apply to
different regions.

In the previous graphs, only the label for the best configura-
tion was displayed for each disturbance. However, as mentioned

1 2 3
2
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23
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1

1

3

2

3

12

2
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3

1

3

2

3

1

2
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2

3

3

2

1

3

2

1

2

3

1

Fig. 5 Location of Optimal Configurations in the Feature
Domain for Single Split Cases with 3 Nodes (Fig.2). The
feature selection defined as D1 = d1/Σ

3
i=1di , and D2 =

d2/Σ
3
i=1di

before, there are 13 different configurations for each disturbance.
Figure 6 showcases the relative importance of each configuration
compared to all others across the two dimensions of features. The
legend indicates the relative objective value of each configuration
in comparison to all other configurations. For example, among
400 disturbance training data, where each disturbance yields 13
different configurations, if we denote the objective value of con-
figuration 𝑖 for the 𝑘-th disturbance as 𝐽𝑘

𝑖
, the legends in the figure

represent the ratio 𝐽𝑘
𝑖
/max𝑚 𝐽𝑘𝑚, where 𝑚 = 0, 1, . . . , 12. Because

of the population size, there are 400 points in each subplot.
By way of example, for instance, we can observe that configu-

ration 0 achieves the highest value when disturbances are close to
each other. In addition, as was shown in Fig 5, classes 4 and 7 exist
in the same region (𝐷2 > 𝐷1 > 𝐷3), with the only difference be-
ing whether 𝐷2 >> 𝐷1 or 𝐷2 > 𝐷1. The previous figure (Fig. 5)
displayed the optimal class, indicating that these classes are close
to each other in the feature space (𝐷1, 𝐷2). Now, in Fig. 6, we can
observe the relative importance of each configuration compared to
all others across the two dimensions of disturbances.

In subplots “e” and “h”, we can see that the maximum values
of configuration 4 and 7 are in the top center region. Focusing on
that region, it becomes apparent that as 𝐷2 increases, the optimal
solution generally shifts from configuration 4 to configuration 7.
However, this difference is not significant when compared to all
other configurations. In other words, if we are in the top center
region where 𝐷2 > 𝐷1 > 𝐷3, choosing either config 4 or 7 does
not have a substantial impact. As a result, during the classification
process, achieving high classification accuracy is not of utmost
importance because obtaining an estimate of a good configuration
is sufficient to yield a result with an objective value close to the
optimal one.

It should be mentioned that the training data for classification
is obtained by solving the OLOC problem, involving dynamics,
constraints, and other factors. However, we did not include any
features related to OLOC; instead, we added features based on
disturbance. One of the reasons for not including more features was
to avoid solving the computationally expensive OLOC problem.
The goal is to obtain an estimated optimal configuration based on
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a given heat load. Subsequently, a designer can further investigate
and include more detailed analysis to design the system.
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Fig. 6 Population obtained for each configuration from hy-
percube sampling for single split cases after feature selec-
tion defined as D1 = d1/Σ

3
i=1di , and D2 = d2/Σ

3
i=1di . The

color bar shows the relative value of that configuration com-
pared to other configuration.

Among the 13 configurations, certain configurations exhibit a
higher success rate (being optimal configuration) compared to oth-
ers. This is illustrated in Fig. 7 using the 400 population data. No-
tably, configuration 0 demonstrates the highest success rate. This
aligns with part "a" of the Fig. 6, where the legend shows that the
difference between the minimum and maximum objective values
is small (min=0.9, and max=1); in all other cases, the difference
is higher. For example, in config 12, the minimum is 0.5, and the
maximum is 1. This outcome is anticipated because configuration
0 comprises of three parallel branches, providing the OLOC prob-
lem with maximum flexibility in selecting the flow rate for each
branch, thereby maximizing thermal endurance.

In the next step, we apply different classification methods to
classify all 13 configurations based on the provided features. Ta-
ble 3 presents the classification results obtained from various tech-
niques, reporting the accuracy for both the test and training data.
Among the methods tested, K-Nearest Neighbors (KNN) achieves
the highest classification accuracy on both data-sets. As previously
mentioned, we do not expect exceptionally high accuracy due to
the nature of the problem.

Figure 8 depicts the boundary regions generated by four differ-
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Fig. 7 Single-split configuration success rate.

ent classification methods mentioned in Table 3. The boundaries
here illustrate how each classification method assigns data to its
respective label. The boundary changes based on the chosen algo-
rithm, with KNN demonstrating the best results, where nodes with
the same color are categorized into the same group. It’s important
to note, we do not claim KNN to be the absolute best method, as
there are various hyper-parameters in these algorithms that can be
modified. The current study serves to explore different classifica-
tion methods and showcase their results. Further investigations can
be pursued in future work to delve into the optimization of these
methods.

Table 3 The classification results for different classification
techniques with 3 CPHXs

Method Acc (Test/Train) Method Acc (Test/Train)
Logistic Regression 0.66/0.70 Random Forest 0.66/0.72

K-Nearest Neighbours (K-NN) 0.78/0.93 Naïve Bayes 0.70/0.75
SVC (Support Vector Classifier) 0.70/0.76 AdaBoost 0.44/0.36

Kernel SVM (Support Vector Machine) 0.72/0.82 Decision tree 0.60/0.65
Quadratic Discriminant Analysis 0.74/0.90 MLP 0.76/0.82

The confusion matrices for both training and test data for KNN
algorithm are presented in Tables 4 and 5, respectively. Throughout
this table, each row represents the correct class (label), each column
shows the prediction (predicted class), and each element indicates
how often the corresponding cases have occurred. As observed,
KNN performs well for both the test and training data in general.

Table 4 KNN confusion matrix with max depth = 3 for the
training data

True/Predict 0 1 2 3 4 5 6 7 8 9 10 11 12
0 51 0 1 0 0 1 0 0 0 0 0 0 0
1 0 38 0 0 0 0 0 0 0 0 1 0 0
2 1 1 44 0 0 0 0 0 0 0 0 0 0
3 2 0 0 39 0 0 0 0 0 1 0 2 0
4 1 0 0 1 44 1 0 0 0 0 0 0 0
5 1 1 0 0 0 30 0 1 0 0 0 0 0
6 0 1 0 0 0 0 11 0 0 0 0 0 0
7 0 0 0 0 2 1 0 6 0 0 0 0 0
8 0 0 0 0 0 0 0 0 5 0 0 0 0
9 0 0 1 0 0 0 0 0 0 27 0 1 1
10 0 0 0 0 0 0 0 0 0 0 10 0 0
11 0 0 0 0 0 0 0 0 0 1 0 14 0
12 0 0 0 1 0 0 0 0 0 1 0 0 5

Figure 9 compares the objective values of the predicted config-
urations using KNN with the objective values of all other configu-
rations. The test data consists of a population size of 50, resulting
in 50 different disturbances, with each disturbance having 13 dif-
ferent configurations. For each disturbance, we predict the label of
the configuration with the best thermal endurance, i.e. maximum
objective value. The objective values associated with these pre-
dicted labels are denoted by asterisks (*) in the figure. The results
show that even if the predicted labels do not match the true labels,
their objective are in close proximity to the true labels and can
yield similar objective values. In this figure, each color represents
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Fig. 8 Compare different methods for single split cases with
3 CPHXs. The accuracy of these methods are shown in Ta-
ble 3. Here, the boundaries illustrate how each classification
method assigns data to its corresponding label.

Table 5 KNN confusion matrix with max depth = 3 for the
test data

True/Predict 0 1 2 3 4 5 7 8 9 10
0 11 0 1 0 0 0 0 0 1 0
1 0 5 1 0 0 0 0 0 0 0
2 0 0 5 0 0 0 0 0 0 0
3 0 0 0 7 0 0 0 0 0 0
4 0 0 0 0 2 0 0 0 0 0
5 0 2 0 0 1 8 0 0 0 0
7 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 3 0 0
9 1 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 1

a unique disturbance defined by [𝑑1, 𝑑2, 𝑑3]. The x-axis represents
the average value of these disturbances (𝑑mean = (𝑑1 + 𝑑2 + 𝑑3)/3),
while the y-axis represents the objective function value (𝑡end). Con-
sequently, for each mean disturbance, there are 13 different points
on the y-axis. For many cases, the predicted label (the case marked
with an asterisk) is located at the top among all 13 cases and has
an objective value close to the optimal value. This indicates that,
despite the KNN accuracy not being particularly high (0.78 in this
case on test data), the predicted label is quite close to the opti-
mal label. Therefore, the data obtained through this classification
process can provide engineers with an estimation of configurations
that may yield optimal solutions. An additional intuition that can
be obtained from this figure is that, as demonstrated, generally an
increase in the mean disturbance, as we move along the higher
values of the x-axis, results in a decrease in the objective value.

3.2 Multi-Split Graphs with 3 Nodes . We now consider
multi-split configurations with 3 nodes. Figure 10 shows these
three cases along with the condition in which that configuration
performs the best. The parameters for training are shown in Ta-
ble 6. Similar to the previous section, two features (𝐷1 and 𝐷2)
are taken into account. Figure 11 shows the best candidate from all
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Fig. 9 Objective value comparison of estimated optimal
configuration (∗) with Other populations (·) for each distur-
bance on Test data for single split cases with 3 nodes.

populations and their corresponding configuration label. Accord-
ing to the 2D plots, these cases are clearly separable. For example,
for configuration 0 we have 𝑑1 >> 𝑑2, 𝑑3. Also, the first 2D plot
shows that configuration 0 is completely distinguishable from the
other two classes when 𝑑12 > 𝑑1/3, 𝑑2,3. Figure 12 also shows
what happens if we move in any direction for each candidate.

1

2 30 2

2

1 3

3

2 1
1

Fig. 10 Unique multi-split structures with 3 heat generating
components. Also presented is the heat load condition for
which each configuration is the optimal structure.

Table 6 Values of parameters in Algorithm 2 that are used
in Sec.3.2 for multiple split cases with 3 CPHXS

param value param value
𝑛pop 400 𝑑range [4, 16]kW
𝑛nodes 3 𝑛conf 3
𝑛f 3 𝐷 𝑑𝑖/Σ𝑑𝑖

𝑛train 350 𝑛test 50
Sampling method LHS

Figure 13 shows instances where the multi-split configurations
are more effective than the single-split configurations. These cases
correspond to extreme disturbances, for example cases with 𝑑1 >>

𝑑2, 𝑑3. One reason behind this is that in such cases, the node with
the maximum heat load is connected directly to the pump, receiving
the maximum flow rate, which is equal to the pump flow rate. This
is achieved in both multi-split configurations and in the single-split
case where all nodes are in series. However, in the multi-split
configuration, the controller has the freedom to adjust the flow rate
in the subsequent two branches. In contrast, in the single-series
case, the controller lacks authority, resulting in identical flow rates
across all nodes, which are equal to the pump flow rate. This is one
of the reasons why the multi-split case outperforms the single-split
case.

3.3 Single-Split Graphs with 4 Nodes. In this section, we fo-
cus on the classification of single-split cases with 4 nodes. A total
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Fig. 11 Population obtained from hypercube sampling af-
ter feature selection defined as D1 = d1/Σ

3
i=1di , and D2 =
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i=1di , for multi-split cases.
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(c) config 2

Fig. 12 Population obtained from hypercube sampling af-
ter feature selection defined as D1 = d1/Σ

3
i=1di , and D2 =

d2/Σ
3
i=1di , for multi-split cases. The color bar shows the rel-

ative performance value of that configuration comparing to
other configurations.

of 73 different configurations are considered here. The population
of disturbances is generated in such a manner that the following
condition holds: 𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑4. Building upon the classifi-
cation methods used in previous sections, we classify these config-
urations based on the normalized disturbances (𝐷𝑖 = 𝑑𝑖/Σ𝑑𝑖 for
𝑖 ∈ {1, 2, 3}). However, in this section, we introduced an additional
feature: 𝐷4 = 𝑑1/10𝑘𝑊 . We recognized the importance of incor-
porating the magnitude of the first node (experiencing the largest
disturbance) to achieve reasonable accuracy. Therefore, alongside
the normalized features used in the previous section, we included
the feature 𝐷4 in our analysis.
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Fig. 13 The region in feature space at which multi-split
cases shown in Fig. 10 have better performances than single-
split cases shown in Fig. 2.

The training parameters are presented in Table 7. Upon analyz-
ing the true labels from the complete dataset, we discovered that
only 12 distinct categories (out of 73) yielded the best outcome. In
other words, upon examining all 73 configurations across the entire
training population, it was observed that only 12 unique configura-
tions yielded the maximum objective value, while all other config-
urations had inferior objective values. This implies that out of the
200 diverse populations, each consisting of 73 different cases, only
12 configurations (illustrated in Fig. 14) were labeled as optimal
solutions. Notably, in all of these cases, node 1, which possesses
the highest heat load, is situated nearest to the pump and receives
a relatively cooler fluid flow. These 12 classes were derived under
the assumption we maintained during training, where the distances
were ordered as 𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑4. Modifying this assumption
would generate different optimal configurations, but the underly-
ing concept would remain the same. In other words, the node with
the maximum heat load would still be positioned closest to the
tank. Therefore, the assumption we employed to generate sample
points does not limit the range of configurations. We made this
assumption specifically to reduce the number of labels (different
graph configurations) from 73 to 12, thereby facilitating a more
convenient analysis of the results.

Table 7 Values of parameters in Algorithm 2 that are used
in Sec. 3.3 for single-split cases with 4 CPHXs

param value param value
𝑛pop 200 𝑑range [4, 16]kW
𝑛nodes 4 𝑛conf 73
𝑛f 4 𝐷 [𝑑𝑖/Σ𝑑𝑖 , 𝑑0/10𝑘𝑊 ]

𝑛train 175 𝑛test 25
Sampling method Random Condition 𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑4

Table 8 presents the accuracy of various classification methods
on both the training and test data. From the results, we observe
that the K-Nearest Neighbors (KNN) method performs reasonably
well for classification, but may not be ideal. When we examine the
objective values of the estimated labels and compare them with the
true labels, we observe that they are quite similar. In other words,
although the estimated labels may not match with the true labels,
their objective function values are in close proximity. This notion
is illustrated in Fig. 15. The y-axis represents thermal endurance,
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Fig. 14 Eleven unique configurations out of 73 that iden-
tified as optimal based on the disturbance population size
of 200. The disturbance population is obtained by satisfying
the following constraint: d1 > d2 > d3 > d4

while the x-axis represents the average heat load for the 25 test
cases. For each average heat load value, there are 73 different
configurations, denoted by dots in the plot. The configuration es-
timated as the best configuration is marked with an asterisk (∗).
Notably, the asterisk is typically positioned close to the top among
all 25 (test population size) cases with different disturbances. Con-
sequently, even though the labeling accuracy is not high (0.7), the
objective value of the estimated case aligns closely with that of the
optimal case. Thus, the estimated configuration is fairly close to
the optimal solution. Furthermore, it is evident that as the mean
heat load increases, the thermal endurance decreases, as depicted
in the plot.

Table 8 The classification results for different classification
techniques with 4 CPHXs

Method Acc (Test/Train) Method Acc (Test/Train)
Logistic Regression 0.28/0.44 Random Forest 0.62/0.69

K-Nearest Neighbours (K-NN) 0.70/0.85 Naïve Bayes 0.56/0.62
SVC (Support Vector Classifier) 0.24/0.53 AdaBoost 0.24/0.22

Kernel SVM (Support Vector Machine) 0.56/0.72 MLP 0.73/0.78
Decision Tree 0.52/0.57

4.63 4.93 5.59 6.89 7.96 8.81 11.0
dmean

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

t e
nd

Fig. 15 Objective value comparison of estimated optimal
configuration (∗) with Other populations (·) for each distur-
bance on Test data for single split cases with 4 nodes.

4 Results and Discussion
The method described in the previous section offers several ad-

vantages. Firstly, it enables obtaining the optimal design for heat
management systems with varying heat loads without the need
to solve the OLOC (Optimal Location of Components) problem.
This significantly reduces the computational cost involved. Conse-
quently, engineers can obtain an initial estimate of the optimal de-
sign for a given heat load, allowing them to allocate more resources
and utilize advanced models to further analyze that specific con-
figuration. Moreover, since the discussed graphs serve as building
blocks for larger systems, the acquired knowledge can be leveraged
to design configurations with higher complexity. This capability
is demonstrated in the subsequent sections. This highlights an ad-
ditional benefit of conducting optimization studies for new system
classes that may lack design heritage—it can expedite the develop-
ment of engineering knowledge, facilitating the successful design
of unprecedented systems.

4.1 Examination of 8-Node Graphs with Single-Split
Branches. In Sect. 3.1 we endeavored to extract knowledge for
small systems having 3 nodes with the goal of applying it to larger
systems. These systems can serve as building blocks for larger
systems. In this section, we will examine whether this knowledge
is generalizable to larger systems. Here, a large graph consisting
of 2 junctions, with each junction containing 3 CPHX nodes, is
investigated. With 13 different cases possible for the 3 CPHXs
in each junction, the large graph encompasses a total of 169 dif-
ferent configurations. This study considers two scenarios with
two different disturbances. In the first scenario the disturbance
is [5,5,7,5,4,4,4,4] kW, and in the second one the disturbance is
[5,5,9,3,2,10,3,2] kW, where the first two elements represent the
disturbance of the CPHX mounted on junctions, while the others
indicate the disturbance of CPHXs connected to each junction.

Figure 16(a) presents the results for the first scenario. The y-
axis represents thermal endurance, while the x-axis displays the
percentile score, which defines the relative position of a specific
data point within a dataset by indicating the percentage of data
points in the dataset that are equal to or below that particular value.
Consequently, in this figure, the top right corresponds to the best
solution, while the bottom left represents the worst solution. In
Fig. 16(a), all three nodes connected to the right junctions have the
same heat-load equal to 4 kW. There are 13 possible configurations
of these nodes, as shown in Fig. 2. In Fig. 2, when disturbances are
close in value, the best result occurs when all nodes are connected
in parallel (configuration 0). This is what we see for the optimal
result in Fig. 16(a) for case 1. For the left junction, the disturbances
are [7, 5, 4] kW. According to Fig. 2, the best configuration for this
disturbance is configuration 3 ((𝑑1 = 7) > (𝑑2 = 5) > (𝑑3 = 4)),
and this is what we see for the the left junction of case 1.

We see a similar pattern in other cases of Fig. 16(a). For example
for the worst case (case 5), all of the nodes in the right junction are
in series. In this case, there is no control over the flow because the
flow rate is equal to the pump flow rate which is a fixed parameter.
Hence, there is no optimization problem to solve, and that results
in a poor objective value. Additionally, in the left junction, the
node with the maximum heat-load is the farthest node from the
pump, and the node with lowest heat-load is the closest to the
pump. However, based on Fig. 2, when all nodes are in series, the
best result occurs when the node with maximum load is closest
to the pump and the node with the minimum load is the farthest
to the pump, and this is the opposite of the case we see in the
left junction of case 5, and that is why this has the lowest thermal
endurance.

Figure 16(b) shows the results of the second study where the
disturbances are [5, 5, 9, 3, 2, 10, 3, 2] kW. The optimal solution for
this configuration is case 1. This optimal result is well aligned with
the extracted knowledge presented in Fig. 2. For the right junction,
the disturbances are [10, 3, 2], and based on Fig. 2, the optimal
result for this case where ((𝑑1 = 10) >> (𝑑2 = 3) > (𝑑3 = 2))
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Fig. 16 A case-study to show that the extracted knowledge
from Sect. 3.1 is applicable to larger systems. The configura-
tions studied in that section are building blocks of the larger
systems.

happens for configuration 12, where all nodes are in series and the
node with maximum load is closest to the tank, and the node with
minimum load is the farthest away from the tank; this is what we
see in the right junction of case 1. For the left junction, the distur-
bances are [9, 3, 2], and based on Fig. 2, the optimal result for this
case where ((𝑑1 = 9) >> (𝑑2 = 3) > (𝑑3 = 2)) similarly happens
for configuration 12. It should be noted that the best configuration
is dependent on the disturbances. For example, in Fig. 16(a), the
worst result happens for the case where nodes are in series (case
5 in part a), but in Fig. 16(b) the best solution is the case where
all nodes are in series (case 1 in part b). In addition, the extracted
knowledge is also influenced by how the disturbances are related.
The results indicate that the knowledge could be used to guide
designers to determine which configuration is closer to the opti-
mal solution. Then, the engineer could start designing a thermal
management system based on this information. It should be noted
that the results in the study are limited and further exploration is
required to have a more comprehensive understanding of different
scenarios and use cases.

4.2 Examination of 9-Node Graphs with Multi-split
Branches. In this section, we apply the knowledge obtained from
the previous sections to multi-split graphs with 2 junctions. The

first junction branches into 3 nodes, while the second junction
branches into 4 nodes. The results are depicted in Fig. 17. In the
case of the first junction, where all three nodes are connected to it,
each node has an identical heat load of 4 kW. Based on the trained
classifier, the optimal solution indicates that all nodes should
be connected in parallel. Similarly, for the next junction with 4
nodes, the trained classifier suggests that the optimal configuration
consists of 3 branches. In one of these branches, the node with the
maximum heat load is in series with the node with the minimum
heat load, and the node with the maximum heat load is positioned
closer to the pump. As shown in the figure, this configuration
aligns perfectly with the optimal solution (case 1).

Furthermore, it is worth noting that although case 4 exhibits
maximum control authority, with all branches in parallel at each
junction, it does not necessarily yield the optimal configuration.
Through these studies, we can gain knowledge that may not be
achievable through conventional human engineering practices.
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Fig. 17 A case-study to show that the combination of ex-
tracted knowledge from Sect. 3.1 and 3.3 is applicable to
larger systems. The configurations studied in that section
are building blocks of the larger systems.

4.3 Automating the Design of Complex Graphs Using the
Trained Models. In the previous section, we observed that larger
graphs can be divided into smaller graphs, and a model trained
on these smaller graphs can be used to design larger graphs. This
section aims to automate this process. Given a complex, multi-split
graph, it first divides the graph into several groups. The groups
consist of CPHXs nodes connected to a tank or junctions. Based
on the number of CPHXs in each group, the trained model for that
group of nodes is used to estimate the optimal configuration for
that subgraph. After performing this process for all subgraphs, the
optimal design for the complex graph is estimated by combining
the subgraphs.

The process is illustrated in Figure 18. In this graph, consisting
of 13 CPHXs, four nodes are directly connected to the tank, four
nodes are connected to a junction, and three nodes are connected
to another junction. The heat load of each node is written inside
the circles in kilowatts. Enumerating all possible configurations
for this complex graph would require examining 69,277 different
cases. If instead of three nodes, four nodes were connected to the
other junction, this number would increase to 389,017. It is clear
that enumeration is not feasible for complex graphs.

However, based on the proposed method, this complex graph is
divided into three subgraphs, with two of them having four nodes
and the third one having three nodes. Then the trained model is
used to estimate the optimal design. Figure 18 shows the results of
this study, where Case-2 represents the estimated optimal design
obtained from this approach. To evaluate the quality of this opti-
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mal design, its objective value is compared with 2,000 randomly
selected configurations out of the 69,277 cases. As we can observe,
Case-2 is quite close to Case-1, which is the best solution among
these 2,000 cases. Thus, this approach successfully estimates the
optimal complex graph without having to enumerate all 69,277
cases. By using this method, the estimated optimal design can
be obtained within a few seconds, whereas enumeration of 69,277
cases would take several days even with parallel computation. In
Fig. 18, Cases 3, 4, and 5 show other configurations along with
their objective values. The worst-case scenario, Case 5, involves all
nodes in series, with the node having the highest heat load farthest
from the tank. Interestingly, Case 3, where all nodes within each
subgraph are parallel and have maximum control authority, did not
yield the best result. This indicates that the graph configuration
significantly impacts the dynamics, and having more control au-
thority does not necessarily guarantee better results. This method
can be easily applied to graphs with multiple junctions and can
estimate the optimal configuration with good accuracy.
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Fig. 18 Automated division of complex graphs into sub-
graphs and estimation of optimal designs using trained mod-
els

4.4 Use of Trained KNN with Three CPHXs for Optimal
Label Estimation in the Presence of Four CPHXs. In the pre-
vious sections, we investigated the trained models to determine
if their results are generalizable to more complex configurations.
Through various examples, we demonstrated that this is indeed the
case. Now, in this section, our aim is to investigate whether the
trained model with fewer nodes can accurately estimate the optimal
class in scenarios with a larger number of nodes. This inquiry is of
interest because, if achievable, it would eliminate the need to enu-
merate all graphs generated with a high number of nodes in order to
either select an appropriate configuration or generate training data.
For example, the number of different configurations for single split
cases with 3, 4, and 5 nodes are 9, 13, and 501, respectively. It
is evident that as we increase the number of nodes, the number of
graphs increases rapidly, requiring a significant amount of training
data to build a model. Alternatively, using brute force would ne-
cessitate studying a vast number of cases. Consequently, utilizing
pretrained models with fewer nodes to estimate configurations with
more nodes would be advantageous.

In order to achieve this objective, we utilize the tariend KNN
model with 3 CPHXs to determine the optimal class with 4 CPHXs.
To accomplish this, we combine the 4 nodes to obtain 3 new nodes.
Figure 19 displays six different load cases that result from combin-
ing these 4 nodes. Here, 𝑑𝑖 represents the disturbance of the ith
node. With 4 nodes, we can generate six distinct load cases, each
consisting of 3 nodes. For instance, in configuration 1, the distur-
bances of node 1 and 2 are summed together. Once we have these

new configurations, derived from a single graph with 4 nodes, we
employ the trained model to determine the best estimated configu-
ration for all 6 load cases shown in Fig.19.
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Fig. 19 By combining disturbances in graphs with 4 CPHXs,
we can generate graphs with 3 CPHXs. This process leads to
6 distinct cases labeled from 1 to 6. In these cases, a dashed
box represents a new CPHX in the graph with 3 nodes, and
its disturbance is obtained by combining the corresponding
disturbances from the graphs with 4 CPHXs. Figure 2 dis-
plays the 13 different graphs that result from using 3 CPHXs.
At the bottom of current figure, two sample graphs are pro-
vided as illustrations.

In this approach, instead of solving 73 configurations for graphs
with 4 CPHXs, we only need to consider 6 estimated optimal con-
figurations for graphs with 3 CPHXs. We then compare their objec-
tive values and select the best one. In this section, we applied this
method to graphs with 4 CPHXs under 200 different disturbances,
each consisting of 4 elements (as we have 4 CPHXs). We used the
trained model with 3 CPHXs to estimate the optimal class for all
6 cases shown in Fig. 19. Subsequently, we compared their objec-
tive values and selected the best configuration among those 6 cases.
Then, the equivalent configuration with 4 nodes was obtained, and
its objective value was labeled as �̂�. For each disturbance, out of
the 73 different configurations (for graphs with 4 CPHXs), �̂� rep-
resents the estimated objective value, and the corresponding class
indicates the estimated optimal configuration. Among these 73
different configurations, the maximum value is labeled as 𝑦max,
and the minimum value is labeled as 𝑦min. We define a variable
as 𝑦max− �̂�

𝑦max−𝑦min
. This variable ranges between 1 and 0, where 0 in-

dicates that the estimated objective value is the same as the true
optimal value, and 1 indicates that the estimated objective value is
the worst among all 73 populations

The histogram in Fig. 20(a) illustrates the results. The x-axis
represents 𝑦max− �̂�

𝑦max−𝑦min
, while the y-axis denotes the density. From

the plot, we observe that among the 200 different disturbances, the
estimated class (and its corresponding objective value) tends to be
close to the optimal solution, as indicated by the x-axis shifting
towards 0. However, it should be noted that we should not expect
high accuracy in this estimation process, as we utilized trained
models with fewer nodes to estimate the optimal class for config-
urations with more nodes. In Fig. 20(b), the estimated objective
value (∗) is also shown along with the other 73 configurations (·).
We observe that in low disturbance, the estimated optimal objec-
tive value falls in the middle of the 73 configurations, indicating
relatively lower accuracy for this method. However, as we move
towards higher disturbance (to the right), the accuracy generally
improves.

It should be noted that if two CPHXs are arranged in series,
the result is not simply equivalent to combining two nodes and
summing their disturbances. This is because the combined node
with two disturbances has more interaction with the environment
(more surface area exposed to the environment) compared to a
single node with its disturbance being the sum of the two individual
nodes. To obtain an equivalent configuration, adjustments need to
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be made to the heat exchanger characteristics of the combined node.
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Fig. 20 (a): The histogram represents a population of 200
different disturbances, each containing 4 elements (as we
have 4 CPHXs). The x-axis represents ymax− ŷ

ymax−ymin
, and the y-

axis represents the density. A lower value on the x-axis in-
dicates a better result, as it signifies that the objective value
of the estimated configuration is closer to that of the optimal
configuration. (b): Objective value comparison of estimated
optimal configuration (∗) with Other populations (·) for each
disturbance.

5 Limitations
While the method discussed in this article offers certain ben-

efits, it also has limitations that should be considered. Firstly,
when dealing with graphs containing a larger number of nodes,
additional training data is required. As the number of nodes in-
creases, the number of configurations grows exponentially. For
instance, increasing the number of nodes from 4 to 5 results in a
jump from 72 to 501 configurations. To generate the training data,
the corresponding OLOC problems must be solved across a range
of different heat loads. For a specific heat load and configuration,
solving the corresponding OLOC problem takes approximately 2
minutes using the specified workstation with AMD EPYC 7502
32-Core Processor @ 2.5 GHz, 64 GB DDR4-3200 RAM, LINUX
Ubuntu 20.04.1, and Python 3.8.10. Even with parallel computa-
tion using 64 cores, solving the OLOC problem for 501 different

configurations would still take about 16 (≈ 501/64 ∗ 2) minutes. If
the heat load population size is 200, the computation time would
extend to approximately 53 hours (≈ 200 ∗ 16/60). Although this
might still be reasonable, as the number of graphs increases, the
computation time will grow exponentially. Consequently, apply-
ing this method to graphs with a large number of nodes may not
be feasible. To address this issue, it has been demonstrated that
dividing the graphs into sections based on junctions and the tank,
utilizing the trained model for each section, and then combining the
results can help estimate the optimal configuration of the original
complex system. However, this approach relies on the assumption
that the subgraphs are relatively simple, typically comprising 3 or
4 nodes. An alternative approach to tackle this challenge could be
to employ optimization algorithms like Genetic Algorithm (GA)
to estimate the best configuration, rather than generating extensive
training data for large graphs.

Secondly, the accuracy of estimating the optimal configuration
using the discussed method is not particularly high, approximately
75%. To improve this accuracy, alternative machine learning algo-
rithms with different features can be employed. Nonetheless, the
paper demonstrates that despite the modest accuracy in estimat-
ing the optimal configuration, the difference between the objective
value of the estimated configuration and the best configuration is
relatively small. As a result, this method can be employed as an
initial estimate for determining the optimal configuration.

The future work will address these limitations by utilizing
population-based algorithms, such as GA, to identify the connec-
tions between tanks, junctions, and CPHXs that lead to better ob-
jective values. Additionally, a more comprehensive study will be
conducted on feature selection and hyperparameter tuning of the
machine learning methods employed in this research.

6 Conclusion
This article introduces the knowledge extraction process for

fluid-based thermal management systems with single-split and
multi-split configurations. The configurations are generated using
a graph-based modeling technique, considering a range of differ-
ent disturbances. The open-loop optimal control approach is em-
ployed to address the optimization problem for each configuration.
Subsequently, various machine learning techniques are applied to
extract knowledge from the data, and the trained model’s accuracy
is evaluated for the objective function value (thermal endurance)
and optimal class label prediction using both training and test data.

The trained model is then tested for its applicability in designing
new and complex heat management systems. The results demon-
strate that the trained model can be effectively generalized to design
new, intricate single-split and multi-split fluid-based thermal man-
agement systems. One significant advantage of the trained model
is that it provides designers with an initial estimate of the opti-
mal class without having to solve the open-loop optimal control
problem. Armed with this initial estimate, designers can employ
more advanced models to further evaluate the specific configura-
tion. This enhances the engineering design process for fluid-based
thermal management systems.

Furthermore, this approach offers two notable advantages by not
relying solely on previous human-centered data. Firstly, it can be
used to design new systems that lack significant design heritage.
Secondly, the training data used in this method are optimized,
whereas previous human designs may not necessarily be optimal.
Consequently, this approach contributes to improving the engineer-
ing design of such systems. Moreover, this methodology has the
potential for application in diverse engineering problems, offering
similar opportunities in other disciplines. The limitations of the
present work has been discussed and suggestions for future work
are also made.
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