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ABSTRACT
While Quality-Diversity algorithms attempt to produce a set of
high quality solutions that are diverse throughout descriptor space,
in reality decision makers are often interested in solutions with
specific descriptor values. In this paper we suggest that current
methods of evaluating Quality Diversity algorithm performance
do not properly account for a decision maker’s preference in a
continuous descriptor space and suggest three approaches that
attempt to capture the real-world trade-off between a solution’s
objective performance and distance from a desired set of target
descriptors.

In this paper we propose a randomised metric, a process of
Monte-Carlo sampling of 𝑛 target points in descriptor space and a
small number of random weights that represent different tolerances
for mis-specification in a solution’s descriptor values. This sampling
allows us to simulate the requirements of all possible combinations
of target-tolerance pairs and, by taking sufficient samples, estimate
average performance.

We go on to formulate three simple methods for comparing aver-
age performance of algorithms; Continuous Quality Diversity score
(CQD) and Hypervolume of the objective/distance Pareto front. We
show that these measures are simple to implement and robust mea-
sures of performance without introducing artificial discretisation
of the descriptor space.
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1 INTRODUCTION
Quality Diversity (QD) algorithms [2, 6, 7] aim at finding a large
set of solutions to an optimization problem that perform well and
behave differently. Since there is currently no single metric that cap-
tures both dimensions of this goal, there is no straightforward way
to compare different algorithms or the same algorithm at different
iterations. Mouret and Clune [7] introduced four quality measures
to analyze the performance of the MAP-Elites algorithm that all
rely on a discretization of the behavior space into a grid (or “map”):
coverage (how many cells of the grid are filled), precision (when a
cell is filled, how close is the solution to the best known solution?
that is, ignore the coverage), global reliability (same as precision,
but use 0 when a cell is not filled, that is, combine performance
and coverage), and global performance (the best solution found in
the map). Pugh et al. [9] compared MAP-Elites, which relies on a
grid, to Novelty Search with Local Competition, which does not
use a grid. Nevertheless, they use the “MAP-Elites grid” to compare
the performance algorithm, that is, they discretized the behavior
space, looked at the best performance in each cell, then used the
reliability introduced in [7] (the sum of the fitness of all the filled
cells), which they renamed “QD-score”. Recent papers mostly (e.g.,
[1, 3, 8]) focus on the QD-score and the coverage (a notable excep-
tion is [2], which uses a novelty-score to estimate the density in
behavior space without a grid).

QD-score and coverage can be used to compare two grid-based
algorithms, but comparing continuous algorithms or grids at dif-
ferent resolutions is not possible. For instance, a decision-maker
might be more interested in matching a precise value for a behavior
descriptor than having a slightly better performance. While there
are only a few continuous algorithms for now [4, 5], we can expect
more algorithms in the future as the field develops. In addition,
high-dimensional behavior spaces may require using a Centroidal
Voronoi Tesselation [10] instead of a standard grid, whichmakes the
QD-score a bit harder to compute. Last, the QD-score in its current
form implicitly assumes that the minimum fitness is 0 (otherwise,
filling a cell would result in a reduction of the QD-score).

Our key idea is that decision makers (DMs) often have a set of
specific preferences over descriptor space and would ideally like
a solution that matches their requirements within an acceptable
tolerance. In this work, we attempt to formalise the language of
coverage in a continuous descriptor space and recommend three
ways to measure the balance between quality and diversity from the
perspective of an end user who wishes to use a Quality-Diversity
algorithm. In fact, we define the goal of a QD algorithm to identify
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a mapping 𝑆 : 𝐺 → 𝑋 which returns, for every possible descriptor
in feature space, the best (in terms of objective function) solution
𝑥 ∈ 𝑋 with the specified descriptors.

Let us assume we have a well formulated QD problem and have
implemented a suitable QD algorithm to obtain a solution. We
consider an end user querying the solution produced by the QD
algorithm for a single solution that matches a set of target feature
values 𝐺 . In the case of archive based QD algorithms such as MAP-
Elites, we would return the elite point in the same niche as𝐺 but
without loss of generality we introduce 𝑆 (.) as a way of generating
a solution for any point in feature space. Now 𝑆 (𝐺) = 𝑥𝑟

𝐺
is the

point recommended by a QD solution for a point with descriptor
values 𝐺 .

The quality of any recommended point to the final user will
depend on both the objective quality of the recommended point
and the user’s tolerance for a mis-match with the requested descrip-
tors. This preference could be encapsulated by a linearly weighted
expression.

𝜔 (𝑥,𝐺, 𝜃 ) = 𝑓 (𝑥)
|𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 |

− 𝜃 𝛿 (𝑔(𝑥),𝐺)
𝛿𝑚𝑎𝑥

(1)

for an objective function 𝑓 (𝑥), descriptor function 𝑔(𝑥), distance
measure 𝛿 and some weighting on the penalty 𝜃 . The values are
normalised by the values 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 for the objective and 𝛿𝑚𝑎𝑥 for
the distance. 𝑓𝑚𝑎𝑥 represents the maximum value of the objective
function. For benchmark problems these max/min values can be
provided but in practice, when comparing performance between
multiple algorithms, 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 can simply be the largest and
smallest observation from the unison of the observation sets. As the
descriptor limits are generally known a-priori 𝛿𝑚𝑎𝑥 can be easily
obtained. In the extreme cases, if the DM were to have infinite
tolerance for deviating from the specified descriptor values (𝜃 = 0)
we would be searching for the global optimum. Alternatively, as
𝜃 → 1 the DMwould value any point that does not have our specific
descriptors as being quite poor. Theoretically 𝜃 need not be limited
to 1 and 𝜃 > 1 would represent an extremely strong preference for
obtaining specific descriptor values but we do not explore that in
the current work.

We abuse notation slightly to extend 𝑆 with an extra parameter

𝑆 (𝐺, 𝜃 ) = 𝑥𝑟
𝐺,𝜃

𝑥𝑟
𝐺,𝜃

is now the solution recommended by a completed QD algo-
rithm for some desired descriptor values 𝐺 and a mismatch toler-
ance 𝜃 .

2 PROPOSAL 1. CONTINUOUS QUALTY
DIVERSITY SCORE (CQD)

Assuming some distribution over the target descriptor𝐺 and the dis-
tance penalty weight 𝜃 , we can then compute the expected quality
of a QD solution mapping 𝑆 as∫

𝐺

∫
𝜃

𝜔 (𝑆 (𝐺, 𝜃 ),𝐺, 𝜃 ) . (2)

As (2) does not have an analytical form, in order to measure an
algorithm’s performance we must generate targets by performing
Monte Carlo sampling over the target descriptor and penalty weight

space.We then query our QD solution with 𝑆 (𝐺, 𝜃 ) whichwill select
the best performing point from our archive or predict the best point
in the case of model based QD approaches.

𝐶𝑄𝐷 =
∑︁
𝐺

∑︁
𝜃

𝜔 (𝑥𝑟 ,𝐺, 𝜃 )

For 𝑛 Monte Carlo sampled points and a selection of weights,
taking 𝑥𝑟 to be 𝑥𝑟

𝐺,𝜃
, the point recommended for descriptor 𝐺 .

As the QD algorithms do not know which points in feature
space will be required a-priori, algorithms cannot simply overfit
to the requirements. In order for an algorithm to perform well on
this benchmark, they must therefore achieve good coverage and
identify good points throughout the search domain, aligning with
the original goals of QD.

2.1 CQD pseudocode

Require: 𝑆 (𝐺, 𝜃 ) → 𝑥𝑟 : A function that selects the best point
from the QD algorithm for some G and 𝜃

1: 𝐺 ← n sampled target points in descriptor space
2: 𝜃 ← m uniformly distributed weights ∈ [0, 1]
3: score = 0
4: for 𝐺𝑖 ∈ 𝐺 do
5: for 𝜃 𝑗 ∈ 𝜃 do
6: 𝑥𝑟 = 𝑆 (𝐺𝑖 , 𝜃 𝑗 )
7: score += 𝜔 (𝑥𝑟 ,𝐺𝑖 , 𝜃 𝑗 )
8: end for
9: end for

3 VISUALISATION OF CQD SCORE
To visualise the metric, we consider a 1 dimensional objective func-
tion with a 1 dimensional linear descriptor function. When an
algorithm suggests a point for a target descriptor value (the vertical
line in Figure 1), we take the objective performance of the point
and discount it by its distance, in this case euclidean distance in
descriptor space, from the target. In Figure 1, we have a weight of
0, so the global optimum will be the best recommendation for all
targets.

In Figure 2, we see how the value of 𝜃 affects the value of points
depending on the distance away from the target value. The ’x’
indicates the respective optimal solution.

4 VISUALISING ALGORITHM COMPARISONS
We can compare algorithms over different observation budgets,
here is an example comparing MAP-Elites to Sobol sampling on a
6 dimensional Rosenbrock function. For both algorithms we use
the MAP-Elites style niched archive and search the archive for the
best point. The problem is defined over a 2-dimensional descriptor
space formed by 2 descriptor functions 𝐷 with 𝑥𝑖 referring to the
𝑖th input dimension of point 𝑥 :

𝐷1 =
𝑥0 + 𝑥1

2
, 𝐷2 = (𝑥2 − 1)2 (3)
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Figure 1: a visualisation of objective and distance from a
target descriptor

Figure 2: A visualisation of the changing optimal solution as
the weighting changes

We show the performance over 10 uniform distance weights (mean
and standard error of average performance over 100 target points,
calculated over 10 runs) and compare at two search budgets.

Note that the standard error displayed in these results is the
standard error around the mean performance of the algorithms on
100 random target points per run. There are 3 sources of variance
for this measure, from randomly chosen targets (target variance),
variance from the stochasticity of the algorithm itself (performance
variance), and variance in the distribution of the objective measure
(objective variance). The latter source of variability is a characteris-
tic of the problem and should not enter the error bar calculation,
so we generate targets independently for each run and record as a
result the average over all the target points. In the following plots
we average performance over 10 runs for Fig 3. and Fig 4. and 100
runs for Fig. 5.

Clearly MAP-Elites is leveraging its higher performing solution
set due to its evolutionary strategy. It found much better solutions

Figure 3: MAP-Elites performance vs Sobol sampling on the
Rosenbrock6d problem with 2 black-box features and a bud-
get of 10,000 observations, average of 10 runs

after 10,000 evaluations than Sobol sampling, even much better
than what Sobol sampling achieved after 90,000 observations.

Figure 4: MAP-Elites performance vs Sobol sampling on the
Rosenbrock6d problem with 2 black-box features and a bud-
get of 90,000 observations, average of 10 runs
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Figure 5: Average CQD performance for 100 runs of MAP-
Elites and Sobol sampling on theRosenbrock6d problemwith
2 black-box features. Error bars are standard error around
the mean performance for 100 independent Monte Carlo
sampled targets per run

5 COMPARING CQD CONVERGENCE
When averaged over weight values, CQD provides a single perfor-
mance value for the comparison of algorithms, see Table 1 for an
example. This also allows to compare algorithm convergence, as
depicted in Fig. 5.

Table 1: Performance of three algorithms on the Rosen-
brock6d problem. With a budget of 90,000 evaluations, MAP-
Elites obtains a much better CQD score than Sobol Sampling.
On the other hand, BOP-Elites[5] obtains a similar CQD score
already after 700 function evaluations

Algorithm budget Mean CQD Std Error
BOP-Elites 700 0.7922515 0.0010045
MAP-Elites 90000 0.7923912 0.00057338
Sobol Sampling* 90000 0.60649299 0.01103941

6 CQDWITH A THRESHOLD
Above we proposed the CQD measure assuming a linear penalty
on the distance from the target descriptor. However, we could also
use a variant that assumes the DM has a tolerance 𝛿 and values
each solution with a distance less than or equal to 𝛿 from the target
descriptor at its objective performance, and as zero otherwise, i.e.,

𝐶𝑄𝐷𝛽 =
∑︁
𝐺

∑︁
𝜃

Ω(𝑥𝑟 ,𝐺, 𝜃 ) (4)

where

Ω =

{
𝑓 (𝑥𝑟 ) 𝛿 (𝑥𝑟 ,𝐺) ≤ 𝛽

0 otherwise (5)

This could be seen as a continuous version of the of the QD-score.

7 PROPOSAL 2: CQD HYPERVOLUME
In a real-world setting, a DM looking for a good solution near or
at a particular target descriptor may be interested to learn about
the trade-off between objective performance and distance from the
target. If a significant increase in objective performance can be
gained by accepting a point slightly further away from the target,
a DM may be willing to accept such a compromise. In this case it is
informative to present the DM with the Pareto front of the points
in a solution archive.

In other words, rather than the DM providing a target descriptor
and a weight factor 𝜃 and the algorithm returning a recommended
solution 𝑥𝑟

𝐺,𝜃
, the DM would only provide a target descriptor 𝐺 ,

and the algorithm would return a Pareto front of solutions from the
solution archive, maximising objective performance andminimising
distance from the target.

In this setting, the proposed performance measure would make
use of the average Hypervolume [11] of the Pareto fronts returned
for each target, i.e.,

𝐶𝑄𝐷𝐻𝑉 =
∑︁
𝐺

𝐻𝑉 (𝑆𝐻𝑉 (𝐺)) (6)

where 𝑆𝐻𝑉 returns a Pareto front of solutions given a target de-
scription, and 𝐻𝑉 returns the Hypervolume of this set. Note that
the computation of the Hypervolume requires to set a reference
point. We follow the same normalisation methods presented in
Eqn(1) but specify 𝛿

′
𝑛𝑜𝑟𝑚 so that we can maximise both axes for the

hypervolume calculation. We can now use the common reference
point (0, 0).

𝑓𝑛𝑜𝑟𝑚 =
𝑓 (𝑥)

|𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 |
, 𝛿

′
𝑛𝑜𝑟𝑚 = 1 − 𝛿 (𝑔(𝑥),𝐺)

𝛿𝑚𝑎𝑥

Figure 6: A visualisation showing the Pareto Front of a so-
lution set from MAP-Elites on the Rosenbrock6d problem
with a 10x10 archive and distances measured from a single
target point. Orange crosses indicate dominated solutions,
blue area shows the hypervolume
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Table 2: Average HyperVolume for 100 random targets each
evaluated on 100 converged solution archives for 3 algo-
rithms, BOP-Elites uses it’s evaluated solution archive and
does not suggest points it has not seen

Algorithm budget Mean HV Std Error
BOP-Elites 700 0.841845 2E-10
MAP-Elites 90000 0.842580 1E-10
Sobol Sampling* 90000 0.647926 0.010546

8 CONCLUSIONS
In this paper we have set out a frame work to measure the per-
formance of QD algorithms over continuous descriptor space, sug-
gested a simple Monte-Carlo sampling method and 2 new metrics
for evaluating performance.

Both new metrics offer an opportunity to quantify the value of
increased resolution in a QD algorithm as we can directly compare,
for instance, the CQD performance of MAP-Elites with 100 niches
to the same setup with 1000 niches. This has the potential to provide
new insights into the performance and tuning of QD algorithms.

We briefly highlight the pros and cons of each method below:

CQD - Pros
• Measures performance on continuous descriptors without
introducing synthetic discretization
• Represents real-world trade off of descriptor preference and
performance
• Simple to implement
• Allows for comparison of algorithms with very different
properties, with different budgets and different resolution
etc.

CQD - Considerations
• Stochastic performance indicator due to Monte Carlo sam-
pling, several runs are required to remove variance in the
measure.
• Requires knowledge of 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 though these can be
replaced with sampled values for comparisons between al-
gorithms.
• Has to assume a distribution not only over the target descrip-
tor space, but also over the weight penalty 𝜃 .

CQD𝛽 - Pros
• Measures performance on continuous descriptors without
introducing synthetic discretization
• Represents real-world trade off of descriptor preference and
performance
• Simple to implement
• Allows for comparison of algorithms with very different
properties, with different budgets and different resolution
etc.

CQD𝛽 - Considerations
• Stochastic performance indicator due to Monte Carlo sam-
pling, several runs are required to remove variance in the
measure.
• Requires a tolerance threshold 𝛽 .

• Zero has to be a sensible value for a solution outside the re-
quested tolerance or if the algorithm cannot return a solution
at all.

CDQ𝐻𝑉 - Pros
• Known metric that is easy to compute
• Allows for a visualisation that provides insights on the algo-
rithm performance.
• Does not introduce synthetic discretisation

CDQ𝐻𝑉 - Considerations
• Not suitable for algorithms that predict descriptor values,
as the Hypervolume of estimated performance and distance
values is not very meaningful.
• Requires reference point, though this can be (0,0) as long as
𝜃 < 1

When considering which metric should be used we believe that
CQD𝐻𝑉 will appeal to the current QD community as it makes the
trade-off of distance from target vs. objective performance explicit,
without having to make an assumption about the distribution of
DM utility functions.

However, CQD is a more robust measure as it is capable of
comparing against future methods that predict descriptor values.
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