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ABSTRACT

The analysis of building geometry is an essential capability for generative design, multi-agent simulation,
and other computational paradigms being explored in architectural research and practice. We propose a
set of voxel-based algorithms that operate on a common data structure to support pathfinding, visibility
calculations, direct sunlight calculations, and custom workflows that combine these basic spatial analyses.
Our data structure is a binary 3D voxel model represented using a memory-efficient encoding that allows
large buildings to be analyzed at fine resolutions. The algorithms are based on underutilized methods from
the level set mathematics community that allow short travel paths and sightlines to be approximated without
ray casting. The proposed approach has been made available in a visual programming package called VASA
(Voxel-based Architectural Space Analysis). We present an example that demonstrates how voxel-based
operations and analyses can be chained together to produce human-centric metrics.

Keywords: voxelization, pathfinding, visibility, daylight, generative design.

1 INTRODUCTION

Pathfinding, visibility, daylight, and other spatial analyses are increasingly used in architectural research
and practice to compute metrics for generative design. Nagy et al. (2017) applied space analysis to evalu-
ate walking distances to key amenities (adjacency), the likelihood of being distracted while working, views
to the outside, and access to daylight. Illustrated in Figure 1, these metrics were optimized as part of a
generative design workflow that was used to design a 250-person office space in Toronto. Spatial anal-
yses can also be used to predict the experiences of building occupants over the course of a typical day.
Danell, Ámundadóttir, and Rockcastle (2020) applied daylight simulation, which could be considered a so-
phisticated form of space analysis, to generate daily profiles of eye-level light exposure with the aim of
quantifying the circadian performance of a building. Going a step further, space analysis plays a critical
role in the development of multi-agent simulations capturing the interactions of people in buildings. These
simulations require pathfinding analyses to generate walking routes (Pelechano, Allbeck, and Badler 2008),
and sometimes incorporate domain-specific analyses such as acoustics (Schaumann et al. 2020).

Space analysis methods make use of a variety of spatial representations. Pathfinding, for example, may be
performed using a grid, a waypoint graph, or a navigation mesh (Sturtevant 2019). Visibility calculations
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Figure 1: Four of the generative design metrics from Nagy et al. (2017).

are most commonly performed using either a set of lines or polygons in 2D, or a triangle mesh in 3D.
Although there are advantages to employing different representations for different analyses, the use of a
common representation of space promises to ease the task of preparing architectural models for analysis,
integrating simulation code, and combining analysis results. Multiple analyses are often required to compute
a generative design metric or provide the foundations of a simulation platform.

In this paper, we propose and report on a 3D grid-based approach for space analysis in which architectural
models are first voxelized and then processed using a succession of voxel-based algorithms. The approach
is based on a common representation of space: a 3D voxel model in which every voxel is either filled
or unfilled, and where “plates” of 16×16 voxels are stored using a memory-efficient run-length encoding
scheme that allows relatively large buildings to be analyzed at fine resolutions. We outline a collection of
voxel-based algorithms including ones that (1) prepare architectural models for path analysis, (2) gener-
ate distance fields for pathfinding, and (3) compute visible regions for view analysis, direct sunlight, and
artificial lighting or sensor coverage. The algorithms use binary voxel models as the primary format for
both input and output data, allowing voxel-based operations and analyses to be chained together to create
geometry processing pipelines and other custom workflows.

Our implementation of the proposed approach is publicly accessible via a tool called VASA, short for Voxel-
based Architectural Space Analysis. VASA takes the form of a package to be used within the Dynamo
visual programming environment, and can be installed via Dynamo’s package management system. After
reviewing related work and presenting the key algorithms, we provide an example of how VASA’s voxel-
based capabilities can be combined to produce human-centric metrics.

2 RELATED WORK

Algorithms involving geometry can often be classified as either vector-based or grid-based according to how
they represent space. Our proposed voxel-based analysis approach draws heavily from recent developments
in grid-based navigation and visibility.

2.1 Vector-based Space Analysis

Vector-based approaches represent geometry using sets of connected elements such as points, lines, curves,
polygons, surfaces, and polyhedra. A canonical example of a vector-based representation is the 2D visibility
graph (Lozano-Pérez and Wesley 1979), where (1) walls and other obstacles are represented by polygons,
(2) the corners of these polygons become vertices in a graph, and (3) any clear sightlines between those
vertices become edges in the graph. The graph can then be used to find shortest paths, and similar analytic
techniques can be used to compute the polygonal region visible from a point (Ghosh 2007). Another vector-
based approach involves representing a building using a 3D triangle mesh, then casting numerous rays
through the model to (a) compute the region visible from a point, (b) identify the surfaces that will receive
direct daylight given a particular sun direction, or (c) render 2D images of the 3D model.
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Vector-based approaches have the potential to be highly accurate and efficient, since one can model regions
of importance using a dense set of points and surfaces while approximating less important regions using
a minimal number of elements. In practice, however, it can be challenging to ensure that only the most
essential features are finely resolved. Another advantage of vector-based approaches is that architectural
models are usually authored using a vector-based design tool.

The Topologic toolkit by Aish et al. (2018) is an example of a visual programming package dedicated
to the vector-based approach for architectural space analysis. Whereas conventional vector-based design
tools represent building geometry as collections of solid manifolds, Topologic is notable for its use of non-
manifold vector-based representations.

2.2 Grid-based Space Analysis

Grid-based approaches represent geometry using a regular grid of points with associated states or properties.
A strictly grid-based method visits the points using some form of graph, tree, or array traversal algorithm,
and processes them by propagating information from each point to a predetermined set of neighbors. On a
2D grid, the neighbors are typically the four nearest points along the two primary axes, or the eight nearest
points including the diagonal neighbors.

Grid-based analyses tend to be simple and robust. By representing architectural spaces and physical ele-
ments using discrete sets of 2D cells or 3D voxels, one avoids the tiny gaps, the thin overlapping regions,
and other geometric anomalies that plague all but the most carefully implemented vector-based algorithms.
Also, whereas vector-based methods may require sophisticated re-meshing techniques to optimize the reso-
lution of the model, grid-based approaches allow the tradeoff between speed and accuracy to be conveniently
adjusted by varying the grid spacing.

The SpaceAnalysis tool by Goldstein et al. (2020) is an example of a visual programming package providing
2D grid-based spatial algorithms. This paper demonstrates how similar capabilities can be achieved in 3D.

2.3 Grid-based Navigation

Grid-based pathfinding is a well-established and widely used alternative to vector-based navigation methods
such as waypoint graphs, visibility graphs, or navigation meshes. The basic approach to grid-based pathfind-
ing involves converting a grid into a graph by connecting neighboring points, disconnecting any points or
edges that are cut off by walls or other obstacles, and using a classic shortest path search such as Dijkstra’s
algorithm (Dijkstra 1959) or A* (Hart, Nilsson, and Raphael 1968).

The well-known drawback to grid-based navigation is that there is usually a multitude of shortest grid paths
between a given starting location and a given destination, and choosing one of these paths in an arbitrary
manner tends to result in an indirect, unnatural-looking route. There are several known ways to solve this
problem and generate highly direct paths despite the use of a grid. We describe the main strategies as
sightline testing, path counting, and interpolation.

The sightline testing strategy involves performing a multitude of line-of-sight tests during the path search.
This combination of grid-based and vector-based techniques is demonstrated by the Theta* “any-angle”
pathfinding algorithm (Daniel et al. 2010), an adaptation of A* that tests a subset of possible straight-line
shortcuts and usually eliminates unnecessary detours.

The path counting strategy involves counting the number of shortest grid paths that traverse each grid point,
then selecting the points with the highest counts. The resulting central grid path is highly direct compared
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with most shortest grid paths. Originally developed for the SpaceAnalysis package, Goldstein et al. (2022)
report path counting to be 2-3 times faster than Theta* for maps that resemble real-world environments.

The interpolation strategy involves interpolating the travel distances associated with two nearby grid points
to estimate the distance at a point in between, and then extrapolating from this intermediate point to compute
a travel distance associated with a third grid point. The Field D* interpolation method is well known in
the video game and robotics research communities (Ferguson and Stentz 2006), and Field A* deserves
recognition as a simplification that isolates the core technique (Uras and Koenig 2015). Though there are
differences in conventions, interpolation-based pathfinding was first developed in the level set community
using implicit instead of explicit geometry. The approach was proposed by Sethian (1996) as a 4-neighbor
algorithm known as the Fast Marching Method, and our analysis suggests that its 8-neighbor variant by
Danielsson and Lin (2003) uses the same underlying formula as Field A*. Applications of the Fast Marching
Method and various improvements are presented by Valero-Gomez et al. (2013).

2.4 Grid-based Visibility

Visibility analysis is almost always performed by applying analytic calculations or ray casting to a vector-
based representation of space. Although strictly grid-based visibility algorithms are rarely used in practice,
they are theoretically sound and offer the same benefits as other grid-based approaches: ease of imple-
mentation and a convenient means of adjusting the tradeoff between speed and accuracy. The limited use
of grid-based visibility is likely due to a lack of awareness that such an approach exists and has practical
advantages for certain applications.

Grid-based visibility was introduced by Tsai et al. (2004) as a 2D or 3D level set method, and shown by Kao
and Tsai (2008) to converge on exact results. This level set method was adapted from implicit to explicit
geometry by Goldstein et al. (2022), who refer to the overarching approach as linear grid-based visibility
and show that the technique (a) can be applied using a variety of grid neighborhoods, (b) is mathematically
equivalent to counting the fraction of unblocked shortest grid paths, and (c) can be demonstrated to converge
on exact results using the central limit theorem instead of numerical analysis. The SpaceAnalysis package
implements 8-neighbor visibility by counting, which produces the same results as linear grid-based visibility
ignoring rounding errors.

Another grid-based visibility algorithm was proposed by Fisher-Gewirtzman, Shashkov, and Doytsher
(2013) for analyzing urban environments in 3D. This bi-linear grid-based visibility approach differs from
3D implementations of linear grid-based visibility in that it uses bi-linear interpolation within rectangular
pyramidal cones rather than linear interpolation within tetrahedral cones.

3 METHODS

The proposed approach to voxel-based architectural space analysis is developed as a collection of meth-
ods associated with (1) a common representation of space, (2) voxel model operations, (3) a path model
representing walkable or traversable areas, and (4) pathfinding and visibility analyses.

3.1 Voxel Model Representation

Establishing a common representation of space has the effect of uniting a collection of analyses and opera-
tions into a single approach, allowing a diverse set of capabilities to be rapidly combined while minimizing
the need to convert spatial information from one format to another. To serve as a foundation for building
simulation and generative design, our common representation is based on the following criteria:
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• Support for reasonably large models containing a building and its surrounding neighborhood.
• Support for reasonably fine resolutions such that paths can be generated through narrow doorways.
• Support for low memory data structures, allowing dozens of intermediate voxel models to be

instantiated as part of a geometry processing pipeline or generative design workflow.
• Support for fast voxel-based algorithms, avoiding brute force approaches such as checking a line

of sight for every voxel.
• A design optimized for buildings, which feature a prevalence of walls, columns, vertical glazing,

and other vertical elements.

The chosen representation is a 3D rectangular grid of voxels. The size of every voxel is specified by a
parameter called the coarse voxel width, which we recommend be fixed at 1 meter (preferred) or 4 feet.
Vertical and horizontal level of detail (LOD) parameters indicate the number of times the coarse voxel width
is divided by 2. We recommend that the LOD be fixed at 2 in the vertical direction, meaning that the height
of every voxel is 25 cm or 1 foot (1 meter or 4 feet, divided by 2 twice). In the horizontal direction, the
LOD can be adjusted to control the tradeoff between speed and accuracy. In metric units, the horizontal
LOD can be set to 2 for 25×25×25 cm voxels, which is often suitable for visibility at an outdoor scale; 3 for
12.5×12.5×25 cm voxels, which is normally sufficient for indoor pathfinding; and 4 for 6.25×6.25×25 cm
voxels (the default recommendation), which tends to be sufficient for pathfinding even in the presence of
detailed obstacles like furniture. Tall and narrow voxels are optimal for the analysis of buildings, where
doorways can face any direction in the horizontal plane but rise straight up in the vertical dimension.

We store voxel data in the form of voxel plates, which are horizontal arrays of 16×16 voxels. Each row
of 16 voxels in a plate is represented using a 16-bit unsigned integer, where each bit determines whether
the associated voxel is filled (1) or unfilled (0). This encoding allows certain voxel model operations to
be carried out by processing 16 voxels at once. For example, computing the union of two voxel models is
performed by applying bitwise OR instructions to 16-voxel rows instead of individual voxels.

(a) The bottom voxel plate (b) The bottom two plates (c) All eleven voxel plates

Figure 2: A voxel stack in which the first two 16×16 voxel plates are unique.

A voxel model is partitioned into voxel stacks containing up to 64 voxel plates stacked one on top of the
other. A typical model may be several stacks tall and many stacks long and wide. The stacks are run-
length encoded in the vertical direction, meaning that only a single voxel plate is stored for every group of
consecutive identical plates. In Figure 2, for example, only the first two voxel plates are retained in memory
since the nine plates above are identical to the second. A separate list of indices records the vertical positions
at which a voxel plate differs from the one below. This compression scheme tends to be highly efficient for
large regions of empty voxels representing air, large regions of filled voxels representing earth, and regions
inside buildings in which the only physical elements are walls, columns, and vertical glazing.

We find that reasonably large architectural models can be input as a triangle mesh and efficiently voxelized
at a 6.25×6.25×25 cm resolution using the formula proposed by Schwarz and Seidel (2010), even without
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GPU acceleration. We implemented their surface voxelization approach for single-threaded execution on a
CPU. Although buildings are typically designed as a collection of solid manifolds, triangle mesh represen-
tations are usually also available since they are used to render 3D geometry on the screen.

3.2 Voxel Model Operations

An essential component of the proposed approach is the ability to perform generic operations on voxel mod-
els whenever needed. These include four standard solid operations: computing the union or intersection of
a set of voxel models, subtracting one voxel model from another, and inverting a voxel model so that all
filled voxels become unfilled and vice versa within a set of 3D rectangular extents. We also include three fill
operations: flood filling a 3D region of unfilled voxels from a point, flood filling all completely enclosed
regions in the model, and flood filling all exposed regions that are not completely enclosed.

Of particular importance are ten surface operations, where “surface” in this context refers to the interfaces
between regions of filled and unfilled voxels. Six of the ten surface operations expand or reduce all filled
regions by a specified number of voxels in the positive direction, and a specified number in the negative
direction, along the X axis, the Y axis, or the Z axis. There is also an operation that expands surfaces by
one voxel according to two parameters: the horizontal adjacency and the vertical adjacency. If an unfilled
voxel (a) has ch adjacent filled neighbors in any of four horizontal directions, where ch equals or exceeds the
horizontal adjacency, and (b) has cv adjacent filled neighbors in either vertical direction, where cv equals or
exceeds the vertical adjacency, then the voxel becomes filled. Similarly, there is an operation that reduces
surfaces by one voxel according to a similar pair of parameters.

The final two surface operations, expand horizontally and reduce horizontally, expand or reduce surfaces
in the horizontal direction according to a diameter offset parameter that loosely represents the width of a
traveling agent in voxel spacings. The operations work by repeatedly expanding or reducing the surfaces by
one voxel as described above, with a vertical adjacency of 0 and a sequence of horizontal adjacency values.
The sequences for the first 12 offset values are shown in Table 1. The sequences for larger offsets continue
the pattern of taking the last pair of sequences, inserting a 1 at the front to obtain the next pair of sequences,
and inserting 1, 1, 2 to obtain the pair after that.

Table 1: Horizontal adjacency sequences for horizontal expansion and reduction operations.

Offset Sequence
1
2 2
3 1
4 1, 2

Offset Sequence
5 1, 2, 1
6 1, 1, 2
7 1, 1, 2, 1
8 1, 1, 1, 2

Offset Sequence
9 1, 1, 1, 2, 1

10 1, 1, 1, 1, 2
11 1, 1, 2, 1, 1, 2, 1
12 1, 1, 2, 1, 1, 1, 2

The sequences were chosen to expand obstacles as much as possible without closing off passageways that
are at least as wide as the diameter offset. This means that if the offset parameter matches the diameter of an
agent, the agent should be able to move through the passageway. The 6-voxel wide passageway in Figure 3a
illustrates how the process works. Suppose that the obstacles are expanded according to a diameter offset
of 6. The corresponding sequence of horizontal adjacency values is 1, 1, 2, and Figure 3b shows in fading
colors which voxels become filled during each of the three iterations. The passageway between the two
obstacles shrinks but does not completely close, meaning that an agent with a diameter of approximately 6
voxels could get through. If the diameter offset had been 7, however, a fourth iteration with a horizontal
adjacency of 1 would have caused the passageway to close. This algorithm provides a simple, memory-
efficient alternative to more sophisticated level set expansion and reduction approaches, such as the Fast
Marching Method. Obstacles grow or shrink in approximate correspondence with distance.
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(a) A 6-voxel wide passageway between obstacles (b) Obstacles expanded for a diameter offset of 6

Figure 3: An example of horizontal surface expansion preventing travel near obstacles.

3.3 Path Model Generation

Impassable objects in an architectural model include floors, ceilings, roofs, walls, columns, glazing, and
furniture, for example, as well as outdoor elements such as the ground, tree trunks, dense vegetation, fences,
and other barriers. Once all such elements are converted into a single input voxel model, we generate another
voxel model called a path model representing all traversable or walkable areas.

Conceptually, the first step in generating a path model is to take the input voxel model, expand all surfaces
by one voxel in the positive Z direction (up), then subtract away the initially filled voxels. This procedure
yields a one-voxel-high layer of potentially traversable voxels above every solid surface. However, if all of
these voxels were to be considered “traversable”, then paths might be generated underneath tables, through
tiny gaps, across narrow beams, and up steep slopes. Agile individuals might be able to negotiate these
difficult routes, but our intent is to identify areas where people can comfortably move.

To prevent travel underneath tables or through small crawl spaces, we expand all obstacle surfaces by nv−1
voxels in the negative Z direction (down) where nv is the agent height offset, the approximate height of a
person in voxels. It is important to underestimate this parameter, or regular doorways may end up becoming
closed off. We recommend nv = 4, an agent height of 1 meter assuming a voxel height of 25 cm.

To prevent travel through tiny gaps, we expand obstacles horizontally as described in Section 3.2 based on
an agent diameter offset parameter nh. We recommend nh = 7 for 6.25 cm wide voxels (a horizontal LOD of
4), and nh = 3 for 12.5 cm wide voxels (a horizontal LOD of 3). These numbers correspond with an agent
width of about 40 cm.

An important detail for 3D pathfinding is that solid obstacles be reduced by one voxel in the positive Z
direction before they are expanded and subtracted away from the traversable voxels. Lowering obstacles by
one voxel allows people to ascend and descend stairs, ramps, and gradual slopes, and negotiate small bumps
or depressions in outdoor terrain. Our assumption is that people can move up or down one voxel at a time,
but not two. This convention demands that voxels be slightly taller than the height of a step in a typical
staircase, which is why we recommend fixing the voxel height at 25 cm or 1 foot.

To prevent travel across beams, close to drop-offs, or up and down excessively steep slopes, we generate
“virtual obstacles” by expanding solid surfaces upward by two voxels and then inverting the result. These
virtual obstacles are expanded in the same manner as physical obstacles, and subtracted from the set of
potentially traversable voxels.

Figure 4 illustrates the results of this path model generation procedure. Our method can be contrasted with
the human-centric accessibility graph by Schwartz (2021), which has a similar purpose but is constructed
using ray casting instead of voxels, as well as the indoor drone navigation model of Li et al. (2018), which
uses voxels but identifies accessible air space rather than walkable surfaces.
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(a) Original mesh geometry (excluding glazing) (b) Voxelized geometry (including glazing)

(c) With traversable voxels (orange) (d) Traversable voxels only, plus a 3D path (yellow)

Figure 4: Generation of a path model starting from a triangle mesh and ending with the traversable voxels.

3.4 Voxel-based Analyses

The primary voxel-based analyses supported by our approach are 3D pathfinding, visibility from a point, and
visibility from a direction. Our implementations of these analyses are based on the level set interpolation
techniques reviewed in Section 2, which have previously seen little use in the architectural domain.

Once a path model is generated as outlined in Section 3.3, pathfinding can be performed by adapting one of
the navigation strategies of Section 2.3 to operate on the traversable voxels. We avoid the sightline testing
strategy, which we consider inefficient for computing long, meandering paths on a high-resolution grid.
We regard path counting as a faster strategy for generating a single path or a set of paths. However, we
chose the interpolation strategy because it can produce an accurate distance field: an estimate of the walking
distance from a source voxel to every other traversable voxel that can be reached by an agent. By choosing
a maximum threshold distance, one can represent a distance field as a voxel model and use it as an analysis
result (Figure 5). Our interpolation-based pathfinding implementation is similar to that of Danielsson and
Lin (2003), though modifications were necessary to (a) associate distances with the centers instead of the
corners of voxels, and (b) allow agents to travel diagonally upward or downward.
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We implemented the visibility from point analysis using the standard 6-neighbor 3D linear grid-based visi-
bility method described in Section 2.4, and a nearly identical interpolation was used to implement visibility
from a direction. Visibility from a point can be used to analyze a person’s view from a specific location,
or to estimate the coverage of an artificial light source, motion sensor, or security camera. Visibility from
a direction can be used to approximate the area receiving direct sunlight at a particular moment in time,
assuming a clear sky (Figure 5). Since a person can see but not walk through a window, we recommend
that glazing be voxelized separately from other solid geometry. The glazing voxels can then be incorporated
with a union operation to generate a path model for pathfinding, but excluded from any visibility analysis.

Figure 5: Shadows (purple) created by inverting direct sunlight results, and a distance field (orange).

4 EXAMPLE

Though unconventional, voxel-based algorithms can be used in combination to compute a wide range of
human-centric metrics. The approach is particularly useful for early stage analyses and generative design
processes where approximate results are usually good enough. Here we present an example of such a
calculation using the VASA package that implements the proposed approach. VASA is similar to Topologic
and SpaceAnalysis in that it provides a set of algorithms that operate on a common representation of space,
though the representation itself differs. By using 3D voxel models as both the input and output of most
analyses and operations, VASA allows metrics like the one in the example to be computed solely by linking
visual programming nodes and avoiding traditional textual code.

The problem we tackle in the example is to approximate the fraction of some target that is visible from a
point in the building. In this case the target is the tree shown using yellow voxels in Figure 6, but similar
analyses could be performed for parks, waterfronts, heritage buildings, or other visually appealing features.

Figure 6: A problem of computing the fraction of a target that is visible from a point.
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Different strategies could be used to estimate the visible fraction of the target. The solution we present in
Figure 7 is not the simplest, but it should produce accurate metrics given a sufficiently fine grid resolution.

As shown in Figure 7a, we first create a spherical shell of voxels centered on the viewpoint and encompassing
the target. It is created by (1) performing two unobstructed visibility from point operations with slightly
different radii, which results in two solid spheres, then (2) subtracting the smaller solid sphere from the
larger one. The resulting shell is used as an abstract “screen” on which to project “images” of the tree. The
screen is several voxels thick to ensure that its relative thickness is similar in all directions.

(a) Shell (orange) encompassing the target (yellow) (b) View of the target, ignoring other obstacles

(c) View accounting for obstacles other than the target (d) Projection of the visible fraction of the target

Figure 7: Steps in computing the visible fraction of a target.

Next we perform two additional visibility from point analyses. In the first analysis, shown in Figure 7b,
the building voxels are excluded so that only the tree obstructs the view, In the second analysis, shown in
Figure 7c, the tree voxels are excluded so that only the building obstructs the view. Taking the visibility
results in Figure 7b and subtracting them from the shell in Figure 7a produces a projection of the tree, and
intersecting this projection with the visibility results in Figure 7c yields the portion of the projected tree
that is visible from the point in the building. These projections are shown in Figure 7d. The final metric is
produced by simply counting the number of filled voxels in the “visible” portion of the projected tree, which
is shown in orange in Figure 7d, and dividing by the total number of filled voxels in the projection of the
tree. The result is that roughly 40% of tree is visible at the resolution shown.

The example is one of several included with the VASA package. It uses relatively coarse 25×25×25 cm
voxels to ensure interactive calculations on a variety of machines, but the voxel width can be decreased to
12.5, 6.25, or even 3.125 cm by adjusting an LOD slider. As the width decreases, the metric converges on
around 60%, so it is important to understand that coarse-voxel results are highly approximate and intended
only for prototyping new metrics or quickly ranking a diversity of design options. The example could be
enhanced in a number of ways, such as evaluating viewpoints along a path instead of at a single location.
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5 CONCLUSION

We propose a voxel-based approach to architectural space analysis in which efficiently encoded binary
voxel models provide a common spatial representation supporting a variety of 3D grid-based algorithms.
The approach was implemented and made available as a Dynamo package called VASA, which we use to
demonstrate how voxel-based analyses and operations can be chained together to produce custom human-
centric metrics for early stage design comparisons or generative design workflows. Voxel models and their
associated algorithms may also serve as a foundation for multi-agent simulation platforms that incorporate
time into the analysis of building performance.

We close with a few remarks about the name VASA, which was chosen as an abbreviation for Voxel-based
Architectural Space Analysis but happens to also be the name of an infamous 17th century Swedish warship.
The Vasa is known for being so heavily loaded with cannons and ornamentation that it sank on its maiden
voyage before leaving the harbor, and has since become a metaphor for overly ambitious software projects
that ultimately fail. Stroustrup (2018), the inventor of the C++ programming language in which the core of
VASA was implemented, submits that the warship could have sailed given “a relatively modest increase of
the Vasa’s length and breadth”, the lesson being that software must be built on a “solid foundation”. We
took this advice as a source of inspiration for our research, interpreting the common representation of space
as a foundation that would have to support a comprehensive set of analyses.
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