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ABSTRACT 

We present a sensor visualization system that integrates data 

streams from individual custom sensor arrays together with 

Building Automation System (BAS) data. To help bridge the gap 

between actual building usage by the occupants, and the aggregate 

assumed usage by the control system, we have developed several 

sensor processing subsystems moving toward automated human 

activity recognition without the need for directly instrumenting 

the occupants. By having a system with a detailed understanding 

of occupancy behavior and needs, we believe buildings could be 

much more efficient thereby reducing energy consumption, 

working toward sustainability of the built environment. 
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1 Introduction 
As environmental sustainability becomes a global priority, key 

areas of concern have been collated in the United Nations 

Sustainable Development Goals (SDGs). In terms of the built 

environment, Goal 11.c mentions the need for building sustainable 

and resilient buildings, especially for the least developed 

countries, so that these nations do not simply follow the actions of 

the developed world [1]. In the U.S., buildings are the dominant 

cause of Green-house Gases (GHG) at 2.2 billion metric tons 

accounting for 40% of American CO2 emissions [2]. The end use 

of energy consumption in buildings is primarily space heating 

(37%), water heating (12%), space cooling (10%), and lighting 

(9%). As the major factors are all related to the actual usage of the 

buildings, the gap between the operation of a building and the 

actual needs of the occupants is a potentially large opportunity for 

energy and water reduction. 

Previous work has shown that occupant behavior can impact 

building energy consumption up to 23.6 percent [4] based on 

simulation sensitivity analysis. The frequency and nature of these 

behaviors has yet to be established and sufficiently modeled. 

Many techniques exist to detect various activities, such as position 

[8, 5] and health from gait [6], but none adequately cover the 

contexts needed for efficient control. To study the potential of 

sensor fusion in developing novel device-free systems attached to 

infrastructure (buildings, bridges, etc.), we have created a 

visualization system that can interactively help researchers 

discover correlations between systems before investing heavily in 

programming or machine learning training. By using multiple 

sensor types with computer vision and combining this with the 

rich meta-data environment of Building Information Models 

(BIM), sensors and sensing systems can be evaluated to visualize 

potential synergies and interactions. 

2 Sensor Visualizations 
We have developed Dasher360, a web-based sensor 

visualization tool that displays current sensor values, in the 

context of building geometry, and can animate historical data for 

temporal analysis. Implementation of the visualization techniques 

described in this paper have been done using JavaScript as an 

extension to Autodesk Forge Viewer [3], a web-based 

visualization framework to display BIM data. 

Figure 1 shows visualization of CO2 sensors, where sensors are 

visualized as green sensor dots in 3D space on the BIM. Clicking 

on a sensor dot opens a 2D plot of CO2 readings. By having the 

sensors positioned within the context of the 3D geometry, spatial 

occupancy patterns in the building can be shown evolving over 

time as CO2 levels change, albeit in an abstract indirect way. The 
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sensor dot visualization is implemented using a particle system 

which can render thousands of interactive dots in a layer above 

the 3D building geometry. 

 

 

Figure 1: Time-series CO2 data from BAS sensors. 

To further validate CO2 readings, we visualize CO2 sensor 

readings as a spatial heatmap (Figure 2). The heatmap shading 

uses Shepard’s Method [2] to perform multivariate interpolation 

through a GLSL Shader. The timeline on the bottom of the 

window can be used to select a time period to play back changes 

in the heatmap over time. On top of the heatmap, icons of human 

figures indicate occupant positions based on prototype infrared 

(IR) sensors developed by Schneider Electric. In the office 

dataset, we can observe the correlation between higher CO2 levels 

with the presence of occupants in the closed meeting room in the 

bottom left of Figure 2. 

 

 

 

Figure 2: Temperature and CO2 heatmaps combined with 

local infrared sensors showing the specific placement of 

individuals. 

In a manufacturing workshop, in addition to CO2, we 

instrumented a pedestrian walkway using an array of strain 

gauges, accelerometers, sound, temperature, humidity, passive 

infra-red motion (PIR), pressure and ambient light sensors.  At 

both ends of the bridge, we placed video cameras. We processed 

the video using computer vision to more easily discover when to 

look for events (occupancy events shown as blue ticks in the 

timeline in Figure 3), and reference as ground truth. 

 

Figure 3: Computer Vision Time-series Tagging. 

3 Video Annotations 
Our PIR motion detector could only generate data when doors 

were opened making it necessary to annotate the count of people 

on the bridge using the video data. To reduce the workload in 

labeling data, we used a simple Histogram of Oriented Gradients 

(HOG) [11] human detector and applied it to each image in the 

video to create a crude occupancy sensor. In this way, we could 

provide a base-layer of automation for recording when actual 

occupants were on the bridge in our dataset. This provided a count 

of people, and a bounding box in the video field (see Figure 4). 

We then processed this to generate a time-series of human 

occupancy. 

 

 

Figure 4: Computer Vision Video Annotation (green outlines 

on video) 

4 Pose Estimation 
Human activities and behaviors can be simplified and 

aggregated into average, schedule-based behaviors as in [4]. 

However, how these behaviors are affected by specific design 

features and how those relate back to performance may not 

correlate well since the details can be lost in the aggregation 

process [9]. To study these interactions and generate more fine-

grained behavioral observations, we employed Pose Estimation 

[7]. Context specific behaviors, such as pausing in the middle of 

the bridge to observe surroundings, carrying objects, or walking in 

groups can only be annotated with poses as in Figure 5. 
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Figure 5: Computer Vision Pose Estimation (OpenPose) [7] 

By calibrating cameras with markers and using homography, 

we can map the location of the 2D poses in 3D and provide a 

relative position of the plane upon which the poses lie within the 

camera frustum. This positioning provides better spatial context, 

as seen in Figure 6, and can help determine the load positions of 

people on the bridge structure. Along with the homography, 

tracking can be added by classifying heads and following footfalls 

to create continuous and stable positions for individual poses 

across frames [10]. 

 

 

Figure 6: Pose Estimation Streaming into Visualization Tool 

As actions can be complex, and group oriented, standard 

annotation tools and techniques can be extended to create a 

context aware and relevant labeling system for use in specific 

situations, such as collaborative interactions in an office 

environment [9] (see Figure 7). These annotations can be 

leveraged in supervised machine learning training applications, 

along with sensor data and on top of pose recognition for context-

aware activity recognition. Note that anonymization is supported 

to some degree by overlaying the extracted stick-figure pose 

“skeletons” on a 3D model or on a frame of the source video 

where no people are present. 

5 Discussion 
By collecting data from a variety of environmental sensors, 

together with detailed pose information from video sensors, the 

correlated data sets could provide several benefits. The data can 

be used for precise indoor positioning together with activity 

recognition. This, in turn, can be used for (a) precision HVAC and 

lighting control increasing building performance, and (b) human 

safety and security in both normal and emergency scenarios. The 

former use case will be critical in low-energy or net-zero 

buildings [12] where maximal efficiency is needed continuously 

both to meet the immediate needs as well as conserve resources 

for use over seasonal periods. 

Uniquely, this work positions the sensed data in the context of 

a Building Information Model. This extra information adds 

enough context to make the data meaningful to the observer. Also, 

this work focusses on making the data directly accessible through 

visualization, supporting a data-driven exploratory analysis 

process, rather than providing information that has been 

aggregated in space and/or time. This is a critical point as this 

process can help form new hypotheses rather than only 

confirming the existence of features. 

 

 

Figure 7: Skeleton-based video annotation system [9] 

6 Conclusion and Future Work 
The work presented has spanned multiple projects over several 

years, working towards a more precise, complex, yet automated 

understanding of occupancy in buildings. The key contribution of 

this work is to present a comprehensive visual analytics system 

that can interactively help researchers validate and understand 

various raw sensing data in context of BIM, prior to any 

aggregation. By connecting multiple visual analytics methods, we 

believe this work will form a solid foundation to support the 

development and validation of equally precise simulation models 

that can help to create highly efficient model-based controls as 

well as design tools for architects and engineers to develop 

buildings that do not generate any greenhouse gases. 
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