

Waken: Reverse Engineering Usage Information and
Interface Structure from Software Videos

 Nikola Banovic1,2, Tovi Grossman1, Justin Matejka1, and George Fitzmaurice1

1Autodesk Research
210 King St. E., Toronto, Ontario, Canada

{firstname.lastname@autodesk.com}

2Dept. of Computer Science
University of Toronto, Ontario, Canada

nikola@dgp.toronto.edu

ABSTRACT
We present Waken, an application-independent system that
recognizes UI components and activities from screen cap-
tured videos, without any prior knowledge of that applica-
tion. Waken can identify the cursors, icons, menus, and
tooltips that an application contains, and when those items
are used. Waken uses frame differencing to identify occur-
rences of behaviors that are common across graphical user
interfaces. Candidate templates are built, and then other
occurrences of those templates are identified using a multi-
phase algorithm. An evaluation demonstrates that the sys-
tem can successfully reconstruct many aspects of a UI
without any prior application-dependant knowledge. To
showcase the design opportunities that are introduced by
having this additional meta-data, we present the Waken
Video Player, which allows users to directly interact with
UI components that are displayed in the video.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
Keywords: Video; tutorial; pixel-based reverse engineering
INTRODUCTION
In recent years, video tutorials have become a prevalent
medium for delivering software learning content [21, 26].
Several recent research projects have attempted to pre-
capture usage meta-data in order to enhance the video tuto-
rial viewing experience by marking up the video timeline
[10, 13, 22]. While these types of systems show promise,
the immense collection of existing online videos will not
possess such meta-data.
We build upon recent work in reverse engineering user
interfaces [5, 30], and explore the possibilities and oppor-
tunities related to reverse engineering the video tutorials
themselves. This is a challenging task, as information from
cursor movements, mouse clicks, and accessibility API’s
are not available to aid recognition. Previous research sys-
tems have provided some initial promising results, but have
relied on explicit application-dependant rules [21] or tem-
plates [26] that may not generalize.

In this paper, we present Waken, an application-
independent system that recognizes UI components and
activities, from an input set of video tutorials. Waken does
not require any prior knowledge of the appearance of an
applications icons or its interface layout. Instead, our sys-
tem identifies specific motion patterns in the video and
extracts the visual appearance of associated widgets in the
application UI (Figure 1). Template matching can then be
performed on the extracted widgets to locate them in other
frames of the video.
Waken is capable of tracking the cursor, identifying appli-
cation icons, and recognizing when icons are clicked. We
also explore the feasibility of associating tooltips to icons,
and reconstructing the contents of menus. An initial evalua-
tion of our system on a set of 34 Google SketchUp video
tutorials showed that the system was able to successfully
identify 14 cursors, 8 icons, and accurately model the
hotspot of the system cursor. While the accuracy levels
have room for improvement, the trends indicate that with
enough samples, all elements could get recognized.
We then present the Waken Video Player, to showcase the
design opportunities that are introduced by having the me-
ta-data associated with videos. The video player allows
users to directly explore and interact with the video itself,
almost as if it were a live application. For example, users
can click directly on icons in the video, to find related vid-
eos in the library that use that particular tool. Users can also
hover over icons in the video to display their associated
tooltips, or hover over menus to reveal their contents. The-
se techniques are all enabled without any prior knowledge
of specific interface layouts or item appearances. We con-
clude with a discussion of lessons learned and limitations
of our work, and outline possible lines of future work.

Figure 1. Waken uses frame differencing to extract
UI elements, such as cursors (a) and icons (b).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST ’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

RELATED WORK
In this section we discuss previous research on video tuto-
rials, tutorial authoring, and reverse engineering UIs.
Video Tutorials
Video tutorials have become a prevalent instructional aid
for learning software [21, 26]. One of the main reasons for
the popularity of such tutorials could be due to the benefits
of learning software application by directly observing ex-
pert use [28]. However, there are also some drawbacks.
One major drawback is navigation issues within longer
video tutorials which could lead to misunderstandings of
the content [14]. Additionally, users may be unable to keep
up with the pace of the instructions, which could lead to
reduced knowledge retention [23]. Although Grossman and
Fitzmaurice [12] showed performance benefits of short
contextual video clips, longer tutorials could still pose sig-
nificant difficulty for the user.
Past research has shown that navigation of recorded soft-
ware workflows can be aided by visualizing operation his-
tory [22]. Chronicle [13] combines operational history vis-
ualizations and timeline-based video summarization and
browsing, to aid in exploration of high-level workflows in
video tutorials. Ambient Help [21] and Pause-and-Play [26]
also provide video timelines based on operation histories.
Our enhanced player provides similar operation history and
timeline-based browsing interactions. However, we also
extend this literature by exploring how direct manipulation
of the user interface in the video tutorial itself could en-
hance the user experience. While direct manipulation of
videos has been previously explored [9] we are unaware of
any implementations specific to software tutorial videos.
Motivation for such interaction is provided by evidence that
users sometimes try to interact with the elements within a
documentation article directly [20]. Allowing the user to
explore the target application interface directly in the video
could also reduce switching between the video and target
application [26], and support discovery-based learning [8].
Tutorial Authoring and Usage Data Capture
Video tutorials are typically built from screen capture vide-
os demonstrating usage of the target application. Unfortu-
nately, tutorials authored in this way do not contain addi-
tional metadata required for reconstructing operation histo-
ries and providing interactive timelines. Existing research
has explored ways to automatically capture workflow in-
formation [1, 10, 11, 13, 17, 22]. However, those approach-
es often require special recording tools and instrumentation
of the target applications. Additionally, there is already a
large collection of tutorial videos on the Internet that were
not recorded using such tools. It would be useful to be able
to extract workflow information from videos themselves.
Some partial solutions to this problem have been explored
through computer visions techniques. Matejka et al. [21]
reconstructed tool usage information by performing explicit
text-based template matching on the AutoCAD command
line. While effective for AutoCAD, the technique would
not work on other software applications. Pongnumkul et al.

[26] described a technique to infer icon usage data from
existing video tutorials. However, their implementation was
also application specific, as it performed template matching
on the target application’s tool palette. While it may be
possible to provide such templates for any application of
interest, it would be helpful if such application-dependant
templates were not required. We explore an approach,
which does not require prior training data.
Reverse Engineering User Interfaces
Advances in computer vision have enabled techniques to
identify user interface elements from live applications.
Sikuli [30] uses computer vision to identify GUI compo-
nents in screen captures, search for GUI elements in the
interface [31], and automate GUI tasks [2]. However, the
underlying computer vision algorithms in Sikuli identify
GUI elements based on templates from sample image data.
To minimize the time required for collecting training data,
past research [3, 5, 18, 21] explored abstracting identifica-
tion of different GUI elements and decoupling GUI element
representation from predefined image templates. Hurst et
al. [18] combined a number of useful computer vision
techniques with mouse and accessibility API information to
automatically identify clickable targets in the interface.
Chang et al. [3] proposed an accessibility and pixel-based
framework, which also allowed for detecting text and arbi-
trary word blobs in user interfaces. However, when work-
ing with video tutorials, mouse information and data from
the accessibility API is not available.
Prefab [5] identified GUI elements by using GUI specific
visual features, which enabled overlaying of advanced in-
teraction techniques on top of existing interfaces [6, 7]. We
build on the insight from Prefab [5] that “it is likely not
necessary to individually define each widget in every appli-
cation, but may instead be possible to learn definitions of
entire families of widgets.” However, instead of using in-
teractive methods to identify visual features of widgets, we
propose an automated application-independent method that
learns widget representations from the source video itself.
SYSTEM GOALS AND CHALLENGES
Our work is a first step towards an ultimate goal of auto-
matically constructing interface facades [27], from nothing
more than an input set of videos. Previous work on reverse
engineering user interfaces rely mainly on “pixels”, but
inherently have access to other forms of information, such
as the cursor position, click and keystroke events, and ac-
cessibility information. In contrast, with a video, the only
source of information is the pixels of the video itself. Our
work provides a first effort at addressing several unique
challenges raised by working with videos:
Where is the cursor?
The mouse cursor is a core mechanism for interacting with
typical graphical user interfaces. As such, to reverse engi-
neer the activities the user caries out, it is important to
know where the cursor is [18]. This stream of information
is trivial to access on live applications via global hooks. In
videos, this information is absent.

When does the mouse button click?
Related to the cursor position, is understanding when the
mouse button clicks. This is another stream of information
that can be obtained from a live application, but is absent
when working with videos.
Cursor Occlusion
In videos, the screen contents behind the cursor are occlud-
ed and unknown. In a live application, taking screenshots
by default hides the cursor, so no pixels are occluded. This
can be problematic, for example, when trying to understand
the appearance of an icon that the cursor has just clicked.
Video Artifacts
When analyzing video screen recordings, there may be arti-
facts in the video due to lossy codecs being used. The re-
sulting artifacts could be problematic for template matching
and frame differencing algorithms.
WAKEN SYSTEM OVERVIEW
Key Insights
The core insight we use in the implementation of Waken is
that GUI elements possess certain behaviours across appli-
cations (Figure 2). Our approach is to use the computer
vision technique of frame differencing to identify occur-
rences of such behaviors, or motions, and then extract the
associated widgets.
Another insight we build from is that there will be access to
a potentially large training set of videos. We can thus use
conservative rules to identify target motions. As long as
such motion occurs somewhere within the videos, a widget
can be extracted. These widgets can then be located in oth-
er videos and frames through template matching.
A final insight is that video processing does not need to be
accomplished in real time. In contrast, techniques like Pre-
fab [5] need to work in real-time to enable interactive tech-
niques [7]. We thus have the advantage of being able to
split the processing of tutorial videos into multiple phases.
Video Processing
Waken processes a set of videos over a sequence of four
phases (Figure 3). Phase 1 makes a pass to identify possible
cursors from the motions in the video. Phase 2 tracks the
cursor in individual frames through template matching.
Phase 3 combines the cursor position information with
frame differencing to identify and extract clickable icons

Figure 2. UI Buttons states in a) Google SketchUp,
b) Adobe Photoshop, and c) Microsoft Word: i) de-
fault, ii) highlighted, iii) clicked, and iv) active.

in the videos. Phase 4 identifies the icons in all other
frames and detects when they are clicked. The final phase
is also used to identify and associate icons with their
tooltips, and menus with their top-level contents.
Source Videos
We make several simplifying assumptions about the source
library of videos. First, it is assumed that the input videos
are from the same version of a software application. Second
we assume videos are captured at a 1 to 1 scale. Finally, we
assume that the video is encoded with a reasonable quality
level. We discuss the limitations imposed by these assump-
tions later in this paper.
ELIMINATING CODEC ARTIFACTS
One of the difficulties of reverse engineering videos, in
comparison to live applications, is that individual frames
may not be pixel perfect representations, due to video com-
pression artifacts. In the presence of a lossy codec, there is
a significant amount of noise when comparing consecutive
frames (Figure 4), which our algorithms handle.
To compensate for this noise, we filter any small frame-to-
frame differences. We first convert the consecutive frames
to grayscale and then apply an absolute difference on the
two frames. We then apply a threshold function and filter
out any difference that is less than 20 on the grayscale
(from 0 to 255). This approach preserves the pixels as
much as possible, where as a more traditional Gaussian
filter would contaminate them.

Figure 3. The four main phases of the Waken processing system.

Figure 4. Pixel differences between frames (a) and
(b) is show in (c). Applying our filter removes differ-
ences due to noise (d).

PHASE 1 AND 2: CURSOR TRACKING
Our first goal is to identify and track the cursor. To remain
application independent, we make no assumptions about
the cursor appearance, but instead extract the cursor ap-
pearance from motion patterns in the video. We do this in a
two-phase process described below.
Phase 1: Cursor Identification
In this first phase, we identify the cursor appearance based
on specific patterns in frame differences, and then generate
a cursor model that can be subsequently used for template
matching.
Identifying Cursor Candidates. To identify cursor candi-
dates, we search for frames where only the cursor moves,
which creates an easily recognizable pattern (Figure 5).
Considering any 3 consecutive frames, if the absolute dif-
ference between the first and the second frame, and the
absolute difference between the second and the third frame,
each contain exactly two blobs, then there is a high likeli-
hood that the blobs identify cursor regions. As an addition-
al confirmation, we compute the contours of the blobs [29]
and then match the shapes of the four contours using the
OpenCV Hu invariants based [16] shape matching function.
If the result of the comparison is greater or equal to 0.95
between all four of the contours then we consider this a
candidate cursor match. We store the associated regions
from the 3 frames into a new cursor candidate bucket. This
is repeated for every set of 3 consecutive frames across all
videos.

Figure 5. (Top) Consecutive frames and the corre-
sponding blobs in each of the two absolute differ-
ences when only the cursor moves (Bottom).

Short Cursor Movements. When the cursor moves by a
short distance, the two absolute difference frames might
contain only one blob each (Figure 6). In this case, the in-
tersection of the two blobs from the two absolute differ-
ences may contain the cursor. We only attempt to identify
the cursor in such situations when there are 4 absolute dif-
ferences between any 5 consecutive frames, each contain-
ing a single blob. If this occurs, we calculate the three in-
teractions of the 4 consecutive difference blobs. If the result
of comparing the contours of these three intersection blobs

is greater than 0.95 we consider this to be three samples of
the same cursor in the second, third, and fourth frames and
we add the samples to a new bucket.

Figure 6. Consecutive frames and a) corresponding
single blobs in the absolute difference frames when
cursor moves a short distance. b) Cursor shapes in
intersection of consecutive differences.

Grouping Cursors Together. In most software applications,
there are multiple visual representations of the cursor de-
pending on its location and system mode. We group differ-
ent cursor buckets whose average contour match is equal or
greater to 0.95. The templates can then be created from
these merged buckets.
Generating Cursor Estimate. The individual instances in
each bucket will not be identical. Differences can be due to
video artifacts, or transparency in the cursor. In particular, a
cursor with high transparency would look much different
depending on the background color in the frame it was cap-
tured from. Thus, using any single instance for template
matching may fail. To determine what the cursors actually
look like, we look at all of the captured cursor images for
each cursor bucket. To build a model of the cursor, we first
align all images from a bucket, by minimizing the distance
between pixels, in RGB space. We then calculate the mean
values and variances for the RGB channels for each pixel in
the cursor area, across all images in the bucket. This prob-
abilistic template model can subsequently be used for tem-
plate matching.
To visualize the generated templates, we built a cursor
viewer. The cursor viewer shows a 2D representation of the
mean pixel values, a 2D representation of the variances,
and a 3D representation of the mean pixel values, with
height mapped to variance (Figure 7). It can be seen that
variance levels are higher when there is transparency or
drop-shadows in a cursor.

Figure 7. The cursor viewer application visualizes
cursor templates we generate. Variance is repre-
sented by color in (b) and height in (c).

Phase 2: Cursor Template Matching
In the Phase 2, we iterate through every frame for which a
cursor has not already been found, and search for the cur-
sor. We use a probabilistic template matching algorithm
against the templates generated in Phase 1. A brute force
approach searches for every cursor in every frame.
We consider an individual pixel match when the RGB val-
ue of a pixel is within 4 standard deviations of the mean for
the corresponding pixel in the cursor model. We consider a
template match if 95% of the individual pixels match.
If multiple matches are found, we keep the cursor with the
highest template match score. If any cursor achieves a
match score of 100%, we keep that cursor and move to the
next frame. To improve processing time, we first look for
the same cursor as the previous frame, in the proximity of
the previous cursor position. If that old cursor is found with
a 95% match, we keep that cursor and move to the next
frame. If a frame contains no cursor matches, then we as-
sume that the cursor is not present in that frame.
A filtering heuristic is used to account for potential false
positives when static icons take on the appearance of a cur-
sor. For each cursor, we generate the distribution of (x, y)
coordinates that it was found at. If the number of occur-
rences at any single (x, y) coordinate is more than 4 times
the standard deviation of this distribution, then those
matches are discarded, and the template matching is repeat-
ed to find a new cursor in the associated frames.
PHASE 3 AND 4: ICON IDENTIFICATION
The technique described above allows us to infer the loca-
tion of the cursor. In this section, we describe how the cur-
sor information can be leveraged to identify clickable icons
in a user interface video.
As with cursor tracking, icon identification is accomplished
across two phases, Phase 3 and 4 of our algorithm. We first
identify candidate icons based on consecutive frame image
differences. We then use this information to locate candi-
dates in other frames of the video.
Phase 3: Icon Identification
Identifying Candidate Icons. As with cursor identification,
we identify icons using a conservative set of rules. Impos-
ing such rules reduces the number of icons which will be
identified in Phase 3, and remaining icons will be located in
Phase 4 through template matching.
We identify candidate icons from instances when they are
clicked in the video. We look for a visual pattern that is
common across typical user interfaces, where the cursor:
enters the icon region causing the region to highlight, brief-
ly pauses, clicks the icon causing the icon region to switch
to a “depressed” state, and exits the icon.
To identify such patterns, we start by searching across all
instances where there cursor location changes across 3 con-
secutive frames, i, i+1, and i+2. We then look at the differ-
ences between frames i and i+1. We consider the move-
ment a potential candidate if there is a blob that intersects
the cursor position from frame i+1, that does not intersect

the cursor position from frame i. This indicates that the
cursor has potentially moved into an icon, and the icon has
highlighted. We then require that blob to not be present in
the difference of frame i+1 and i+2, which ensures that the
cursor has remained within the icon. This pattern identifies
a highlighted icon, and the associated region (Figure 8).

Figure 8. Typical cursor movement when approach-
ing and acquiring an icon and resulting frame differ-
ences.

We then test to see if the icon which was highlighted gets
clicked. As long as the cursor remains within the highlight-
ed region, we search for 3 consecutive frames, j, j+1, and
j+2. To detect a click, we require the cursor to be station-
ary, within 2 pixels, between frames j and j+1, and fully
stationary between frames j+1 and j+2. In addition, there
must be a new difference blob between frames j+1 and j+2,
which intersects the highlight region. This indicates the
icon has been clicked (Figure 9). This identification process
will identify root level menu clicks as well.

Figure 9. Typical cursor movement when clicking an
icon and resulting frame differences.

To extract the appearance of the icon, we store the image of
the highlight region from frame i (before it was occluded
by the cursor), and from the first frame after the click
which the cursor is no longer occluding the region.
Grouping Icons Together. Each time we extract an icon, we
check if it matches the appearance of previously detected
icons, using OpenCV’s standard template matching algo-
rithm, with a 0.95 threshold. If there is no match, the icon
is added. If it matches with a previous icon, they are
grouped together. The final icon templates are generated by
averaging the pixel values of all icons in a group.
Inferring the Cursor Hotspot. We also use Phase 3 to infer
the hotspot of the cursor. Each time an icon is highlighted,
we can detect which pixels of the cursor intersect the high-
lighted region. We define the hotspot as the region of pixels
which are in the highlight region at least 95% of the time an
icon is highlighted. We use this hotspot to test when the
cursor enters the area of an icon in Phase 4.

Phase 4: Detecting Icons, Tooltips, and Menus
Icon Template Matching. In Phase 4 we use template match-
ing to find instances of the icons extracted from Phase 3.
For simplicity, in our implementation, we only search a
small area around the initial location where we found the
icon. However, this could be extended to the whole frame
to account for customized layouts, but this would increase
processing time.
Icon Click Detection. We can now identify icon clicks by
using knowledge of the cursor hotspot and icon positions.
While the cursor hotspot is in an icon, we look for 3 con-
secutive frames, i, i+1, and i+2, where the cursor remains
stationary. To detect a click, there must be a difference blob
between frames i and i+1, which intersects the icon region,
and that blob cannot be in the difference between frames
i+1 and i+2. When this occurs, we record a click in frame
i+1. Blob larger than the icon region we classify as a menu.
Purging Icons. We developed two simple mechanisms to
reduce occurrences of false positives. First, any icon that
has only a solid color is dismissed. Second, we remove
icons that were rarely identified through template match-
ing: if an icon is identified is Phase 3 95% of the time, rela-
tive to the total number of times it is identified between
Phases 3 and 4, we discard it.
Tooltip and Menu Identification. In addition to identifying
clickable icons, we can begin to reconstruct additional UI
information associated with the icons. An ultimate goal
would be to automatically construct interface facades [27]
from the videos. We take an initial step in this direction,
and infer the tooltip information associated with icons, and
the top-level contents associated with menus.
To detect a candidate tooltip, we consider consecutive
frames in which the cursor is within an icon and does not
move. If the difference between consecutive frames con-
tains a single blob that does not intersect with the high-
lighted area of the icon, it is considered a tooltip. To cap-
ture the tooltip appearance, we take the region of the blob
in the last frame that blob is detected. This ensures the
tooltip is captured at full opacity, to account for user inter-
faces where tooltips gradually fade-in. We calculate the
mean value of RGB for each pixel in the tooltip from all
occurrences for that particular icon. This gives us the final
appearance of the tooltip that we use.
We use a similar approach to detect the top-level contents
associated with a menu. When we detect the click of an
icon that has been classified as a menu, we capture the im-
age of the top-level menu items, defined as the blob area,
with the icon area subtracted. As with tooltips, we take the
image from the last frame which the blob occurs, and we
average the RGB value across all occurrences, to get its
final appearance.
One limitation of this approach is that it does not handle
menu or tooltip associations changing due to application
context. Inferring the correct context is a more challenging
task, which requires additional research.

IMPLEMENTATION AND INITIAL RESULTS
We implemented Waken using the C++ implementation of
OpenCV1 version 2.3 on Windows 7. The system used a
Postgres2 version 9.1.3 database to store and access pro-
cessed usage data. The system ran on a 64-bit Windows 7
Enterprise with Intel Xeon 2 quad-core 2.53GHz processors
and 12GB or RAM.
We ran Waken on a library of 34 Google SketchUp3 videos
downloaded from the Google SketchUp training website4.
The videos were in the Apple QuickTime format with
H264 – MPG-4 AVC codec. The resolution of the videos
was 640×480, with a 1:1 scale, and frame rates ranged from
8fps to 24fps. The videos lasted from 1-8 minutes, and to-
taled 2 hours and 22 minutes of playing time.
Total analysis time for all videos was approximately 50
hours. The large majority of time was spent searching for
cursor templates in Phase 2. Although processing time is
high, the system implementation is highly parallelisable,
and the process time could decrease with more processors.
Below we provide some of the results and observations
from this test set on the core features of our algorithm: cur-
sor tracking, icon identification, and icon click detections.
Refining and evaluating the UI reconstruction techniques
(i.e. tooltip and menu recognition) is left for future work.
We do not expect to be able to reconstruct all cursors and
icon clicks in this test, with this relatively small input set of
videos. Our goal in this initial evaluation is to get an indi-
cation of how well the system will work, and identify limi-
tations that can guide future work and improvements.
Results
We discuss the results and observations for each of the
phases of the Waken processing system. In order to obtain
the ground truth, one of the authors manually coded all
cursor changes and icon click events in the videos. Phase 1
was performed on all 34 videos. However, we removed 18
videos as outliers due to the large number of frames that
were not at 1 to 1 scale, due to zooming effects. In Phases 2
to 4, we ran on the remaining 16 videos. We present the
results based on the data from these 16 videos.
Phase 1: Cursor Identification and Template Generation.
The total number of frames that contributed to motion-
based identification of cursors was 1,847 frames out of
96,223 (1.9%). This provides a rough guideline as to how
often cursors will exhibit the required behavior to be
tracked by our algorithm.
The system was able to successfully recognize 14 different
cursors, leaving 5 cursors unrecognized. There were no
false positives. In most cases, the unrecognized cursors
were rarely used. This would be alleviated by larger data
sets, which would increase the chances of each cursor being
recognized.

1 http://opencv.willowgarage.com
2 http://www.postgresql.org/
3 http://sketchup.google.com/
4 https://sites.google.com/site/sketchupvideo/

The quality of the template cursors depended on how fre-
quently the cursor was observed. Figure 10 shows mean
pixel RGB values and variance for the cursor with the
greatest number of templates (N=656). A side by side com-
parison with the actual cursor icon shows that the templates
can be extremely accurate with enough samples to build
from.
Overall we feel these results are impressive, given that we
had no a priori knowledge of cursor appearance.

Figure 10. a) Cursor reconstructed using our algo-
rithm on the test data. b) Actual cursor icon. c) Sys-
tem cursor with hotspot estimate (solid black dot in-
dicates 95% confidence).

Phase 2: Cursor Tracking Results. Attempting to track the
cursors in every individual frame resulted in an accuracy of
77.28% (SD=13.19) and recall of 72.67% (SD=14.48)
(Figure 11). There were no false positives. Accuracy for
individual cursors varied greatly, depending on the number
of samples used to build its template (Figure 12). When
removing the 8 cursors whose templates were generated
from less than 10 samples, the average accuracy increased
to 81.39% (SD=5.98) and the average recall increased to
81.28% (SD=12.78) (Figure 11).

Figure 11. Cursor tracking accuracy by video. Ad-
justed accuracy shows results when the low-
sampled cursors are removed from the data set.

Figure 12. Cursor tracking accuracy by cursor.

Phase 3: Icon Identification Results. Phase 3 was not able to
identify any icons in the videos with 8 and 15fps, suggest-
ing that the frame rate could affect the identification accu-
racy. We therefore continued our phase 3 analysis on the 4
videos that had 24fps frame rate.
In these 4 videos, the system was able to successfully iden-
tify 8 icon buttons. Five buttons were not recognized, and
there was one false positive. However, any button that was
clicked at least four times was accurately recognized. The
system successfully identified the cursor that clicked on the
icons, and accurately estimated its hotspot (Figure 10.c).
Phase 4: Click Tracking Results. While we didn’t manually
calculate tracking accuracy of the icons which were identi-
fied in Phase 3, our observations indicated that accuracy
was above 99%.
The precision and recall of click tracking was 81.79% and
29.48% respectively. However, for videos with 24fps the
precision was 87.97% and recall was 66.04%. This sug-
gests that the click usage data can only be usable from vid-
eos with larger frame rates, but on the other hand the user
interface reconstruction works with videos with very low
frame rates.
Lessons Learned
Given this is a first effort in reconstructing UI elements
from videos, without any application dependant knowledge,
we are encouraged by these results. Waken was able to suc-
cessfully recognize 14 cursors, 8 icons, and accurately
model the hotspot of the system cursor. While the accuracy
levels have room for improvement, the trends indicate that
with enough samples, all elements could get recognized.
More importantly, the analysis has identified a number of
challenges leaving room for future improvements.
We found some cursors were not recognized because they
were rarely used. However, one of the cursors appeared
frequently in the videos, but was rarely recognized in Phase
1. It turned out that this cursor was used in drawing content
and almost was always associated with other movements in
the working area. It would be helpful to enhance Phase 1 so
that it could identify the cursor, even when other content in
the frames are changing.
Low frame rate was also problematic preventing icon click
identification. The problem is that key frames required for
our rules may be skipped when the video has a low frame
rate (for example, the cursor remaining stationary for one
frame after a click event). To overcome this problem, we
could attempt to generate templates for “active” states of
the buttons. We could then perform template matching to
determine if an icon has taken on its active state, similar to
the strategy used in Pause-and-Play [26].
Finally, the lack of false positives in the tests suggests that
heuristics we use to identify and track cursors and icon
buttons describe the motion well. However, there is a po-
tential to, in the future, relax some of the rules and test how
that affects the overall accuracy of the system.

WAKEN VIDEO PLAYER
We developed a video player that serves as a demonstration
of some of the design opportunities that our video analysis
system enables. The Waken Video Player brings the videos
to life, by allowing users to directly interact with them.
System Implementation
The video player was implemented on the Java 6 SE plat-
form, using Xuggle, a free open source video manipulation
library. A Postgres version 9.1.3 database was used to store
and access the tutorial video usage meta-data.
Main Player Components
Figure 13 shows the main components of the video player.
These components include a playback area (Figure 13a),
event-based timelines (Figure 13d), a navigation panel
(Figure 13c), and a toggle button for cursor highlighting
(Figure 13e). Users can open video files, which automati-
cally loads the associated meta-data from the database.
Cursor Highlighting
The player contains a toggle to highlight the cursor. This is
an effect in many screen captured videos, but must be hard-
coded into the video. Viewers thus have no capability to
enable or disable it. By leveraging the cursor location data
generated by Waken, we can allow users to dynamically
enable or disable cursor highlighting (Figure 13b).
Enhanced Timeline Navigations
Icon Track. Similar to previous systems [13, 21, 26] we
mark up the timeline with the icons the tutorial author
clicked on. Users can click on the icons to navigate to asso-
ciated time in the video. While the design is similar to pre-
vious systems, the technique to obtain this data, without
any prior knowledge of the UI appearance, is novel.
Cursor Track. We also visualize the cursor representation in
the timeline, to show the user when cursor changes occur.
This may help users locates areas of the video where a
mode changes or a specific type of action occurred that did
not result from an icon click.

Direct Video Navigation
Users can interact with the individual icons that are recog-
nized in any frame of the video. When a user pauses the
video, bounding box overlays are rendered on top of the
video indicating any recognized component. Users can then
click directly on an icon to search for other moments in the
video when that icon is used. This is similar to previous
direct video navigation techniques [9], but is novel for
software videos. When the user clicks on an icon, a panel
on the right shows thumbnails representing all the times in
the video when that icon was used. A second section shows
instances of when that icon was used in other videos. Thus,
a user can select a tool in the current video and see a list of
frames from related videos which also use the tool. Click-
ing on a related video opens the video and seeks to the
frame when that tool is being used. This can be thought of
as event-based interactive hyperlinks between videos.
UI Exploration
In our player, we can show tooltips within the video can-
vas, even if the video itself contains no tooltips. To see a
tooltip, the user simply hovers over the corresponding icon
of interest while the video is paused. A bounding box is
drawn around the tooltip to distinguish it from actual con-
tent from the video. Tooltips within the video allow users
to get simple information about tools, just like they would
in a live user interface (Figure 14a). We also added the
ability to expand and collapse top-level menu contents, by
hovering over the root menu. This adds further abilities for
a user to explore an interface directly from the video itself.
As with tooltips, a bounding box is drawn to distinguish it
from an actual menu in the video (Figure 14b).

Figure 14. a) A tooltip is rendered over the video b)
Menu contents are rendered over the video.

Figure 13. The Waken Video Player user interface components. a) The playback area. b) Highlighted cursor. c) Navi-
gation panel. d) Event based timelines. e) Cursor highlight toggle.

DISCUSSION AND LIMITATIONS
We have demonstrated an application independent system
that is able to reconstruct events which occur in video tuto-
rials. We have also shown how this data can allow for a set
of novel, direct manipulation interactions, on the videos
themselves. Results from an initial test of 16 videos pro-
vided some encouraging results, but there are still a number
of ways our work can be extended and improved.
Waken has some inherent limitations. For example, we
cannot capture interactions resulting from keyboard usage.
Furthermore, if, across the entire library of videos, an icon
is never clicked, or a tooltip is never shown, then it will not
be recognized. Other limitations are addressable. For ex-
ample, we did not try to account for repositioning or cus-
tomization of palettes, but searching the entire frame for
template icons would likely address this challenge.
Our study showed that the performance of Waken is de-
pendent on the quality of the videos. Today’s CPU capabil-
ities and network infrastructure do make it easier to record
and share high-quality videos. As such, limitations regard-
ing video quality will not likely be an important issue in the
years to come. That being said, it would still be desirable
for the system to work well on lower quality videos.
Our initial tests with loseless videos showed very high ac-
curacy rates. Our evaluation was performed on a set of vid-
eos that had been compressed with a lossy codec, and accu-
racy rates were still acceptable. However, as the amount of
loss increases, more codec artifacts will begin to impact
accuracy. While such artifacts can be overcome by tuning
the thresholds we used, at some point, alternative strategies
would need to be considered. Similarly, at 8 frames per
second, accuracy levels begin to degrade. Refinements to
account for low-quality videos should be explored.
Our work was also limited to videos that were recorded at a
1 to 1 scale. The main impact of analyzing downscaled
videos would be on the quality of the cursor templates our
system generates. Generating templates for multiple resolu-
tions could be a strategy to overcome the scale issue [26].
This type of technique could also be used to account for
pan and zoom operations that may occur in the videos.
One of the main advantages of our work is that there is no
application-specific information required for the algorithms
to work. However, if the end goal is to run our system on a
large library of videos, from multiple applications or appli-
cation versions, there would need to be a way to distinguish
what application was in the video. Otherwise, the system
would try to match icons from one application to another.
In our study, the system was run on a library of videos from
a single application. However, future work could look at
techniques to automatically distinguish or group applica-
tions from the video itself.
Our system depends of finding consecutive frames in a
video that have specific patterns in their differences. If a
region of the video is changing throughout the entire video,
this could prevent any recognition from occurring. For ex-
ample, if an animation or video is playing within the video

itself. One way to address this could be to mask areas of the
video that are changing for large periods of time.
A strength of our system is that information from all videos
in the library are combined. For example, no cursors may
be found in a video from Phase 1, but in Phase 2, the cursor
can be tracked through template matching. Similarly, users
can view tooltips in videos which they never appeared in.
While our system does not require any application-
dependant rules or templates, it does depend on some high-
level rules. For example, the recognition of clickable ele-
ments requires those elements to become highlighted when
the cursor enters, and to provide an additional highlight
when the element is clicked. Although this type of behavior
is prevalent in most of today’s user interfaces, there will be
instances of widgets that do not elicit such behaviors.
Finally, while Waken was designed to be application-
independent, our test was performed only for one applica-
tion. However, our informal tests on videos for Microsoft
Word and Adobe Photoshop found comparable identifica-
tion and tracking accuracy for cursors and clickable icons
to results from our study (Figure 15). Unless the UI me-
chanics are much different, we expect our system to work
for most software applications.

Figure 15. Cursor and clickable icon recognition
from Adobe Photoshop (a) and Microsoft Word (b).

FUTURE WORK
Our work opens up a number of interesting opportunities
for future research.
With respect to the recognition system, new techniques to
address the limitations described in the previous section
could be developed. In particular the ability to automatical-
ly recognize software and versions, or the recording resolu-
tion, could help improve the robustness of the system. Al-
so, some motion pattern recognition rules may have been
stricter than necessary, although our current implementa-
tion was intentionally biased towards avoiding false posi-
tives. One of our goals for future work is to explore how to
relax some of these rules without sacrificing identification
accuracy. Further investigating and addressing the issue of
codec artifacts would also increase the scope of videos
where our work would be applicable.
Our work was guided by numerous previous systems that
have performed recognition of on-screen activities. We
used a combination of frame differencing and template
matching. However, our algorithms could likely be im-
proved by integrating other concepts that have been seen in
prior art, such as interpreting interface hierarchy [6].
We leveraged the information collected by the recognizer
to provide an enhanced video player. However, the infor-
mation we collect from the recognition opens up several

alternative design opportunities. For example, it would be
interesting to investigate the feasibility of automatically
translating a recorded video into a different language, simi-
lar to what has been explored for live user interfaces [6].
Finally, the menu reconstruction provides an initial step
towards automatically reconstructing an entire user inter-
face façade [27]. It would be interesting to explore how
close to a full reconstruction could be obtained by extend-
ing our work. This would require modelling a much deeper
set of application components, such as application states,
hierarchal menus, and floating palates.
CONCLUSION
We have presented Waken, a new system that leverages
computer vision techniques to extract usage information
from tutorial videos, such as the movement of the cursor,
the icons which are clicked, and the tooltips associated with
interactive elements. A main contribution of this system is
that it does not require any application specific rules or
templates. We have demonstrated a number of novel inter-
actions that are enabled, such as allowing the user to inter-
act directly with the video itself. Results from our initial
test indicate a number of fruitful areas for future work.
REFERENCES
1. Bergman, L., Castelli, V., Lau, T., and Oblinger, D.

2005. DocWizards: a system for authoring follow-me
documentation wizards. ACM UIST, 191-200.

2. Chang, T., Yeh, T., and Miller, R. C. 2010. GUI testing
using computer vision. ACM CHI, 1535-1544.

3. Chang, T., Yeh, T., and Miller, R. C. 2011. Associating
the visual representation of user interfaces with their in-
ternal structures and metadata. ACM UIST, 245-256.

4. Cheng, K., Luo, S., and Chen, B. 2009. SmartPlayer:
user-centric video fast-forwarding. ACM CHI, 789-798.

5. Dixon M. and Fogarty, J. 2010. Prefab: implementing
advanced behaviors using pixel-based reverse engineer-
ing of interface structure. ACM CHI, 1525-1534.

6. Dixon, M., Leventhal, D., and Fogarty, J. 2011. Content
and hierarchy in pixel-based methods for reverse engi-
neering interface structure. ACM CHI, 969-978.

7. Dixon M., Fogarty, J., and Wobbrock, J. 2012. A gen-
eral-purpose target-aware pointing enhancement using
pixel-level analysis on graphical interfaces. ACM CHI,
3167-3176.

8. Dong, T., Dontcheva, M., Joseph, D., Karahalios, K.,
Newman, M. W., and Ackerman, M. S. 2012. Discov-
ery-based Games for Learning Software. ACM CHI,
2083-2086.

9. Dragicevic, P., Ramos, G., Bibliowitcz, J., Nowrouzezah-
rai, D., Balakrishnan, R., and Singh, K. 2008. Video
browsing by direct manipulation. ACM CHI, 237-246.

10. Fernquist, J., Grossman, T., and Fitzmaurice, G. 2011.
Sketch-sketch revolution: an engaging tutorial system
for guided sketching and application learning. ACM
UIST, 373-382.

11. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and
Igarashi, T. 2009. Generating photo manipulation tuto-
rials by demonstration. ACM SIGGRAPH. 66. 9 pages.

12. Grossman, T. and Fitzmaurice, G. 2010. ToolClips: an
investigation of contextual video assistance for func-
tionality understanding. ACM CHI, 1515-1524.

13. Grossman, T., Matejka, J., and Fitzmaurice, G. 2010.
Chronicle: capture, exploration, and playback of docu-
ment workflow histories. ACM UIST, 143-152.

14. Harrison, S. M. 1995. A comparison of still, animated,
or nonillustrated on-line help with written or spoken in-
structions in a graphical user interface. ACM CHI, 82-89.

15. Hategekimana, C., Gilbert, S., and Blessing, S. 2008.
Effectiveness of using an intelligent tutoring system to
train users on off-the-shelf software. Society for Info.
Tech. and Teacher Education Int'l Conf., AACE.

16. Hu, M. 1962. Visual pattern recognition by moment
invariants. IRE Trans. Inf. Theory IT-8, 8, 1409-1420.

17. Huang, J. and Twidale, M. B. 2007. Graphstract: mini-
mal graphical help for computers. ACM UIST, 203-212.

18. Hurst, A., Hudson, S. E., and Mankoff, J. 2010. Auto-
matically identifying targets users interact with during
real world tasks. ACM IUI, 11-20.

19. Kelleher, C. and Pausch, R. 2005. Stencils-based tutori-
als: design and evaluation. ACM CHI, 541-550.

20. Knabe, K. 1995. Apple guide: a case study in user-aided
design of online help. ACM CHI, 286-287.

21. Matejka, J., Grossman, T., and Fitzmaurice, G. 2011.
Ambient help. ACM CHI, 2751-2760.

22. Nakamura, T. and Igarashi, T. 2008. An application-
independent system for visualizing user operation histo-
ry. ACM UIST, 23-32.

23. Palmiter, S. and Elkerton, J. 1991. An evaluation of
animated demonstrations of learning computer-based
tasks. ACM CHI, 257-263.

24. Petrovic, N., Jojic, N., and Huang, T. S. 2005. Adaptive
Video Fast Forward. Multimed. Tools Appl. 26, 3.

25. Pongnumkul, S., Wang, J., Ramos, G., and Cohen, M.
2010. Content-aware dynamic timeline for video brows-
ing. ACM UIST, 139-142.

26. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J.,
Bourdev, L., Avidan, S., and Cohen, M. F. 2011. Pause-
and-play: automatically linking screencast video tutori-
als with applications. ACM UIST, 135-144.

27. Ramesh, V., Hsu, C., Agrawala, M., and Hartmann, B.
2011. ShowMeHow: translating user interface instruc-
tions between applications. ACM UIST, 127-134.

28. Shneiderman, B. 1983. Direct Manipulation: A Step
Beyond Programming Languages. Compt. 16, 8, 57-69.

29. Suzuki, S. and Abe, K. 1985. Topological structural
analysis of digitized binary images by border following.
Comput. Vision Graph., 30(1), 32-46.

30. Yeh, T., Chang, T., and Miller R. C. 2009. Sikuli: using
GUI screenshots for search and automation. ACM UIST,
183-192.

31. Yeh, T., Chang, T., Xie, B., Walsh, G., Watkins, I.,
Wongsuphasawat, K., Huang, M., Davis, L. S., and
Bederson, B. B. 2011. Creating contextual help for
GUIs using screenshots. ACM UIST, 145-154.

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Video Tutorials
	Tutorial Authoring and Usage Data Capture
	Reverse Engineering User Interfaces

	system goals and challenges
	Where is the cursor?
	When does the mouse button click?
	Cursor Occlusion
	Video Artifacts

	waken system overview
	Key Insights
	Video Processing
	Source Videos

	eliminating Codec artifacts
	phase 1 and 2: cursor tracking
	Phase 1: Cursor Identification
	Phase 2: Cursor Template Matching

	phase 3 and 4: Icon Identification
	Phase 3: Icon Identification
	Phase 4: Detecting Icons, Tooltips, and Menus

	implementation and initial results
	Results
	Lessons Learned

	Waken video player
	System Implementation
	Main Player Components
	Cursor Highlighting
	Enhanced Timeline Navigations
	Direct Video Navigation
	UI Exploration

	Discussion and Limitations
	Future Work
	Conclusion
	REFERENCES

