
TutorialPlan: Automated Tutorial Generation from CAD Drawings

Wei Li
Autodesk Research

Toronto, Ontario, Canada
wei.li@autodesk.com

Yuanlin Zhang
Texas Tech University
Lubbock, Texas, USA

y.zhang@ttu.edu

George Fitzmaurice
Autodesk Research

Toronto, Ontario, Canada
george.fitzmaurice@autodesk.com

Abstract
Authoring tutorials for complex software appli-
cations is a time consuming process. It also
highly depends on the tutorial designer’s skill level
and experience. This paper introduces an ap-
proach which automatically generates software tu-
torials using the digital artifacts produced by the
users of a software program. We model this pro-
cess as an optimal planning problem using soft-
ware produced artifacts, software specifications
and the human-computer interaction Keystroke-
Level Model (KLM). We present TutorialPlan, an
automated tutorial generator, which creates step-
by-step text and image instructions from CAD
drawings and helps users learn AutoCAD, a com-
plex design and drafting software. In our tutorial
generator, the optimal planning problem is repre-
sented and solved using DLV, a general Answer Set
Programming (ASP) system. DLV offers a natural
representation of both the problem and the heuris-
tics needed to solve it efficiently. A user study
shows that the tutorials generated by our system are
comparable to those generated by experienced Au-
toCAD users.

1 Introduction
Learning to use software applications is a challenging prob-
lem due to the tension between the ever increasing number
of features of many modern applications, which can contain
hundreds to thousands of features, and the unwillingness of
users to spend time learning anything about a software pro-
gram that is beyond their immediate task needs at hand [Car-
roll and McKendree, 1987].

The software learning problem has been investigated in a
long line of research literature (see [Grossman et al., 2009]
and references therein). Many types of learning aids have
been proposed, including online help, video assistance and
interactive tutorials [Sukaviriya and Foley, 1990; Fernquist et
al., 2011; Li et al., 2012]. A majority of the existing work is
tutorial based. The tutorials need to be authored by tutorial
designers who are often software experts. They first identify
and design tasks (problems) for the tutorial and then work
out the steps to complete them. The steps are recorded and

presented as text, images, or videos. The finished tutorials
are shared online or distributed to the learners.

There are some issues with this traditional tutorial author-
ing process. First, there is a constant shortage of tutorial de-
sign experts while features of the software change frequently.
In a time when globalization prevails, many software appli-
cations such as AutoCAD have to offer versions in local lan-
guages and need corresponding tutorials. Therefore, it is very
difficult and time consuming to produce up-to-date high qual-
ity tutorials. Second, the sample tasks in a tutorial are usually
simplified and/or artificial depending on the designer’s expe-
rience and time constraints. It is hard for users to find tutori-
als relevant to what they need to accomplish from the limited,
existing tutorials.

We also note the growing community of users who share
their design data online. For example, CAD drawings are
abundant on the Internet. When a user wants to create a draw-
ing she is not familiar with, it is relatively easy for her to find
a similar drawing on the Internet. It would be a great help if a
tutorial could be generated from a sample drawing. Unfortu-
nately, existing tutorial systems are not able to leverage those
online resources yet.

To address the challenges and make use of the opportuni-
ties, we propose to automatically generate tutorials from dig-
ital artifacts produced by users of a software application, the
specification of software functionalities and cognitive models
on human behavior and learning. By automation, we mini-
mize the use of human experts and the effort to produce tu-
torials for different software versions (e.g., due to the use of
different languages or new features). The algorithms together
with the cognitive model will produce high quality tutorials
(e.g., in terms of improving users’ productivity). More im-
portantly, we are able to address the challenge of the shortage
of sample tasks relevant to the users’ work needs thanks to
the abundant artifacts of sample tasks available online.

We present a prototype system, TutorialPlan, to generate
tutorials from a given CAD drawing to teach a user how
to create the same drawing. A main problem in building
the tutorial is to generate a sequence of commands to ren-
der the drawing. In TutorialPlan, we formulate the prob-
lem as an optimal planning problem [Hart et al., 1968;
Ghallab et al., 2004] where the objective is to minimize
the human’s effort to accomplish the drawing based on a
cognitive model the Keystroke-Level Model (KLM) [Card

et al., 1980; John and Kieras, 1996]. An answer set pro-
gramming system (ASP) - DLV [Gelfond and Kahl, 2012;
Eiter et al., 2003] is employed to solve the optimal planning
problem. Once the sequence of commands is obtained, a tuto-
rial composer will create an image based and human friendly
tutorial from the commands. A preliminary evaluation shows
very promising results. After compared with hand-designed
tutorials, a group of experienced software users agree that au-
tomatically generated tutorials are useful and would recom-
mend them to novice users.

2 Related Work
In this section, we will review the work related to tutorial
generation which spans both the AI and HCI communities.
Demo-based tutorial system. Many recent tutorial systems
are demo-based systems. They record the process of users
working on a task and generate step-by-step instructions by
compiling a software event log, UI state changes and data
revisions [Grabler et al., 2009; Fernquist et al., 2011; Chi et
al., 2012; Laput et al., 2012]. Tutorial designers are necessary
for those systems.
Intelligent tutoring system. The most relevant work in in-
telligent tutoring systems is on course generation or course
sequence. In the existing work, e.g., [Peachey and McCalla,
1986; Woo, 1991; Elbeh and Biundo-Stephan, 2012], course
generation is usually formulated as a planning problem based
on a course model, student model and pedagogical model.
The more challenging work here is to build good student and
pedagogical models themselves while it is assumed that the
course model has a hierarchical structure. A major difference
between this work and ours is that the overall course content
is usually decided a priori while our content is from the users
on the fly because most software users already have tasks
in their mind and they may not want to spend time working
on/learning pre-defined content [Carroll and Rosson, 1987].
Automated help system. Another related area is automated
help systems which capture knowledge about software speci-
fications and user interface. Cartoonist [Sukaviriya and Foley,
1990] uses pre and post conditions associated to interactive
actions to search for a chain of events that can generate ani-
mation scripts. H3 [Moriyon et al., 1994] applies a forward
chaining inference engine on the specifications of the applica-
tion’s user interface to generate hypertext-based help. A task-
oriented help system was presented in [Pangoli and Paternó,
1995]. It allows the help designer create task specifications
with temporal constraints among sub-tasks and derives help
content from these specifications. Similarly, a task specifi-
cation editor was provided to the designer in [Contreras and
Saiz, 1996; Garcia, 2000].

Another class of help support systems employs the plan-
ning techniques to avoid manual construction of complex
task models for tutorial generation as the work above. For
instance, HICCUPS, a help system for configuring statisti-
cal analysis [McKendree and Zaback, 1988], generates plans
from users’ goal statement, knowledge about the software
and the users’ recent interactions with the interface. It as-
sumes a hierarchical structure of the software tasks, and its
algorithm depends heavily on the competence of the soft-

ware user. Another example is SmartAide [Ramachandran
and Young, 2005] which generates context-sensitive task help
based on the user’s request for help, the current workspace
context and the library of actions available to the system to
construct an action sequence achieving the user’s goal. How-
ever, SmartAide was only designed for a pre-defined set of
general tasks.

The difference between this work and ours lies in the dif-
ference between software tutorial and software help systems.
A software tutorial typically walks users step-by-step through
a complex process, so that users can follow along with the
tutorial and learn how to use a feature or perform a task [Sel-
ber et al., 1997]. Early automated help systems only provide
guidance for basic interactions, such as invoking commands
or requiring input [Sukaviriya and Foley, 1990; Moriyon et
al., 1994]. Task-oriented help systems go beyond single com-
mands [Pangoli and Paternó, 1995; Contreras and Saiz, 1996;
Garcia, 2000]. But they need to construct task models and de-
sign specifications. Even some systems provided task editors.
Those tasks are not flexible. They depend on the UI design
models and have to be pre-defined by help designers.
Other differences. There are other major differences be-
tween our work and the previous work: 1) The previous work
does not involve much human computer interaction modeling
or optimality of a plan. Instead, we employ the Keystroke-
Level model (KLM) to identify optimal plans. 2) The knowl-
edge of our domain lacks the hierarchical structure. As a re-
sult, a natural choice for us is to use answer set programming
while a hierarchical task network (HTN) planner [Ghallab et
al., 2004] is sufficient for the work above. 3) Very few empir-
ical studies were conducted to evaluate the planning systems
in the previous work. No user study was reported in almost
all of the reviewed work. 4) Finally, the goal in the previous
work is usually formulated by users while in our system, any
software artifact produced by the online community can be
used as a goal.

3 Problem Definition
Given a task and a set of well specified software commands,
the design process of a task oriented software tutorial can be
formulated as a planning problem: given the specification of
actions and a goal, find a sequence of actions, called a plan,
which can achieve the goal. The actions are the commands of
the software, and the goal is the task.

For a complex piece of software, the same goal can often
be achieved by multiple action sequences. For example, in
a drawing software, to produce 10 parallel lines of the same
length, we could use the LINE command 10 times and input
coordinates for 20 points. But a more human friendly ap-
proach is to draw the first line and use the COPY and PASTE
commands to easily create the rest of the lines. Given this
consideration, it is not sufficient to model the tutorial gener-
ation as a planning problem because many plans obtainable
from a planning problem formulation are not acceptable by
human users. Some restrictions have to be added to the plans
such that they are more appropriate for human users.

The GOMS (shorthand for Goal, Operator, Methods and
Selection rules) model [Card et al., 1986], a well known the-

oretical concept in human-computer interactions, offers cri-
teria for a good plan. It provides an engineering model to
make a priori quantitative predictions of human performance
in a human-computer interaction design. It can address the
following issues: lower-level perceptual motor issues, the
complexity and efficiency of the interaction procedures, and
how all these activities are performed together [John and
Kieras, 1996]. The Keystroke-Level Model (KLM) is a sim-
pler GOMS model and has matured sufficiently to be used in
actual design [Card et al., 1980; John and Kieras, 1996]. It
provides an estimation of the execution time for a task, which
fits our problem well. KLM associates a time to each ac-
tion and mental preparation to finish a task. So, the execution
time of a sequence of actions is the total time of the actions
and necessary mental preparation.

In our case, every plan (a sequence of action) has an execu-
tion time under KLM. One criteria for a plan to be acceptable
is for its execution time to be minimal. Now the problem of
generating an acceptable plan for a given software task can be
modeled by optimal-planning problems [Hart et al., 1968].

A planning instance is (S, I,G,A, f, c) where S is a set
whose elements are called states, I a state, called an initial
state, G a state, called a goal state, A a set whose members
are called actions, f a transition function mapping a state
and an action to a state, and c a function mapping an action
to a number, called cost. A plan is a sequence of actions
(a1, ..., an) such that f(f(...f(f(I, a1), a2)..., an)) = G.
The cost of a plan (a1, ..., an) is the sum of the cost of each
its actions, i.e., Σi=n

i=1 c(ai). An optimal planning problem is
to find a plan, with minimal cost, for a planning instance.

The tutorial generation problem is an optimal planning
problem where a state is a set of rendered objects, an ac-
tion a command, the initial state empty, the goal state a set
of rendered objects, the cost of an action defined by the KLM
model, and the transition function defined by the effects of
the commands. More details are in the next section.

4 Optimal Planning Using DLV
In this section, we will present details of the representation
and solving of the tutorial generation problem using an ASP
system – DLV.

Answer set programming originated from non-monotonic
logic and logic programming. It is a logic programming
paradigm based on the answer set semantics [Gelfond and
Lifschitz, 1988], which particularly offers an elegant declar-
ative semantics to the negation as failure operator in Prolog.
An ASP program consists of rules of the form:

l0 or ... or lm :- lm, ..., lk, not lk+1, ..., not ln.

where each li for i ∈ [0..n] is a literal of some signature, i.e.,
expressions of the form p(t) or ¬p(t) where p is a predicate
and t is a term, not is called negation as failure or default
negation and or is called epistemic disjunction. A rule with-
out body is called a fact, and a rule without head a denial.
The rule is read as: if one believes lm, ..., lk and there is no
reason to believe lk+1, ..., ln, she must believe l0, or or
lm. The answer set semantics of a program P assigns to P a
collection of answer sets, i.e., interpretations of the signature
of P corresponding to possible sets of beliefs (i.e., literals).

These beliefs can be built by a rational reasoner by following
the principles that the rules of P must be satisfied and that
one shall not believe anything one is not forced to believe.

DLV also allows weak constraints of the form:
:∼ l1, . . . , lk, not lk+1 . . . not ln.[C : 1].

where the rule is a denial and C is the cost (a number) as-
sociated with the rule. DLV finds the best answer sets that
minimize the total cost of the violated weak constraints.

ASP offers an elegant solution to the planning problem
[Lifschitz, 1999; Gelfond and Kahl, 2012]. Weak constraints
of DLV offers the construct needed for optimal planning
[Eiter et al., 2003].

In the following we will use DLV to represent the problem
of tutorial generation from AutoCAD drawings. AutoCAD1

is a complex professional design software for producing ac-
curate drawings. We choose AutoCAD also because it has
been widely used by over 10 million users and has a large
number of existing drawings.

To make the presentation concise and easy to understand,
some literals serving only the purpose of satisfying the syn-
tactical requirements of the DLV system are omitted. As a
result, the rules in this paper might not be acceptable by DLV
without adding the missed literals.

Input drawing. Given an AutoCAD drawing, its objects are
represented as facts. A line, with a unique name Id, between
points (x1, y2) and (x2, y2), is represented by

object(Id, cline(start(x1, y1), end(x2, y2))).

A circle of unique name Id with center at (x, y) and radius of
r is represented by

object(Id, ccircle(center(x, y), radius(r))).

State/initial state/goal state. A state is a set of fluents. A
fluent is a property of some objects that may change from time
to time. The most important one is rendered(Id) denoting
that the object Id has been rendered. Other fluents include
information on the execution of a command, e.g., on(line)
denoting that currently the command to draw a line is on.
Many fluents such as rendered(Id) follow the inertia law:
when an Id is rendered at one moment, it is still rendered
at the next moment if there is no reason to believe it is not
rendered. For any inertial fluent F, we have a fact:

fluent(inertial, F).

The inertia law is represented as

holds(F, Next) :- next(I, Next),
fluent(inertial, F),
holds(F, I),
not ¬holds(F, Next).

¬holds(F, Next) :- next(I, Next),
fluent(inertial, F),
¬holds(F, I),
not holds(F, Next).

1http://usa.autodesk.com/autocad/

where ¬ is the classical negation and next(I, Next) denotes
the next step of I is Next and holds(P, I) denotes property
P holds at step I. For readers not familiar with ASP, the in-
ertia rules give an excellent example to show the difference
between ¬ and not. ¬holds(F, Next) (the head of the sec-
ond rule above) means that we believe fluent F does not hold
at the next moment while not holds(F, Next) (in the body
of the second rule) denotes that we have no evidence, or we
do not know, that the fluent F holds at the next moment. So,
the second rule is understood as if F does not hold at the cur-
rent moment and we have no evidence to show F will hold at
the next moment, F is believed to keep its state of not holding
at the next moment.

The initial state is empty, i.e., no object is rendered yet.
The goal state is that rendered(Id) holds for any object Id
of the input drawing. To represent fluents and effects of ac-
tions, we introduce abstract consecutive time steps ranging
from 0 to a fixed given number n, called plan length. Plan
length is a parameter of the DLV program for the tutorial gen-
eration problem. The time step for the initial state is 0. Intu-
itively, normally there is an action occurring at each step. The
goal is that after a certain step, all objects will be rendered by
the commands (actions) before this step. It is represented by
the following DLV rules.

holds(existUnrendered, I):-
not holds(rendered(ID), I).

which reads for any step I, if there exists an object Id which
is not believed to be rendered, then there exists an unrendered
object, i.e., holds(existUnrendered, I).

goal(I):-step(I), not holds(existUnrendered, I).

which reads for any step I, the goal is achieved, i.e., goal(I),
if there does not exist an unrendered object. The following
two rules together mean that the goal must be achieved at step
I.

success:-goal(I).

:-not success.

Actions and transition function for commands. An Au-
toCAD command consists of a set of subcommands. Each
subcommand is taken as an action. Normally it is very hard
to have an explicit representation of the transition function
of a planning instance. In fact, a typical way is to specify
the executable condition and effects of the actions. We use
line drawing as an example. We have two classes of actions
click(line) and input(x, y) (note that different parame-
ter (x, y) means different input actions), which can be repre-
sented as facts

action(click(line)).

action(input(x, y)).

We use occurs(A, I) to denote the occurrence of an action
A at step I. The effect of click(line) at I is that the line
icon is clicked, denoted by holds(clicked(line), I):

holds(clicked(line), I + 1):-occurs(click(line), I).

At any step I, the executable condition of click(line) is
that it is not clicked yet:

¬occurs(click(line), I):-holds(clicked(line), I).

Line command is a pretty complex command. For exam-
ple, after three distinct points are drawn, one can type letter
C (hotkey for close subcommand), which automatically gen-
erates a line connecting the last and the first input point. DLV
rules provide a convenient way to express this complex situa-
tion.

Optimal plan generation. Our solution was guided by a sim-
plified KLM. The cost of each action can be represented by
facts. While we generate a fixed-cost to estimate the average
time to click the icon, each command icon has an individual
cost estimate based on the command icon size and location in
the interface. For example, if the action of pointing to a tar-
get with a mouse uses twice as much time as typing random
letters. click(line) can be assigned to a cost of 2*t while
input(x, y) to a cost of n ∗ t where n is the length of input
string, which can be represented as the facts:

cost(click(line), 2t).

cost(input(x, y), nt).

To generate a plan to achieve the goal state, we need a rule
to say that any action can occur at any step, in DLV:

occurs(A, I) or ¬occurs(A, I):-step(I), action(A).

Since in a tutorial, parallel actions are not desirable, we
need a denial to express the constraint that no two actions are
allowed at the same step:

:-step(I), occurs(A1, I), occurs(A2, I), A1! = A2.

To make the plan optimal, i.e., the total cost of the actions
in the plan should be minimal, we need the following weak
constraint:

:∼ occurs(A, I), action(A), cost(A, Cost).[Cost : 1].

where [Cost : 1] associates the cost Cost of action A to the
rule. Intuitively, this rule reads for any action A and step I, A
is not allowed to occur at I and if the rule has to be violated,
the total cost of the violated rules should be minimized.

Finally, we have the following result.

Theorem 1 Given a tutorial generation problem and Π be a
DLV program Π with parameter n for the problem, there is
an optimal plan with finite number n of actions iff there is an
answer set of Π.

Example. Given the input drawing of a triangle, line draw-
ing command and the parameter plan length of 5, the follow-
ing literals will appear in an answer set of the DLV program:
occurs(click(line), 0),
occurs(input(a1, b1), 1),
occurs(input(a2, b2), 2),
occurs(input(a3, b3), 3),
occurs(close, 4)

from which an optimal plan can be extracted: first click the

Figure 1: TutorialPlan system

line icon, then input the points (a1, b1), (a2, b2), and (a3, b3)
in sequence, and finally press letter C to complete.

Heuristic knowledge. Usually, efficiency becomes a prob-
lem for automated planning when the number of actions and
steps increases. It is well known that extra knowledge can
be used to improve the efficiency, and ASP offers the con-
venience in representing and reasoning with such knowl-
edge. We give two such examples here. The first is the non-
overlapping requirement which prohibits the overlapping of
the commands drawing lines and circles. For example, the
plan generation above allows such a overlapping plan “click
line icon, click circle icon, input(a1, b1), inputCircle(a2, b2,
R),” As a result, the search space for an optimal plan is
huge (any action is allowed at any step). To prune the search
space, we introduce a fluent on(Com) which denotes that com-
mand Com is on. The non-overlapping rule is:

¬occurs(click(C1)):-holds(on(C2), I), C1 6= C2.

which reads for any step I, when command C2 is on, no
other click command is allowed. The second is for symmetry
breaking. As an example, consider a drawing including many
disjoint circles. Rules are written to make sure the circles
are rendered in one specific order (e.g., from top left most to
the right bottom most). Without such rules, DLV solver will
search all different orders to render the same set of circles to
make sure only plans with the lowest cost can be found.

5 TutorialPlan
Our system consists of three components: a preprocessor,
a DLV solver based planner and a tutorial composer. The
preprocessor automatically retrieves geometry objects and
constraints from the AutoCAD drawing and translates them
into facts. DLV solver starts the plan generation using these
facts together with the software command specifications and
knowledge on plan generation based on KLM. As the solution
of an optimal planning problem, we get a series of actions,
which contains information on commands and their param-
eters, together with a rendered object ID at each step. The
tutorial composer then translates actions into steps where text

and images are properly organized and compiled (see Figure
1 for an example).

Our current system modeled four AutoCAD command cat-
egories: Line tools, Circle tools, Offset and Join. Due to the
requirement of accuracy and efficiency, a single AutoCAD
command often contains multiple states, context-based pa-
rameters and complex workflows [Li et al., 2012]. For exam-
ple, it takes 5 steps to use the command offset to draw a par-
allel line which has a fixed distance to a selected line. There
are 4 options to control the duplicated line, and 3 different
workflows for doing multiple offsets.

Figure 2: Generated tutorial at Figure 1(4)

Tutorial composer generates text and screen shots to help
novice users follow the steps. Figure 2 shows a generated tu-
torial of drawing a door using line and offset. To help learners
lunch the offset command, a screen captured image with the

highlighted offset button is included at step 24 (Figure 2(A)).
Similarly, existing objects are highlighted to make the selec-
tion step easier (Figure 2(B)). At the bottom, an image of the
latest drawing is automatically generated to show that a line
will be created after the last step of the offset command (Fig-
ure 2(C)).

In order to further evaluate TutorialPlan, we tested it using
an AutoCAD drawing benchmark library which contains 25
drawings. The drawings are either recreated using existing
AutoCAD tutorials or copied from real world CAD drawings.
Figure 3 shows six drawings from this library. Most of the
drawings were solved by TutorialPlan in a reasonable time
ranging from seconds to several hours (see Table 1).

When reading the time data, one needs to be careful that
there is no simple characterization of the complexity of a
drawing and the time to generate an optimal plan for it. For
example, it seems that there are more actions needed for the
drawing of E than those for F. However, we have only one
type of objects, i.e., circles in E while we have several types
of objects in F. To find an optimal way to draw a polyline (in
F) is more complex than drawing circles that can interact with
each other only in a very limited way. Note also that the cir-
cles in E are heavily constrained, which helps to reduce the
search space significantly. Overall, it takes less time to solve
the problem of F than that of E.

Figure 3: Examples from the benchmark library

Example #Objects #Actions Time (minutes)
A 10 12 0.5
B 4 41 1
C 12 20 68
D 12 30 44
E 8 31 11
F 9 21 297

Table 1: Runtime of generating optimal plans for examples in
Figure 3

6 User Study
We conducted a preliminary user study to compare our au-
tomatically generated tutorials with hand-designed tutorials.

We hypothesized that TutorialPlan would generate similar
step-by-step instructions as experienced AutoCAD users. We
recruited 6 experienced AutoCAD users including three ar-
chitects, one mechanical designer, and two CAD software
testers (1 woman, 5 men). All participants used AutoCAD for
more than 5 years on a regular basis, and half of them have
over 10 years of experience. Each participant was asked to
design two tutorials for novice users: Drawing A which con-
tains 4 objects (Figure 3 (A)) and Drawing B which contains
10 objects (Figure 3 (B)). There were coincident, tangent and
parallel constraints in those drawings. After all the tutorials
were completed, we ask each participant to review tutorials
designed by the other participants and the two tutorials gener-
ated by TutorialPlan generated. Thus, each person reviewed a
total of 12 tutorials, 6 for each task. Participants don’t know
any authoring information related to each hand-designed or
automatically generated tutorial.

The average time for authoring a tutorial was 30 minutes
(minimum 10 and maximum 60 minutes) for Drawing A,
and 33 minutes (minimum 15 and maximum 60 minutes) for
drawing B. There were 6.8 steps on average (minimum 4 and
maximum 14 steps) in hand-designed tutorials for A, and 9.8
steps on average (minimum 5 and maximum 20 steps) for
B. The TutorialPlan generated tutorials consisted of 11 steps
for A and 41 steps for B. Four participants used images and
text in their tutorials, and two participants used only text. We
followed each step in the hand-designed tutorials, and com-
puted their expected performance time using KLM. Figure 4
shows the average expected task completion time for draw-
ing A and B. We found that on average hand-designed tu-
torials are 25-34% slower than our tutorials. During the post

Figure 4: Average expected completion time based on KLM

study survey, each participant was asked to give scores to both
the hand-designed and automatically generated tutorials. We
measured four attributes of a tutorial: easiness to follow, use-
fulness, difficulty to author and willingness to recommend.
Scores are from 1 (not support) to 6 (strong support). The
survey responses are shown in Table 2. TutorialPLan tutori-
als top 3 out of 7 for all four questions. We found three main

Questions Score for A Score for B
1 Easy to follow 3.7 (#3) 4.2 (#1)
2 Useful tutorial 5 (#1) 5 (#1)
3 Difficult to generate 5.5 (#1) 5.8 (#1)
4 Would recommend 3.8 (#2) 3.5 (#2)

to novice users

Table 2: Generated tutorials’ average scores and score rank-
ings, in parenthesis, among 7 tutorials for drawing A and B

results. First, experienced AutoCAD users think that the tuto-

rials generated by TutorialPlan are useful and would recom-
mend them to novice users. Second, participants think that all
tutorials are difficult to generate. Third, TutorialPlan tutorials
contain more detailed steps than hand-designed tutorials. It
is a useful feature for novice users, but one participant com-
mented that too much detail may make experienced users feel
repetitive in some occasions. Solving the optimal planning
problem makes the workflows in the generated tutorials have
less expected completion times than hand-designed tutorials.
But their workflows are similar to several hand-designed tu-
torials. We also found that the generated tutorials used a spe-
cial multiple option in the offset command, which were not
used in any hand-designed tutorials. This option did reduce a
user’s task completion time. Both TutorialPlan and expert tu-
torials obtaining high easy-to-follow scores have screen shot
images for tracking drawing progress.

7 Conclusion, Discussion and Future Work
In this paper, we propose to generate tutorials automatically
based on using the KLM model, software specifications and
the abundant digital artifacts produced by users of software
programs. This approach allows users to find interesting and
relevant digital artifacts and have the system generate a tuto-
rial to answer the question: How was that built? This serves
as targeted learning. We have developed a prototype system
TutorialPlan to compose tutorials automatically from a given
CAD drawing, based on the commands generated from solv-
ing an optimal planning problem using an ASP program. We
are able to generate tutorials from a set of sample CAD draw-
ings, which were examples from existing AutoCAD tutori-
als. A group of experienced AutoCAD users evaluated the
automatically generated tutorials with hand-designed tutori-
als. Our initial results show that the automatically generated
tutorials were assessed to be similarly useful and of high qual-
ity compared to hand-designed tutorials.

In tutorial generation and knowledge representation, we
believe it is novel to apply answer set programming with
weak constraints (i.e., DLV) to a real life optimal planning
problem in software learning. The problem has the follow-
ing features. It is reasonably large in terms of plan length
(up to 50 actions needed), number of commands (4 classes
of commands: line, circle, join, and offset), and program size
(2000+ lines of code). We observe the advantage of the ASP
language in the following ways. First, we need to describe
a dynamic domain with complex actions (e.g., the effects of
the input point action) and relations among geometric objects
(note that the connectedness of line segments and relations
between compound objects formed by the join command are
not covered in this paper due to the focus of this paper on the
overall methodology). Declarativeness and non-monotonicity
of ASP offers a natural modeling of this knowledge. Second,
any interesting problem instances involve a large number of
actions (partially because actions such as an input point are
parameterized by all possible points in a drawing) and needs
tens of steps to be accomplished. Aggravated by the opti-
mality requirement, a minimal ASP program can easily run
for days for just a very simple drawing even with the latest
DLV solver. Heuristics have been very effective in boosting

the performance of our program. Heuristics include no over-
lapping of commands of different nature (e.g., for lines vs.
for circles), applying only relevant commands in a state, and
breaking symmetry. ASP provides effective support on both
representing and reasoning with the heuristic knowledge.

The initial success of our prototype system encourages us
to continue the work along the following directions. 1) Ex-
tend our prototype system to include more typical AutoCAD
commands and produce tutorials in other formats, such as
video or interactive tutorials [Sukaviriya and Foley, 1990].
2) Conduct a thorough user study. 3) Generate adaptive tu-
torials based on the current learner’s skill level or from sub-
drawings where the learner is interested. 4) Examine other
state of the art tools in solving the optimal planning problem
such as PDDL and HTN planning systems [Ghallab et al.,
2004] with two purposes. First, identify the most effective
solution for the tutorial generation problem. Second, offer
feedback to improve the existing tools and systems to address
challenges posed by the tutorial generation problem: the large
amount of knowledge and actions that distinguish it from the
existing benchmarks [Gerevini et al., 2006].

In summary, we believe our approach is promising and
unique within the domain of software learning.

Acknowledgments
Yuanlin Zhang’s work was partially supported by NSF grant
IIS-1018031.

References
[Card et al., 1980] S.K. Card, T.P. Moran, and A. Newell.

The keystroke-level model for user performance time
with interactive systems. Communications of the ACM,
23(7):396–410, 1980.

[Card et al., 1986] S.K. Card, T.P. Moran, and A. Newell.
The psychology of human-computer interaction. CRC,
1986.

[Carroll and McKendree, 1987] J.M. Carroll and J. McK-
endree. Interface design issues for advice-giving expert
systems. Communications of the ACM, 30(1):14–32, 1987.

[Carroll and Rosson, 1987] John M. Carroll and Mary Beth
Rosson. Paradox of the active user. In Interfacing thought:
cognitive aspects of human-computer interaction, pages
80–111. MIT Press, 1987.

[Chi et al., 2012] Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira
Dontcheva, Wilmot Li, and Björn Hartmann. Mixt: auto-
matic generation of step-by-step mixed media tutorials. In
Proc. of ACM UIST, pages 93–102, 2012.

[Contreras and Saiz, 1996] Javier Contreras and Francisco
Saiz. A framework for the automatic generation of soft-
ware tutoring. In Proc. of CADUI’96, pages 171–182,
1996.

[Eiter et al., 2003] Thomas Eiter, Wolfgang Faber, Nicola
Leone, Gerald Pfeifer, and Axel Polleres. Answer set plan-
ning under action costs. J. Artif. Intell. Res. (JAIR), 19:25–
71, 2003.

[Elbeh and Biundo-Stephan, 2012] H.M.A. Elbeh and
S. Biundo-Stephan. A Personalized Emotional Intelligent
Tutoring System Based on AI Planning. PhD thesis, Ulm
University, 2012.

[Fernquist et al., 2011] Jennifer Fernquist, Tovi Grossman,
and George Fitzmaurice. Sketch-sketch revolution: an
engaging tutorial system for guided sketching and appli-
cation learning. In Proc. of ACM UIST, pages 373–382,
2011.

[Garcia, 2000] Federico Garcia. Cactus: automated tutorial
course generation for software applications. In Proc. of
IUI, pages 113–120, 2000.

[Gelfond and Kahl, 2012] Michael Gelfond and Yulia Kahl.
Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. Manuscript, 2012.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP-88, pages
1070–1080, 1988.

[Gerevini et al., 2006] A. Gerevini, B. Bonet, and
B. Givan. Fifth international planning competition.
http://www.plg.inf.uc3m.es/icaps06/preprints/i06-ipc-
allpapers.pdf, 2006.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning : Theory and Practice.
Morgan Kaufmann, 2004.

[Grabler et al., 2009] Floraine Grabler, Maneesh Agrawala,
Wilmot Li, Mira Dontcheva, and Takeo Igarashi. Gener-
ating photo manipulation tutorials by demonstration. In
ACM SIGGRAPH, pages 1–9, 2009.

[Grossman et al., 2009] Tovi Grossman, George Fitzmau-
rice, and Ramtin Attar. A survey of software learnability:
metrics, methodologies and guidelines. In Proc. of ACM
CHI, pages 649–658, 2009.

[Hart et al., 1968] P.E. Hart, N.J. Nilsson, and B. Raphael. A
formal basis for the heuristic determination of minimum
cost paths. Systems Science and Cybernetics, IEEE Trans-
actions on, 4(2):100–107, 1968.

[John and Kieras, 1996] Bonnie E. John and David E.
Kieras. Using goms for user interface design and eval-
uation: Which technique? ACM Trans. Comput.-Hum.
Interact., 3(4):287–319, 1996.

[Laput et al., 2012] Gierad Laput, Eytan Adar, Mira
Dontcheva, and Wilmot Li. Tutorial-based interfaces for
cloud-enabled applications. In Proc. of ACM UIST, pages
113–122, 2012.

[Li et al., 2012] Wei Li, Tovi Grossman, and George Fitz-
maurice. Gamicad: a gamified tutorial system for first
time autocad users. In Proc. of ACM UIST, pages 103–
112, 2012.

[Lifschitz, 1999] Vladimir Lifschitz. Answer set planning.
In ICLP, pages 23–37, 1999.

[McKendree and Zaback, 1988] J. McKendree and
J. Zaback. Planning for advising. In Proc. of ACM
CHI, pages 179–184, 1988.

[Moriyon et al., 1994] Roberto Moriyon, Pedro Szekely, and
Robert Neches. Automatic generation of help from inter-
face design models. In Proc. of ACM CHI, pages 225–231,
1994.

[Pangoli and Paternó, 1995] S. Pangoli and F. Paternó. Au-
tomatic generation of task-oriented help. In Proc. of ACM
UIST, pages 181–187, 1995.

[Peachey and McCalla, 1986] D.R. Peachey and G.I. Mc-
Calla. Using planning techniques in intelligent tutoring
systems. International Journal of Man-Machine Studies,
24(1):77–98, 1986.

[Ramachandran and Young, 2005] Ashwin Ramachandran
and R. Michael Young. Providing intelligent help across
applications in dynamic user and environment contexts.
In Proc. of IUI, pages 269–271, 2005.

[Selber et al., 1997] Stuart A. Selber, Johndan Johnson-
Eilola, and Brad Mehlenbacher. Online Support Systems:
Tutorials, Documentation, and Help. CRC Press, 1997.

[Sukaviriya and Foley, 1990] Piyawadee Sukaviriya and
James D. Foley. Coupling a ui framework with automatic
generation of context-sensitive animated help. In Proc. of
ACM SIGGRAPH, pages 152–166, 1990.

[Woo, 1991] C.W. Woo. Instructional planning in an intelli-
gent tutoring system: combining global lesson plans with
local discourse control. PhD thesis, Illinois Institute of
Technology, 1991.

