

Tracking Menus

George Fitzmaurice, Azam Khan, Robert Pieké, Bill Buxton, Gordon Kurtenbach

Alias|wavefront
210 King Street East

Toronto, Ontario M5A 1J7, Canada
E-mail: {gf | akhan | rpieke | gordo}@aw.sgi.com; bill@billbuxton.com

ABSTRACT
We describe a new type of graphical user interface widget,
known as a “tracking menu.” A tracking menu consists of a
cluster of graphical buttons, and as with traditional menus,
the cursor can be moved within the menu to select and
interact with items. However, unlike traditional menus,
when the cursor hits the edge of the menu, the menu moves
to continue tracking the cursor. Thus, the menu always
stays under the cursor and close at hand.

In this paper we define the behavior of tracking menus,
show unique affordances of the widget, present a variety of
examples, and discuss design characteristics. We examine
one tracking menu design in detail, reporting on usability
studies and our experience integrating the technique into a
commercial application for the Tablet PC. While user
interface issues on the Tablet PC, such as preventing round
trips to tool palettes with the pen, inspired tracking menus,
the design also works well with a standard mouse and
keyboard configuration.

KEYWORDS: pen based user interfaces, menu system,
graphical user interface, floating palette, Tablet PC.

INTRODUCTION
With the widespread availability of pen-based computers,
such as the Tablet PC (see Figure 1) and pen-based PDAs,
tablet computing is becoming ubiquitous and mainstream.
User interface designers increasingly face the challenge of
designing effective pen-based user interfaces for this class
of devices.

A primary requirement is to offer rapid switching between
different tools on a pen-only system. For example, consider
rapidly switching between a drawing tool and a pan tool in
a drawing application. This would require repeated trips
from the drawing area to the tool palette, selecting the pan
tool, then moving back to the drawing area to pan, then
returning to the tool palette to re-select the previous tool.
This results in a large amount of travel time for the user and
becomes quite monotonous in practice. We call this
behavior tool palette round trips.

In keyboard-based systems, alternate ways of switching
between tools (keyboard accelerator techniques) are
typically provided to reduce travel time. For example, in
Adobe Photoshop, a very popular feature is an accelerator
technique in which the system switches from the current
tool to the pan tool when the user depresses the space bar
key. Thus, trips to and from the tool palette are not
necessary to use the panning tool.

In pen-only systems, there is no keyboard available and
therefore other techniques are required to reduce travel
time. A pen-barrel button could be used to switch tools but
these buttons are often mistakenly pressed, causing an
error, or are very awkward to press. Another option is to
use hardware buttons around the bezel of the display but
these are also awkward to press while the user is holding
the tablet. Moreover, these buttons have fixed system-wide
functions assigned by the current Tablet PC standard,
making them inappropriate for application-specific
commands. Voice recognition, pen gestures, or sensing
physical manipulation of the tablet [11] may be other
alternatives, but rely on recognition techniques that may
impede rapid tool switching and would be more appropriate
for less frequent operations.

Figure 1. Pen-based environment and a tracking
menu.

In this paper, we investigate a GUI-based solution that
addresses the problems of rapid tool switching and tool
palette round trips. This technique, called tracking menus,
requires only pointing and pressing with the pen tip – no
keyboard presses or physical buttons are required. Tracking
menus can also be operated with a single-button mouse,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
UIST ’03 Vancouver, BC, Canada
© 2003 ACM 1-58113-636-6/03/0010 $5.00

Volume 5, Issue 2 71

where pressing the mouse button simulates pressing the
pen-tip.

Note that this work can be viewed from an alternative
perspective. Consider a typical tool in a GUI as a single
function being attached to the cursor (for example, the pan-
hand icon replaces the cursor when panning is activated).
This singularity of assignment is a fundamental convention
that has remained unchanged for years in GUI design.
Tracking menus evolve this convention. In effect, tracking
menus function as a multi-headed tool – a way of having
two or more tools simultaneously attached to the cursor.
Our tracking menus implementation and design work
explore this design space of multi-function tools.

In the remainder of the paper, we first describe the
mechanics of how tracking menus operate. We then focus
on a particular application – integrating a pan-and-zoom
tracking menu in a commercial drawing program,
SketchBook. Next, we report on a usability study of our
design and discuss usability issues and user feedback we
received. Lastly, we illustrate and discuss some design
issues and variations of tracking menus and provide
examples of other applications.

TRACKING MENUS
A tracking menu is a graphical user interface widget that is
controlled by either a pen or mouse (see Figure 1). It is
invoked and dismissed in the same manner as a traditional
modal tool by clicking on a tool palette or menu item. Like
traditional menus, a tracking menu consists of a cluster of
graphical buttons. The cursor can be moved within the
menu to select and interact with items. However, unlike
traditional menus, when the cursor crosses the exterior edge
of the menu, the menu is moved to keep it under the cursor.

Figure 2 shows a simple physical analogy to our tracking
menus design. Consider moving a jar lid with the tip of a
pencil. This can be done in two ways. The first obvious
way is that the pencil can be pressed down into the lid and
the lid dragged. The second way, which we use in tracking
menus, is by contacting the sides of the lid. This results in
the ability to move the lid without pressing down. Note that
the pencil can be moved within the lid as well; the lid will
remain stationary if the sides are not contacted. Figure 3
shows schematically how our tracking menu system
corresponds to the jar lid example.

The interior of the tracking menu can be divided into
multiple regions that are assigned to different types of
functionality. This functionality can be invoked by pressing
in the region. Also, the regions can have irregular shapes
(an important design characteristic discussed later) and
invoke discrete actions (such as buttons) or continuous
actions (such as sliders).

(a)

(b)

(c)

Figure 2. Physical analogy using a jar lid as the
tracking menu and a pencil as the stylus. (a) initial
state of pen and tracking menu (b) movement of
pen without contacting edge – tracking menu
remains stationary (c) pen contacts edge of lid –
tracking menu moves with pen.

Figure 3. Tracking menu schematic design.

We implement tracking menus using the multiple input
states sensed by pen computers (or using regular mouse
events on standard keyboard and mouse configurations).
Figure 4 shows the pen input states sensed by the Tablet
PC. When the pen is more than approximately 1.5 cm
above the tablet surface, it is out-of-range and the system
does not track the location of the pen. When the pen is
moved closer, the tablet begins tracking the tip of the pen
and the cursor follows the tip of the pen. Finally, touching
occurs when the pen contacts the tablet surface.

Volume 5, Issue 2 72

Figure 4. Input states of active digitizers.

Figure 5 shows a state transition diagram [4] of the tracking
menu once invoked. When the pen is out of range (State 0)
the tracking menu is visible but stationary. When the pen
comes into range, the system ensures that the tracking
menu is under the cursor, repositioning the tracking menu if
needed. In this new state (State 1) the cursor is allowed to
move freely within the tracking menu so the user can
highlight menu items. Contacting the edge of the tracking
menu transitions to State 1E and causes the tracking menu
to move with the cursor. Alternatively, touching the pen
down over a menu item invokes the item’s action and
transitions to touching (State 2). While in the touching state
the tracking menu is typically hidden.

Figure 5. State Transitions of a tracking menu.

When using a mouse, the same set of state transitions apply
except that Out Of Range (State 0) does not occur. State 0
simply adds the functionality of directly jumping to a new
screen position. However, this result can also be achieved
by moving the tracking menu in State 1E. Thus, tracking
menus work both with the pen and mouse.

RELATED WORK
Tracking menus are related to a number of pop-up menu
techniques such as: linear menus, pie-menus [6], floating
pie-menus [17], control menus [16], flow menus [9] and

marking menus [13]. All of these techniques, like standard
graphical user interface techniques such as floating
windows and tool palettes, allow users to keep subsets of
commands close at hand. As named, this class of
interaction controls all pop-up their menus at a fixed
location and remain stationary until they are dismissed. In
addition, flow menus and control menus integrate menu
item selection with dragging, which is also a valuable
design characteristic of tracking menus.

Techniques that employ mobile tool palettes are also
related to tracking menus. Two-handed research input has
proposed techniques for manually moving tool palettes
closer to the work area or cursor (e.g., Toolglass [3] and T3
[14]). These mobile tool palettes follow the movement of a
secondary input device and the user can select a tool using
the primary input device.

Other techniques have been developed which do not require
the user to manually position the tool palette. Baudel et. al.
[2] proposed a tool palette that remains hidden until a
button is hit on a non-dominant hand input device. This
results in the palette being popped-up at a fixed position
nearby the cursor. In effect the tool palette follows the
cursor, but it must be explicitly brought up when needed
and must be explicitly dismissed.

Tracking menus build on these previous systems by
supporting similar functionality but are designed to operate
entirely from a single input device providing one-handed
input. Also, the tracking menu is persistent and does not
explicitly need to be invoked or dismissed, further
optimizing the interaction.

CASE STUDY
We now present a concrete design using tracking menus to
solve a real problem in a commercial application. A set of
usability tests was conducted to refine the designs. This
case study highlights some of the interesting characteristics
and features of tracking menus. Following the Case Study,
we discuss the design space of tracking menus, including
design characteristics, variations, and further design
examples.

The target commercial application, Alias SketchBook, is a
freeform sketching and painting tool designed specifically
for pen-based Tablet PCs.1 We have observed in our initial
usage of our drawing program that zoom and pan tools are
commonly used in rapid succession. For example, a user
zooms-in and then adjusts the image by panning it over (or
vice versa). The problem that we focused on was to reduce
the transaction cost of switching between these tasks. As
keyboard accelerators are not available on the Tablet PC,
tool palette round trips would be needed to switch tools.

1 A free download trial version of this program is available to demonstrate
tracking menus www.dgp.toronto.edu/~akhan/sketchbook.

Volume 5, Issue 2 73

http://www.dgp.toronto.edu/~akhan/sketchbook

Tool palette round trips are exacerbated when combined
with panning and zooming operations. These operations
also require cursor movement — panning requires “pulling”
the canvas from one spot to another and zooming requires a
specific point to be indicated on the canvas as the point to
be “zoomed in on”. Dragging can then be used to indicate
the amount of zoom. These operational movements tend to
displace the cursor away from the palette thus increasing
the length of the round trips and the time taken to perform
them.

(a) (b)

Figure 6. Pan-and-Zoom tracking menu design. (a)
Cursor hovers over pan region. (b) Cursor hovers
over zoom region.

Figure 6 shows the tracking menu we have developed to
address this problem. It consists of two main semi-
transparent visual regions, to give it the properties of a see-
through widget [10, 12]. Panning is placed in the outer ring
and zooming on the inner region.

Tracking menus are designed to support an important user
behavior we have observed called pawing2. An example of
pawing is panning over a large image where several
panning drags are required to reach the desired view. The
user must repeatedly move the input device and then drag
to move a significant distance. Typically these drags are
performed ballistically, in quick repetition, and in a variety
of directions. Traditional modal tools support this behavior.

Ideally, the user should be able to make repeated dragging
motions without accidentally changing the tool selected by
the tracking menu. We achieve this behavior through a
vitally important characteristic of the outer region of the
tracking menu (for example, the pan region in Figure 6). It
is very easy to select the outer region – all that is needed is
a movement large enough to “hit” the edge of the tracking
menu. The cursor cannot miss the edge because movement
in any direction eventually results in hitting the edge.
Furthermore, the edge region cannot be overshot since the
tracking menu will move when the cursor contacts the
edge. In this way, selection of the outer region is
guaranteed by casually moving the tracking menu and

pressing down. In effect, the user does not have to
consciously pick the pan region on each drag. The net
result is that pawing behavior is supported.

2 Note that pawing is different from clutching. Clutching involves
repositioning an input device without repositioning the cursor (a state 1 to 0
to 1 transition). However, pawing can be performed without requiring
clutching (a state 1 to 2 to 1 transition).

Based on our experience and observation of sketching
tasks, panning is a more frequently used operation than
zooming and therefore was a good candidate for the outer
region. We placed the zoom operation at the center of the
tracking menu because it is a less frequently used
operation.

Because there is sufficient visual feedback (the canvas pans
or zooms as the pen is dragged) during both of these
operations, the tracking menu disappears once the user
“pens-down” over a region and it reappears on “pen-up”.

We have experimented with many additions beyond this
basic design. Typically, drawing programs have many
functions that are closely related to zooming and panning
such as “reset view”, “actual size”, discrete and absolute
zoom steps or settings (+/- 10%, 25%, 50%, 75%, etc.).
Figure 7(b) illustrates our integration of some of these
functions.

We found there were two basic approaches to laying out
additional functions in the tracking menu. One approach is
to add more concentric rings, effectively creating a bull’s-
eye visual style [15]. The other approach is to add buttons
on top of the zoom and pan regions. Figure 7 shows
examples of the two approaches. In practice, we found the
button approach more appealing. Ultimately, the concentric
ring approach has several disadvantages. Essentially all
commands are the same shape, unlike buttons, where shape
and location can be used to help identify and remember the
location of commands. This ring symmetry also makes it
confusing to users since the direction that the cursor must
be moved is arbitrary. Finally, the inner rings do not have
the “easy to select” property of the outer ring and therefore
offer no advantage.

(a) (b)

Figure 7. Alternate Layouts. (a) Concentric ring
layout. (b) Buttons overlaid layout.

While buttons are a viable approach for adding secondary
functions to a tracking menu, the menu can become
cluttered as the number of buttons increases. The solution
we have used to combat this problem is to embed a pop-up

Volume 5, Issue 2 74

menu in a button thus providing a location for extra
functionality without further cluttering the tracking menu.
More tertiary, less common, functions are placed in these
menus. However, utilizing a marking menu [13] with these
buttons still allows for very fast access. See Figure 8.

Figure 8. Tracking menu with marking menu
activated from an embedded button.

Usability Tests
We conducted three rounds of usability tests: informal tests
within our research group, formal tests with external users
on some design variations, and formal tests with external
users on the refined production design.

Within our own research group we refined our tracking
menu design by informally testing the interaction on our
group of four user interface researchers. From this work we
derived two candidate designs.

(a) (b)

Figure 9. Pan-and-Zoom tracking menus (a) Basic
Version and (b) Deluxe Version containing “+” to
zoom-in (double the current zoom factor), “-” to
zoom-out (half the current zoom factor), “1:1” to
return to the original non-zoomed canvas scale, and
“*” to launch the marking menu.

The first design was a very simple tracking menu with only
pan and zoom rings (see Figure 9(a)). The second design
was the deluxe version shown in Figure 9(b), which
included the basic design plus interior buttons, including a
button to launch a marking menu.

Using these designs, we observed that there are some
conditions where precise positioning of the tracking menu

is cumbersome. If the user overshoots a small target, there
is the added step of having to move across the tracking
menu to the opposite border to fine-tune its position.
However in the following user tests this issue was not
reported, as the task did not require precise positioning.

In the first round of testing with external users, six people
were tested. They were artists with drawing skills
(experience with Adobe Photoshop was typical) and
computer literate managers. Only the artists had experience
with pen-based systems (typically Wacom tablets on
desktop systems). Users were given eight tasks which
required the use of panning and zooming functions. In each
task, the user was presented with a screen image of a before
picture followed by an after picture on a piece of paper,
which was a portion of the picture with some zooming and
panning operations applied (see Figure 10). They were then
asked to make the screen image look like the after picture
using the functions on the tracking menu. Users were given
no explanation on how the tracking menus worked. They
tried both the simple tracking menu and the advanced
tracking menu and were asked to think-out-loud. The tester
in the room recorded their comments and his own
observations.

(a) (b)

Figure 10. (a) Original “before” image. (b) Target
“after” image for user study.

After a few minutes of learning while performing the tasks,
all users successfully completed the task set. The interesting
observations we made include:

• People new to a pen interface typically expected
the relative movement of a mouse.

• While users did not need the commands on the
buttons in the tracking menu to perform the task
(only pan and zoom were needed), users saw these
buttons and were unsure what the button labels
meant. Some users expressed that they thought
these buttons were arithmetic functions while
others ascribed no meaning to them. We believe
this could be fixed with better labels or tool tips.

• Several users tried to work on the right-hand side
of the screen to avoid obscuring their target with
their hand, while others clicked directly on the
target and zoomed, using the tracking menu as
designed.

Volume 5, Issue 2 75

• As expected, users easily found and used the larger

zooming and panning regions of the tracking menu
and were not distracted by the smaller buttons.

• Our design to support pawing seemed to be
effective. We observed users casually panning, not
fully aware that they had to stay in the panning
ring, but they panned successfully nonetheless.

In our second formal user study, we implemented the pan-
and-zoom tool within the SketchBook application and
tested it in context with the other drawing and manipulation
tools (see Figure 11). A separate usability team for
SketchBook conducted this study. Their objective was to
determine if the technique was mature enough to be
released in a product. To keep things simple we limited our
testing to the basic design shown in Figure 9(a) hoping to
pursue the deluxe design later if the basic design passed
testing.

Six art college students with varying degrees of computer
exposure were invited. As in our first study, participants
were tested without training or guidance to perform the
same navigation tasks. Participants were asked to think-out-
loud and the tester in the room recorded their comments
and observations. A group of four usability designers also
observed via a video camera and made notes.

Figure 11. SketchBook application with pan-and-
zoom tracking menu active.

In this case, participants performed the set of tasks in two
rounds. For one of the rounds they performed the tasks
using a separate zoom tool and pan tool. The other round
involved using our combined pan-and-zoom tracking menu
to perform the task. Half of the participants used the
separate tools for the first round, and then used the
combined pan-and-zoom tool for the second round.
Ordering was reversed for the remaining participants to
counterbalance ordering effects.

From this study, the following observations were made.

• In the separate pan and zoom tools, all participants
stated that they did not like having to go back and
forth to the tool palette to switch tools.

• All participants had a learning curve to figure out
the combined pan-and-zoom tool and were mostly
comfortable with it within a few minutes.

• Two thirds of the participants preferred the
combined pan-and-zoom tool over the separate
tools.

• Two thirds of the participants felt that they
completed the tests faster with the combined pan-
and-zoom tool. Our informal timings of their task
completion times matched or exceeded users’
perceptions. In fact, one participant who
subjectively did not favor the pan-and-zoom tool
still had better task completion performance using
the pan-and-zoom tool.

One participant stated, “It's actually easier to use this [pan-
and-zoom tool], once you've figured out that it follows
you.” Another participant found the combined pan-and-
zoom tool very enjoyable: “I kind of like this – I could sit
around and do this for hours.”

Not all participants enjoyed using the combined pan-and-
zoom tool. For example, one participant stated: “This [pan-
and-zoom tool] seems like a very large tool for the job.”
Here, the participant was referring to the visual size of the
tracking menu. A few participants were quite confused over
the graphic icons for the zoom region in the combined pan-
and-zoom tool. They initially thought the icons were
buttons to perform one-shot zoom operations.

All of our usability studies showed that the combined pan-
and-zoom tool was effective and worthy of incorporating
into our commercial sketching program. While we would
have liked to pursue the “deluxe” version of the pan-and-
zoom tool, the compressed schedule for delivering version
1.0 of SketchBook made this impractical. Therefore, the
simple pan-and-zoom tool was implemented for the
product.

Some additional design details were important to make the
pan-and-zoom tool interact more seamlessly with the main
tool palette of SketchBook located at the bottom of the
application window (see Figure 12). First, conceptually, we
wanted the pan-and-zoom tracking menu to slip under the
main tool palette. Secondly, we wanted the user to be able
to select new tools from the main tool palette without
having a jarring visual transition when switching tools. We
observed this jarring visual transition when the pan-and-
zoom tool was prevented from continuously slipping under
the main tool palette, and instead disappeared immediately
(see Figure 12). To preserve visual continuity we added a
dotted outline of the pan-and-zoom tool for those portions

Volume 5, Issue 2 76

of the tool within the main tool palette as an “x-ray” effect.
This design achieves our goals and provides effective
feedback and orientation for the user.

Figure 12. Pan-and-zoom tracking menu under tool
palette with x-ray feedback.

Since our initial product launch, we have received positive
feedback from our growing user community. While we are
still in the early stages, initial reaction to the overall user
interface design of the pan-and-zoom tool is positive.

Design Characteristics and Variations
In this section we describe further enhancements that can
be added through layout and boundary design, activation
algorithms, and careful interaction with other interface
elements. By doing so we illustrate the design space of
tracking menus.

Pinning the Tracking Menu: Temporary Deactivation
Depending on the user’s workflow, it may be desirable to
separate the cursor from the tracking menu. For example, in
our SketchBook application, users desire the ability to
rapidly switch between the pan-and-zoom tool and
drawing. To accommodate this type of feature, we have
developed the notion of a pushpin and lock (see Figure 15).
When the user selects the pushpin button, the tracking
menu is temporarily deactivated, remaining posted and
stationary; it grays out to indicate the inactive state. The
cursor can now leave the tracking boundary edge. The next
time the cursor travels into the tracking menu the pushpin is
automatically released and the tracking menu behaves as
normal (i.e., moving when the cursor hits the tracking
border). The notion of a lock was developed to explicitly
pin the tracking menu and not release it until the lock is
explicitly selected again. Note this enables fluid transitions
between panning, zooming, and drawing with a brush, as
brought up in the user tests.

Dividing the Exterior Region
There are a variety of ways to divide the exterior region.
Figure 13 shows how regions can be laid out so that some
functions are easy to invoke by being placed against the
edge of the tracking menu. This characteristic allows
selection by direction of movement rather than only by
position. This characteristic has been exploited in other

GUI techniques (e.g., marking menus [13] or T-Cube [18])
and has characteristics similar to goal crossing tasks as
proposed by Accot and Zhai [1].

(a) (b)

Figure 15. Tracking menu pushpin. (a) Pushpin
about to be engaged. (b) Pushpin is now active and
tracking menu grays-out; cursor can leave tracking
menu border. Once cursor crosses back into
tracking menu, pushpin automatically disengages.

Figure 13. Layout of exterior regions of tracking
menus.

Dragging Algorithms for Tracking Pen Movement
While moving the tracking menu in the tracking input state,
a variety of dragging algorithms can be employed. We have
used the simple physical approach which moves the
tracking menu at the point of cursor contact with the
tracking menu edge and keeps the cursor stuck at the edge
until the user “backs up” a bit. Alternatively, we could use
a different dragging algorithm such that the cursor gets
attached to the tracking menu edge but can go beyond the
edge and drags the tracking menu through a metaphorical
string or elastic. Simulating gravity and weight for the
tracking menu and imparting forces through cursor activity
is possible and may add a fun factor to the technique.

Tracking Boundaries
The visual boundary of the graphical representation of the
tracking menu does not have to map directly to the tracking
boundary (see Figure 14). The tracking boundary can have
a different shape and it can be larger or smaller than the
visual boundary. Moreover, tracking boundaries can be
non-contiguous. For example, there could be a hole in the
tracking menu or interior tracking menu boundaries (walls),
can be defined. Interior walls may be useful to bias the
space and allow the cursor to remain in a sub-region more
easily.

Volume 5, Issue 2 77

(a) (b)

Figure 14. (a) Tracking and graphical borders need
not match. Here we see a circular graphical tracking
menu with an elliptical border. (b) Shows interior
tracking boundaries.

Design Examples
We now present a few examples to illustrate different
applications and design possibilities for tracking menus.
Note that we did not build interactive prototypes of these
designs and the designs themselves may be incomplete.
However, they are intended to show possible design
variations and to stimulate thought.

User-Assignable Functions for the Outer Region
Figure 16 shows a tracking menu used to implement some
common functions of a drawing application tool palette. In
this design, selecting a function assigns the function to the
outside region of the tracking menu. Thus, subsequent
button presses and drags in the outside region engage the
assigned function. Another design variation is a split region
technique shown in Figure 16(e-f) where two functions can
be assigned to different sections of the outside region. Thus
two frequently used tools can be selected by quick ballistic
movements to the left or right followed by a button press.

Numeric Entry
Figure 17 shows a tracking menu configured to act as a
numerical keypad. The hole in the center of the keypad
allows the tracking menu to be aimed at different numeric
fields. Pressing on the various keys enters numbers as
expected. The hole has the special property that it allows
the field to be edited as expected — the text cursor can be
positioned in the text field by clicking between numbers,
and numbers can be selected by dragging, etc. Furthermore,
the tracking menu can snap to the position of the numeric
field thus making it easier to aim the tracking menu.

3D Camera Control and Permeable Zones
Figure 18 shows a tracking menu for controlling the
position and orientation of a viewpoint in a 3D scene.
Typically, this is called a 3D virtual camera and involves
several separate tools for panning, zooming, and tumbling
(orbiting the camera about the center of the 3D scene).
Furthermore, there are other types of camera movements
that can be used such as roll, yaw, and pitch. These controls

Figure 16. Tool palette tracking menu. (a) Initial
state. User selects pen tool. (b) Pen tool assigned
to exterior region of tracking menu. Cursor changes
to pen icon. (c) User pens-down and tracking menu
becomes invisible during the drag operation, making
a red mark. (d) Tracking menu reappears on pen-up
event, repositioned under cursor. (e) User selects
second tool; the flood fill tool. Exterior region of
tracking menu is divided into two regions. (f) When
cursor moves to the left side of the tracking menu,
the pencil tool is enabled and cursor changes to pen
icon.

Figure 17. Numeric pad tracking menu.

Volume 5, Issue 2 78

form a nice cluster of functionality that can be made
available via a tracking menu. Figure 18 shows a tracking
menu where the most frequently used camera control
(tumbling) is given priority in the design by being placed in
the large outer region. Additional, less frequently used
commands are placed appropriately in smaller regions thus
reducing the chance of accidental engagement. Note that
this design explores the usage of three permeable zones
(reset view, undo and redo). Here the user must dwell over
the region border with the cursor and after some time
(approximately half a second) may enter and activate the
zone. This provides a way of offering functionality within
the tracking menu but at a reduced level of accessibility.

Figure 18. 3D camera control tracking menu.

CONCLUSIONS & FUTURE RESEARCH
In this paper we introduced a new GUI widget called the
tracking menu designed to provide rapid switching between
different modes or actions using only a pen tip and no
external signals.

In the future we wish to explore the issue of display size.
We believe this technique will be particularly effective in
large wall-sized displays [5, 7, 8] where navigation tasks
and travel time problems are acute.

Our timings from our third usability study indicate tracking
menus have a time performance advantage over tool palette
round trips. Future research could measure this in a
controlled experiment.

We believe this design can work well in a variety of
hardware configurations beyond the targeted single pen-tip
configuration. Our experience has shown that the technique
works well using a standard mouse device. Moreover,
tracking menus can be adapted to work in systems that
employ two input streams (e.g., trackball and stylus), one
for each hand.

While we have found this technique to be extremely useful
for small sets of functionality, we are still investigating
whether or not the tracking menu technique can scale to
larger sets of hotkeys, or ultimately, even full keyboard
replacement.

ACKNOWLEDGMENTS
The authors would like to acknowledge the contributions of
the SketchBook team and the Usability team, in particular,
Lynn Miller, Joe DiVittorio, Marsha Leverock, Ian
Ameline, Alex Tessier, Ken Xu, Tom Wujec, and Mark
Charlesworth. We greatly appreciate the help of Ken
Hinckley in refining this paper.

REFERENCES
1. Accot, J. Zhai, S. (2002) More than dotting the i's – foundations for

crossing-based interfaces. Proceedings of ACM CHI 2002, 73-80.
2. Baudel, T., Buxton, W., Fitzmaurice, G., Harrison, B., Kurtenbach,

G. and Own, R. (1995) Clickaound tool-based graphical interface
with two cursors. US Patent #5,666,499.

3. Bier, E. A., Stone, M. C., Fishkin, K., Buxton, W., Baudel, T.,
(1994) A Taxonomy of See-Through Tools. Proceedings of the ACM
CHI 1994, 358-364.

4. Buxton, W. (1990). A Three-State Model of Graphical Input. In D.
Diaper et al. (Eds), Human-Computer Interaction - INTERACT '90.
Amsterdam: Elsevier Science Publishers B.V. (North-Holland), 449-
456.

5. Buxton, W., Fitzmaurice, G., Balakrishnan, R., and Kurtenbach, G.
(200) Large Displays in Automotive Design. IEEE Computer
Graphics and Applications, 20(4), pp. 68-75.

6. Callahan, J., Hopkins, D., Weiser, M. & Shneiderman, B. (1988) An
empirical comparison of pie vs. linear menus. Proceedings of CHI
‘88, 95-100

7. Elrod, S., Bruce, R., Gold, R., Goldberg, D., Halasz, EG., Janssen Jr.,
W.C., Lee, D., McCall, K., Pedersen, E.R., Pier, K.A., Tang, J.,
Welch, and B. (1992) Liveboard: A Large Interactive Display
Supporting Group Meetings, Presentations, and Remote
Collaboration. Proceedings of ACM CHI 1992, 599-607.

8. Guimbretière, F., Stone, M. & Winograd, T. (2001) Fluid Interaction
with High-resolution Wall-size Displays, Proceedings of ACM UIST
2001, 21-30.

9. Guimbretiere, F. & Winograd, T. (2000) FlowMenu: Combining
Command, Text, and Data Entry. Proceedings of ACM UIST 2000,
213-216.

10. Harrison, B., Kurtenbach, G., Vicente, K. (1995) An Experiment
Evaluation of Transparent User Interface Tools and Information
Content. Proceedings of ACM UIST 1995, 81-90.

11. Harrison, B., Fishkin, K., Gujar, A., Mochon, C., Want, R. (1998)
Squeeze me, hold me, tilt me! An exploration of manipulative user
interfaces. Proceedings of ACM CHI 1998, 17-24.

12. Kramer, A. (1994) Translucent Patches: Dissolving Windows.
Proceedings of ACM UIST 1994, 121-130.

13. Kurtenbach, G. & Buxton, W. (1993) The limits of expert
performance using hierarchical marking menus. Proceedings of the
ACM CHI 1993, 482-487.

14. Kurtenbach, G., Fitzmaurice, G., Baudel, T., Buxton, B., (1997) The
Design of a GUI Paradigm based on Tablets, Two-hands, and
Transparency, Proceedings of ACM CHI 1997, 35-42.

15. Kurtenbach, G., (1993) The Design and Evaluation of Marking
Menus, Ph.D. thesis, University of Toronto, Dept. of Computer
Science.

16. Pook, S., Lecolinet, E., Vaysseix, G., and Barillot, E. (2000) Control
Menus: Execution and Control in a Single Interactor. Proceedings of
ACM CHI 2000 Extended Abstracts, 263-264.

17. Rubio, J.M. and Janecek, P. (2002) Floating Pie Menus: Enhancing
the functionality of Contextual Tools. Proceedings of ACM UIST
2002 Conference Companion, 39-40.

18. Venolia, D. and Neiberg, F. (1994) T-Cube: A Fast, Self-Disclosing
Pen-Based Alphabet. Proceedings of ACM CHI 1994, 265-270.

Volume 5, Issue 2 79

NOTES

Volume 5, Issue 2 80

	ABSTRACT
	INTRODUCTION
	TRACKING MENUS
	RELATED WORK
	CASE STUDY
	Usability Tests

	Design Characteristics and Variations
	Design Examples
	CONCLUSIONS & FUTURE RESEARCH
	ACKNOWLEDGMENTS
	REFERENCES

