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ABSTRACT 
Although touch-screen laptops are increasing in popularity, 
users still do not comfortably rely on touch in these envi-
ronments, as current software interfaces were not designed 
for being used by the finger. In this paper, we first demon-
strate the benefits of using touch as a complementary input 
modality along with the keyboard and mouse or touchpad in 
a laptop setting. To alleviate the frustration users experi-
ence with touch, we then design two techniques, Touch-
Cuts, a single target expansion technique, and TouchZoom, 
a multiple target expansion technique. Both techniques fa-
cilitate the selection of small icons, by detecting the finger 
proximity above the display surface, and expanding the 
target as the finger approaches. In a controlled evaluation, 
we show that our techniques improve performance in com-
parison to both the computer mouse and a baseline touch-
based target acquisition technique. We conclude by discuss-
ing other application scenarios that our techniques support. 
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INTRODUCTION 
Touch input is often considered intuitive and effective [7]. 
It is becoming a major input modality, especially on mobile 
devices. Recently, manufacturers have started producing 
laptops equipped with touch-screens, allowing users to use 
their fingers to directly interact with their applications. 
However, legacy applications typically utilize a ribbon or 
tool palette, consisting of small tiled icons, and research has 
shown that such targets are difficult to select with the finger 
due to occlusion [25] and accuracy [19] problems. ………

While there is an abundance of work in creating new UI 
paradigms specifically for touch [17, 26], it is unlikely that 
the legacy applications used most often by users would ever 
go through such a transformation. Very limited work has 
looked at making general purpose UIs more touch friendly, 
without impacting their non-touch experience. 

Ideally, software interfaces should seamlessly adapt to the 
input modality [4, 8]. With the use of proximity based sens-
ing [5, 10, 16, 22], UI components could transition to a 
touch-optimized variant only when the user’s hand ap-
proaches, and thus be left unaltered for mouse input. We 
propose and study the benefit of this idea by introducing 
two new techniques: TouchZoom (Figure 1) and TouchCuts. 
Both techniques utilize target expansion as a basic UI en-
hancement to facilitate finger input on interfaces that host 
many small and tiled icons, such as ribbons. Both tech-
niques only activate when a finger approaches, and there-
fore do not affect traditional cursor input.  

In the following sections, we first perform a study investi-
gating the benefits of touch input in a laptop configuration. 
Motivated by the high error rates found for small targets, 
we describe our new techniques, TouchCuts, a single target 
expansion technique, and TouchZoom, a multiple target 
expansion technique. A controlled study shows that our 
techniques improve performance in comparison to both the 
computer mouse and a baseline touch-based target acquisi-
tion technique, Shift [25]. We conclude by discussing other 
application scenarios that our techniques could support. 

 

Figure 1 - TouchZoom. (a) The ribbon expands at the intersec-
tion of a finger’s motion vector and the top edge of the ribbon. 
(b) After the expansion, finger movement is adjusted to ac-
quire the new position of the highlighted goal target icon. 
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RELATED WORK 

Selection with Touch 
Having finger input available in tandem with the mouse in a 
shared UI environment allows these devices to complement 
each other, thus providing numerous benefits. Researchers 
have found that the finger can be faster than a mouse when 
selecting targets greater than 3.2mm [24]. Nevertheless 
users can perform better with a mouse than with a finger in 
tasks requiring fine movement and selection [15] as also 
confirmed by Forlines et al. [7].  

Clearly, the size of a UI component will affect touch input. 
Established guidelines suggest that the target size for touch 
should be greater than 10mm [19]. However, smaller icons 
(e.g. 5mm) are still common in most of the current user 
interfaces. Finger based interactions also suffer from occlu-
sion problems. Proposed solutions to alleviate this concern 
include the Offset Cursor [20], that relocates the cursor 0.5” 
above the finger; DTMouse, which presents the cursor be-
tween two fingers [6], Shift, which dynamically places a 
copy of the occluded area in a shifted callout [25], and 
Dual-Finger-Selections, which supports precise selections 
on multitouch displays [1]. 

In Shift, users slide the finger contact on the display, to fine 
tune a crosshair cursor position and select the target using a 
take-off gesture. Shift’s callout was designed to be trig-
gered only when necessary. However, in most cases, the 
selection can be separated into 2 steps – invoking the call-
out and adjusting the cursor to make a selection. Escape 
[26], allows selecting small and tiled targets by assigning a 
unique directional gesture for selection. An experimental 
study showed that Escape could perform 30% faster than 
Shift on targets smaller than 5mm while still maintaining a 
similar error rate. Similarly, Sliding widgets [17] require 
users to slide on a target in a particular direction for selec-
tion. These two techniques require changing the traditional 
UIs to visualize directional clues, which may not be suitable 
for an interface also shared with traditional cursor input.  

Mouse-based Target Expansion 
Target expansion techniques for the mouse have also been 
widely researched [3, 13, 27]. These techniques have been 
found helpful for selecting a single target, by expanding the 
target as the cursor approaches. However, in real-world 
situations, targets are often laid out in a tiled arrangement. 
The existing approaches for expanding tiled targets include 
expanding a single item that is predicted to be the desired 
target [27, 14] or expanding the predicted item as well as its 
immediate neighbors [23]. Obviously, one of the limitations 
of these methods is the lack of guaranteeing that the desired 
target will be magnified due to prediction errors. Note that 
when using a mouse the user can still make a precise selec-
tion on an unexpanded target [23]. However with finger 
input, the user’s intended target may be too difficult to se-
lect if it is not expanded.  

Zhai et al. [27] suggest that if space permits it, all the tar-
gets in the view should be expanded. However, it is typical 
for ribbons or toolbars to span the entire display space, so 
there would not be room to expand all targets. An alterna-
tive would be to use some form of fisheye distortion [2], but 
these have been shown to be harmful to pointing and selec-
tion tasks [9, 27].  

Touch-Based Target Expansion 
Despite its popularity in the target acquisition literature, 
target expansion has not been widely explored for touch. 
Olwal et al. [18] proposed using a rubbing gesture or a sec-
ond finger tap to ‘zoom into’ a small target before attempt-
ing to make a selection. Similarly, Benko et al. [1]’s two-
handed techniques also attempt to enlarge the target to ease 
selection. These techniques have been proven helpful for 
selecting small targets using bare fingers. However, they 
have a common limitation that users need to explicitly indi-
cate a target of interest and then expand it manually.  

The more traditional, automatic target expansion, has not 
been explored for touch. This is likely because target ex-
pansion relies on tracking the approach of the cursor, or in 
this case, the finger. This information is typically not avail-
able, as most touch devices today do not sense hover infor-
mation. However, advanced sensing technology has pushed 
the detection of finger motion at a practical height above 
the surface [11, 22]. Major manufacturers (Mitsubishi, Pri-
mesense, and Cypress) have already announced such types 
of commercial systems or prototypes [5, 16, 21]. All of 
these have made target expansion feasible on small touch-
screen devices, e.g. laptops.  

In summary, target expansion for touch has not been inves-
tigated thoroughly, and is promising in that it may improve 
touch selection without impacting the user interface for 
traditional cursor input. However, even in the mouse-based 
research, there are challenges surrounding target expansion 
yet to be addressed, such as how to apply expansion in 
tiled-target environments. In the next section, we first dem-
onstrate the added value of finger input in a key-
board/mouse setting. We then present our designs and stud-
ies of our techniques.   

EXPERIMENT 1: EVLAUATION OF TOUCH 
We believe touch input could be particular useful in a lap-
top configuration, since a mouse may not be available, and 
the hands, when in a resting state on the keyboard are al-
ready quite close to the display. However, despite the pre-
valence of touch-based laptops, the efficiency of using 
touch on such devices has not been investigated and is thus 
not fully understood. To better understand if and when tar-
get expansion techniques would be useful, we first study 
traditional target acquisition in a laptop configuration. 
While previous work has compared touch to other forms of 
input [7, 15, 24], here, on screen target acquisition is 
unique, since the hand would be moving from a horizontal 
plane of the keyboard to a vertical plane of the display. In 
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addition, strictly following the KLM GOMS model, we 
would predict that such a task would require homing time 
(switching to the touch input device) and pointing time (ac-
quiring the target). We postulate that one of the primary 
benefits of using touch for target selection tasks is allowing 
pointing and homing to take place in parallel. We are un-
aware of any investigation into this issue. 

Motivated to answer these open questions, the goal of this 
experiment is to evaluate the performance of touch versus a 
mouse and touchpad in a task involving the use of a point-
ing device in conjunction with a keyboard. 

Apparatus 
Our study was conducted on a Dell SX2210 21.5” touch-
screen monitor, as it provided more accurate touch input 
then current touch-enabled laptops. The display was used in 
conjunction with a standard desktop keyboard. To simulate 
a laptop configuration, we lowered the height of the touch-
screen so that the button of the display is 4 cm above the 
keyboard, which is about the same distance that can be 
found on a Dell TouchSmart TX2 tablet PC. The display 
was tilted to a comfortable viewing angle (13° to the verti-
cal plane). A USB touchpad (97 × 78 mm) from Ergonomic 
was placed below the space bar of the keyboard, and was 
raised to the same height as the keyboard (Figure 2).  

 

Figure 2 – Hardware setup for Experiment 1. 

Participants 
Twelve paid participants (7 males and 5 females) between 
the ages of 21 and 56 participated in this study. All partici-
pants were right-handed. They were all familiar with a 
computer mouse and touchpad, and had previous experi-
ence with mobile touch-screen devices. 

Task and procedure 
The task required participants to click a key on the key-
board and then using the same hand select a square target of 
various sizes in a random location on the screen. This task 
is analogous to that frequently employed by users of text 
editing programs, where the main task is typing on a key-
board but requires users to switch to a mouse or a touchpad 
to click an icon or other on-screen widget. The right hand 
was used for the mouse and touchpad. The left hand (non-
dominant for all participants) was used for touch, since we 
felt testing touch with the dominant hand may be biased, 
since in some cases users may want to use the non-

dominant hand (for example, if a target is on the left side, or 
if their right hand is on the mouse). Participants were told to 
only use their index finger during the touch conditions. 

In the mouse and touchpad conditions, participants were 
asked to position a cursor inside a 0.5×0.5cm ‘Start’ square 
prior to the start of a trial. A trial started after participants 
pressed a keyboard key and finished after a target was suc-
cessfully selected. Ideally, we would have like to use the 
‘F’ key when using touch and the ‘J’ key when using the 
mouse and touchpad, as these are the typical resting keys 
for the left and right hands respectively. However, we used 
the ‘R’ key for touch and the ‘\’ key for mouse, and the ‘J’ 
key for touchpad since the distance between these keys and 
their respective input devices more closely matched the 
distances on a Dell TouchSmart TX2 tablet PC.  

Participants were asked to finish the task as fast and as ac-
curately as possible. They were encouraged to take breaks 
during the experiment, which lasted about 40 minutes.  

Design 
The experiment employed a 3×4×3 within-subject factorial 
design. The independent variables were Pointing Device 
(Finger, Mouse, and Touchpad); Target Distance (18, 24, 
30, and 36cm); and Target Size (0.5, 1, and 2cm).  

The size of the target was chosen to be close to the size of 
the icons in real-world applications. For instance, 0.5cm is 
approximately the same size as the Bold button in Micro-
soft Word. Similarly, 1cm is approximately the same size as 
the Paste button. Target distance was measured from the 
center of the goal target to the center of the ‘Start’ position 
in the mouse and touchpad conditions. Distance was meas-
ured from the center of the ‘R’ key to the center of the goal 
target in the touch condition. Target locations were the 
same for all conditions. The ‘Start’ square was repositioned 
(in the mouse and touchpad conditions) according to the 
target position to ensure it satisfied the distance condition.  

Windows cursor acceleration was turned on to facilitate 
pointing by using the cursor. If the user missed the target, 
they had to click again until successful. In each trial, par-
ticipants performed tasks in one of each Pointing Device × 
Target Distance × Target Size combination. The experiment 
consisted of 5 blocks, each consisting of 3 repetitions of 
trials. The first block was used as practice trails, thus the 
data was not used in analysis. The Pointing Device was 
counter balanced among participants. The Target Distance 
and Target Size were randomized among trials.  

Results and discussion 
Dependent measures included the number of errors and the 
average task completion time. This data was analyzed using 
Repeated-measures ANOVA and Bonferroni corrections for 
pair-wise comparisons.    
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Task completion Time 
ANOVA yielded a significant effect of Pointing Device 
(F2,22  = 14.43, p < 0.001), Target Distance (F3,33  = 3.61, p 
< 0.05), and Target Size (F2,22  = 101.72, p < 0.001). There 
is also significant interaction effects on Input Device × Tar-
get Distance (F6,66  = 8.68, p < 0.001), Input Device × Tar-
get Width (F4,44  = 29.07, p < 0.001), and Target Distance × 
Target Width (F6,66  = 5.53, p < 0.001). The interaction ef-
fects were mainly caused by the poor performance of finger 
touch on the target of 0.5cm (see Figure 3). 

Overall (including trials with errors), the performance of 
finger (1528ms) was significantly faster than mouse 
(1639ms) (p < 0.05), which was significantly faster than 
touchpad (2242ms) (p < 0.001). As expected target size has 
more impact on finger than mouse or touchpad (Figure 3 
left). Participants spent more time selecting the smallest 
target using finger than using mouse or touchpad.  

 

Figure 3 – Task time and error rate shown by Technique and 
Target Size. (Error Bars show 95% CI in all figures) 

Number of errors 
ANOVA yielded a significant effect of Input Device (F2,22  
= 57.46, p < 0.001), Target Distance (F3,33  = 7.68, p < 
0.05), and Target Size (F2,22  = 202.36, p < 0.001). We also 
found significant interaction effects on Input Device × Tar-
get Distance (F6,66  = 4.18, p = 0.001) and Input Device × 
Target Width (F4,44  = 225.43, p < 0.001). 

Overall, touch made significantly more errors (23%) than 
touchpad (7%) (p < 0.001), which made significantly more 
errors than mouse (2%) (p < 0.001). Figure 3 right shows 
that participants made closed to 60% errors using touch on 
target size 0.5cm but made less errors than mouse on target 
of size 2cm.  

Fitts’ Law Analysis 
To perform a Fitts’ Law analysis, we removed all trials in 
which errors occurred. Linear regression tests indicated that 
the task highly conformed to Fitts’ Law, for all three condi-
tions, showing that touch is constantly faster than mouse or 
touchpad across all index of difficulties (Figure 4). It can be 
seen that the main difference is due to the ‘a’ constant, 
which is typically reaction time, but for this study, encom-
passes the homing time as well. This is an interesting re-
sults, as it shows that touch does allow homing and pointing 
to be carried out concurrently. To repeat the analysis with-
out homing time, we subtracted the elapsed time until the 
cursor began to move in the mouse and touchpad condi-

tions. After doing so, we still see a 16% advantage of touch 
over the mouse (p < 0.001), and a 35% advantage over the 
touchpad (p < 0.001). 

Summary 
The study demonstrates certain benefits of using touch in a 
routine task, which requires users to switch from a key-
board to a pointing device prior to start acquiring a target. 
For targets that are at least 1cm large, touch was 36% faster 
than the mouse and 52% faster than the touchpad. Even 
without the homing time, touch was 8% faster than the 
mouse and 35% faster than the touchpad.  However, as ex-
pected, the performance of touch decreased significantly 
with small targets. In particular, our study shows that touch 
completely fails for target sizes of 0.5×0.5cm. Unfortu-
nately, many graphical user interfaces contain targets of this 
size, so further considerations must be made for touch to be 
practical on desktop applications. 

 

Figure 4 –Task completion time with homing time (left) and 
without homing time (right) by the index of difficulty. 

EXPANDING TARGET TECHNIQUES FOR TOUCH 
The results of Experiment 1 provide an important lesson: if 
targets are big enough, using touch to acquire them can 
have significant advantages. However, in desktop applica-
tions, increasing the size of the targets is not practical, as it 
would diminish the experience for users who never intend 
to use touch. It is also impractical to expect traditional leg-
acy applications to be rewritten specifically for touch. In-
stead, we propose that UI components transition to be 
optimized for touch only when the user intends to use 
touch. Already, numerous technologies exist to detect the 
proximity of fingers [5, 11, 16, 21, 22]. Expanding the tar-
gets as a finger approaches the screen could be an efficient 
mechanism to overcome the challenges encountered in Ex-
periment 1. In this section, we initiate the investigation of 
expanding targets for touch, through the design of two 
techniques: TouchCuts and TouchZoom.  

TouchCuts 
TouchCuts are a basic implementation of expanding targets 
for touch, where only certain targets within a UI palette, 
such as a toolbar or ribbon, expand when the finger ap-
proaches it. Only this subset of targets is accessible through 
touch, as surrounding targets may become occluded by 
them. As such, TouchCuts are akin to keyboard shortcuts, 
providing efficient access to some of an application’s com-
mands. However, they are not exhaustive or do not provide 
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a replacement for other command access methods. Touch-
Cuts use a visual gloss overlay, to indicate to the users 
which of the targets are accessible through touch. We also 
implemented a simple method to allow users to customize 
which targets are TouchCuts. The user taps close to a de-
sired target using their finger, and drags the mouse to spec-
ify the size of a TouchCut (Figure 5). Similarly, tapping on 
a TouchCut, followed by a mouse click on the enlarged 
button can remove it. Using a transparent overlay window, 
we were able to prototype an application independent im-
plementation of TouchCuts, that could be used to customize 
and access TouchCuts on any windows program. 

 

Figure 5 –Left: define a TouchCuts. Right: TouchCuts expands 
when a finger approaches.  

The advantage of this technique is that it is a single target 
expansion, so no target prediction is required, and no tar-
gets are displaced. The limitation is that it cannot provide 
access to every target within a tool palette. Therefore, 
TouchCuts are most suitable for functions that are used fre-
quently. In the case when a function is not available 
through TouchCuts, the user will have to use a mouse or re-
customize the TouchCuts. 

TouchZoom 
We also wanted to develop a technique that could provide 
full access to a palette’s icons. We focus our design on the 
ribbon, because it has become a common UI component for 
desktop applications, but the technique would work for any 
horizontal tool palette. Our approach is to magnify the en-
tire ribbon, with a center of expansion at a predicted end-
point, similar to what Zhai et al. previously proposed [27]. 
This ensures expansion of the desired target, even if there is 
an error in the endpoint prediction. Thus, unlike TouchCuts, 
the TouchZoom makes every target within the ribbon acces-
sible through touch. One concern, which will require inves-
tigation, is that the goal target may become offset from its 
original location, and in the worst case, the target may be 
displaced off-screen.  

For prediction, a 2D motion vector is generated based on 
the projection of the finger movement on the screen. We 
use only the last 2 points of the sample to estimate the in-
tended vector, as it tended to perform better than other re-
gression algorithms we implemented. The intersection of 
the motion vector and the top of the ribbon determines the 
center of expansion (CE), and the ribbon expands once the 
index finger crosses an expansion point in a sufficient 
speed. If CE falls outside of the ribbon, it will be placed on 
the corresponding ribbon endpoint. The CE was fixed at the 
top of the ribbon in all cases.  When the index finger 
crosses a certain distance threshold, the CE is calculated 
and the resulting ribbon expansion occurs (Figure 1). When 
the prediction is wrong, the goal target will be offset from 

its original location at a magnitude proportional to the pre-
diction error. To recover from an off-screen error, users can 
either re-launch the expansion by moving below the dis-
tance threshold, or scrub the ribbon with a touch gesture to 
pan the target back into view. 

We anticipated that the accuracy of the prediction would be 
dependent on the time when the ribbon expansion is trig-
gered. Expanding late might lead to better prediction since 
the finger would be closer to its goal. However, considering 
that no prediction algorithm works perfectly [12, 13, 14], a 
user will need a certain amount of time to perceive target 
displacement, and to adjust his/her finger motion accord-
ingly. Thus, it may be preferable to expand the ribbon early.  

Another design option we considered is to group sets of 
ribbon icons together, and to set the CE to the center of the 
predicted group (For groups adjacent to the screen edge, the 
CE would be set to the edge) (Figure 6). This would allow a 
user to aim his/her finger movement at the group containing 
the desired icon, instead of aiming at a desired icon itself. 
Having this larger initial target would minimize prediction 
errors, and, once expanded, the user could adjust his/her 
finger movement to make the final selection. However, the 
target offset would be proportional to the distance between 
the target and the center of its group.  

 

Figure 6 – (a) The ribbon expands at the center of a group of 
icons shown in the blue outline. (b) User adjusts finger move-
ment to the new position of the highlighted target icon. 

In the following section, we study the relevant parameters 
for our TouchZoom design. In Experiment 3 we will com-
pare TouchZoom to TouchCuts and two baseline techniques. 

EXPERIMENT 2: EVALUATION OF TOUCHZOOM 
In this study, we were interested in measuring the impact of 
the pertinent design parameters for TouchZoom, to optimize 
the techniques efficiency. The parameters we investigated 
were group size, target position, and expansion point. 

Apparatus 
The hardware setup was the same as in Experiment 1. In 
addition, we used four OptiTrack motion capture cameras 
to capture the off-screen movement of the user’s index fin-
ger. The cameras have 100Hz frame rates and millimeter 
accuracy. We put 3 reflective markers on a user’s hand 
(Figure 7). The marker on the user’s index finger was tilted 
to the right side to avoid occlusion. This should be consid-
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ered enabling technology only, simulating the more practi-
cal technologies discussed earlier. 

 
Figure 7 – Reflective marker placement. 

Participants 
Ten paid participants (5 males and 5 females) between the 
ages of 20 and 34 participated in this study. All participants 
were right-handed. They were all familiar with graphical 
user interfaces, and had previous experience with mobile 
touch-screen devices. 

Task and Procedure 
The task required participants to use their left index finger 
to press the ‘O’ key on a keyboard and then select a target 
button in our abstracted ribbon using the same finger. Upon 
pressing the ‘O’, the participants were instructed to select 
the target as fast and as accurately as possible. A trial 
started after the ‘O’ was pressed and finished after a target 
was successfully selected. Participants were encouraged to 
take breaks during the experiment. The entire experiment 
lasted about 45 minutes.  

Design 
The ribbon was 1.5cm high and 45cm width, and was ren-
dered near the top of the screen in a window which has the 
same width as the ribbon and the same height as the screen. 
A 100ms animation was used for the Ribbon expansion. In 
each trial, a 0.5×0.5cm goal target was shown in the ribbon. 
An expansion magnification level of 3x, which was based on 
Experiment 1, was used to reduce the chance of errors. The 
ribbon had 90 icons across, and 3 icons in each column. The 
‘O’ key was centered with the ribbon. 

The experiment employed a 5×2×2×9 within-subject factorial 
design. The independent variables are Group Size (1, 3, 9, 15, 
and 30); Expansion Point (Late and Early); Target Y Position 
(Up and Down), and Target X Position (1 to 9).  

Group Size (GS) – Group size indicates the number of icons 
in a row that a group has. We chose to explore a range of 
groups size, that evenly divided into the 90 targets across: 1, 
3, 9, 15, and 30.  

Groups were visualized using vertical bars (Figure 8). For 
targets close to the screen edges, the participants were shown 
that by biasing their acquisition movement towards the edge 
of the screen, off-screen errors could be minimized. 

Expansion Point (EP) – The distance to the goal target was 
measured as the distance from the ‘O’ key to the target in 3D 
space. Expansion Point took on the values 90% and 40%, 
representing the amount of distance travelled to the targets, 
before the expansion occurred. We chose 40% as a minimum 
value because our informal test showed that the distances 
below 40% could significantly impair the prediction. The 

value of 90% was chosen as it has been suggested by previ-
ous expanding target techniques [13]. 

Target Y Position (TY) –In the Up condition, the target was 
placed on the top row. In the Down condition, the target was 
placed in the bottom row. 

Target X Position (TX) – In each trial, the target was placed 
in one of 9 different horizontal positions across the ribbon 
(see Figure 8). In addition to the 9 absolute positions, we 
were also interested in investigating the effects of 3 relative 
positions (left, middle, and right) of a target within a group of 
the ribbon. To ensure each group size had exactly 3 targets in 
each of these relative positions, we slightly shifted some of 
the X positions by ±1 icon  

 

Figure 8 – Illustration of target positions (red dots) within each 
of the 5 group sizes. The gradient effect was added to provide 
spatial grounding. Blue bars indicate group borders. 

The experiment consisted of 3 blocks, each consisting of 1 
trial for each combination of Group Size (GS) × Expansion 
Point (EP) × Target Y Position (TY) × Target X Position 
(TX). The order of Group Size was randomized between sub-
jects. Within each group size, Expansion Point was random-
ized. Finally, target position was randomized in each Group 
Size × Expansion Point pair.  

Dependent measures included the number of off-screen er-
rors, the number of selection errors, and the average task 
completion time. An off-screen error was recorded when a 
target was pushed into off-screen space. A selection error 
was recorded when a participant missed a target. Task com-
pletion time was recorded as the time elapsed from the ‘O’ 
being pressed to a successful selection on the target.  

Results and Discussion 
The results were analyzed using Repeated-measures 
ANOVA and Bonferroni corrections for pair-wise compari-
sons. Before the analysis, we checked the ordering effects of 
group size on all the dependent measures, and found no sig-
nificant effects. 

Task completion time 
ANOVA yielded a significant effect of TX (F8,72  = 13.65, p < 
0.001). Interestingly, we found no significant effect of GS 
(F4,36  = 1.16, p = 0.35), EP (F1,9  = 0.9, p = 0.37), and TY 
(F1,9  = 0.67, p = 0.44). There were significant interaction 
effects on GS × TX (F32, 288  = 7.17, p < 0.001), and TY × EP 
(F1,9  = 6.1, p < 0.05). 

Post-hoc analysis showed that task time decreased signifi-
cantly towards the center of the ribbon (Figure 9 left). In par-
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ticular, task time at TX 1, 7, 8, and 9 were significantly 
longer than at 3, 4, 5, 6 (all p < 0.05).  

Task completion time without off-screen error 
There was a significant difference between trials when off-
screen errors occurred (2700ms s.e. 119.74) and when off-
screen errors did not occur (1094ms s.e. 20.82) (F1,9  = 
172.89, p < 0.001).   

After removing these trials (7%), we found significant effects 
of TX (F8,72  = 12.35, p < 0.001), EP (F1,9  = 47.13, p < 
0.001), and TY (F1,9  = 14.22, p < 0.005 ). There was a weak 
effect of GS (F4,36  = 2.88, p = 0.04), but pair-wise compari-
son showed no significant difference between group sizes. 
There was a significant interaction effect on GS × TY (F4,36  = 
0.67, p < 0.05). Figure 9 (left) shows the task time with and 
without off-screen errors.  

 
Figure 9 – Left: Task time shown by target position. Right: Off-
screen rate shown by target position and group size. 

The participants performed the task faster when the ribbon 
was expanded at 40% distance (1038ms s.e. 25.5ms) than 
when it was expanded at 90% distance (1147ms, s.e. 18.8). 
This is because the early expansion allowed users to adjust 
their initial movement path earlier, instead of following two 
separate acquisition paths (one for the group, and then one 
for the goal target position resulting from the expansion).  

We also analyzed the effect of the relative position of the 
targets within their groups, excluding group size 1. We found 
a significant effect of target position (F1,18  = 14.13, p < 
0.001). Targets on the left (1116ms s.e. 24.23ms) and right 
side (1133ms s.e. 28.62ms) of a group took significantly 
longer than those on the center of a group (1046ms s.e. 
23.68ms). This explains why we found only weak effect of 
group size. Although big groups (e.g. 15 and 30) have better 
prediction, their larger target displacements increase acquisi-
tion times.  

Off-screen Errors 
ANOVA yielded a significant effect of TX (F8,72  = 22.72, p < 
0.001), GS (F4,36  = 10.68, p < 0.001), and EP (F1,9  = 2.12, p 
< 0.05). There was no significant effect of TY (F1,9  = 0.67, p 
= 0.44). There were also a significant interaction effect on EP 
× TX (F8,72  = 2.58, p < 0.05).  

The participants made more off-screen errors when the rib-
bon was expanded at 40% distance (0.09 s.e. 0.02) than when 
it was expanded at 90% distance (0.05 s.e. 0.01).  

Figure 9 (right) shows that most off-screen errors were made 
on the targets on the left and right edge of the ribbon (TX 1 
and 9). Post-hoc analysis showed that big groups (e.g. 15 and 
30) introduced significantly less off-screen errors than the 
smaller groups (p < 0.05). It also shows that large group sizes 
can also cause off-screen errors. For instance, the participants 
made significantly more off-screen errors on the targets at 
position TX 2 and 8 with group size 15 than with other group 
sizes (p < 0.05). Going back to Figure 8 we see that these two 
target positions are at the edge of their respective groups. If a 
participant aimed at the target instead of the group, there was 
a chance the wrong group would be predicted, pushing the 
desired group off-screen.  

Selection Error 
Overall, the average selection error rate was 6.2%. No main 
effects or interaction effects were found on error rate. 

HYBRID INTERPOLATION FOR TOUCHZOOM 
Experiment 2 shows that reducing prediction error by in-
creasing the size of the group does not improve the efficiency 
of the task, because of the larger target offsets. We also found 
that off-screen errors had an overwhelming effect on overall 
completion time. In this section we discuss a redesign of 
TouchZoom to prevent off-screen errors.  

 

Figure 10 - Illustration of the left side of a ribbon with buffer 
zone. Red arrows associate the center of expansion for each of 
the icons in the 3 zones.  

As suggested by Experiment 2, larger group sizes are effec-
tive in preventing off-screen errors on targets close to the left 
and right edges of the screen but can be error prone with tar-
gets closer to the center. The opposite was true for small 
group sizes. To leverage the benefits of both designs, we 
implemented a hybrid technique which uses a group size of 
15 on the two edges, and individual ungrouped targets in 
between. To further reduce the chance of off-screen errors, 
we use a buffer zone between the group of 15 targets, and the 
center zone. The buffer zone consists of 10 individual targets, 
but their CE is based on a linear interpolation of the screen 
edge and the CE of the first target in the center zone (Figure 
10). Having this buffer zone minimizes the impact of a pre-
diction error when aiming at a target in the edge group. The 
exact sizes of the edge groups and buffer zones were chosen 
based on prediction error rates from Experiment 2, in an ef-
fort to minimize off-screen targets as much as possible. 

EXPERIMENT 3  
We have described two expanding target techniques for 
touch, TouchCuts, and TouchZoom. In study 2 we performed 
an evaluation of TouchZoom, which resulted in a resigned 
hybrid interpolation. In this study, we measured the perform-
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ance of the redesigned TouchZoom and TouchCuts, in com-
parison to a baseline input device – the Mouse and a baseline 
touch technique – Shift. 

While numerous techniques exist for aiding touch-based tar-
get acquisition, we used Shift as a baseline, since it does not 
have any visual impact on the user interface, unless the tech-
nique is used. Following previous guidelines, our implemen-
tation placed the callout window (16mm in diameter) 22mm 
on the right side of the initial touch point to facilitate the se-
lection on a ribbon by using the left hand. The callout was 
placed on the opposite side if the touch point was within 
30mm from the right end of the ribbon. We set the escalation 
time to zero so that the callout popped up as soon as a user 
touches the screen. 

Apparatus 
We used the same apparatus as in Experiment 2. Reflective 
markers were used in the target expansion techniques. 

Participants 
Twelve paid participants (6 males and 6 females) between 
the ages of 18 and 34 participated in this study. None of them 
had participated in the Experiment 1 and 2. All participants 
were right-handed. They were all familiar with graphical user 
interfaces. All but one had previous experience with mobile 
touch-screen devices. 

Task and procedure 
The participants were asked to press a keyboard key (‘\’ for 
the cursor and ‘O’ for the others), and to select a target 
(0.5×0.5cm) in a ribbon by using one of the 4 techniques. 
The task was required to be carried out by using the left hand 
for all the techniques except for the mouse. In the mouse 
condition, prior to pressing ‘\’, the participants were asked to 
place the cursor in a start square (0.5×0.5cm) rendered in the 
center of the workspace. In the TouchZoom condition, we 
only showed the border between the edge groups and the 
buffer zone. The buffer zone and the groups of size 1 were 
invisible to the users. As in Experiment 2, for targets close to 
the screen edges, the participants were shown that by biasing 
their acquisition movement towards the edge of the screen, 
off-screen errors could be minimized. For both target expan-
sion techniques, the expansion point was set to 60%. 

Prior to the study, the participants were given a 3 minute 
training section for each technique. They were encouraged to 
take breaks during the experiment. The entire experiment 
lasted about 40 minutes. Participants filled out a post experi-
ment questionnaire upon completion. 

Design 
The experiment employed a 4×3 within-subject factorial de-
sign. The independent variables are Technique (TouchZoom, 
TouchCuts, Shift, and Mouse Cursor) and Target zone (Edge 
Group, Buffer Zone and Center Zone). 

In each trial, participants performed tasks in one of each 
Technique × Target zone combination. The experiment con-
sisted of 3 blocks, each consisting of 30 trials, 10 for each 

target zone. In each trial, the position of the target was ran-
domized for each target zone. The target was evenly distrib-
uted to the left and right side as well as the 3 rows of the rib-
bon. The order of the presentation of the techniques was 
counter balanced between participants.  

Results  
The data was analyzed using Repeated-measures ANOVA 
and Bonferroni corrections for pair-wise comparisons. 

Task completion time 
ANOVA yielded a significant effect of Technique (F3,33  = 
245.36, p < 0.001) and Target Zone (F2,22  = 15.82, p < 
0.001). There was a significant interaction effect on Input 
Technique × Target Zone (F6,66  = 4.53, p = 0.001). Figure 11 
left shows average time for Target Zone by Technique. 

Performance with TouchCuts (768ms) was faster than 
TouchZoom (1130ms), which was faster than Mouse cursor 
(1280ms) and Shift (1883ms). Post-hoc analysis showed sig-
nificant differences between all pairs of techniques. It is not 
surprising that TouchCuts performed the best overall, since it 
provides target expansion without any target offset. The dif-
ference between TouchCuts and TouchZoom (362 ms) is the 
added cost of the target offsets that TouchZoom introduces. It 
is worth reiterating that TouchCuts is slightly different from 
the other techniques, in that it only provides access to a pre-
determined subset of the ribbon icons. 

What was more surprising was the difference between 
TouchZoom and Shift. Both techniques require initial and 
adjustment pointing phases. We believe that TouchZoom 
performed better because with Shift the two phases are ex-
plicitly sequential, while with the TouchZoom technique, the 
adjustment phase can be predicted and integrated into the end 
of the initial phase. In addition, Shift does not increase the 
motor activation size of the target. 

Performance in the Edge group (1306ms) was slightly slower 
than Center zone (1249ms) and Buffer zone (1241ms) (p = 
0.001), while no significant difference was found between 
Buffer zone and Center zone (p = 1). However, we found no 
significant effect of Target Zone (F2,22  = 1.2, p = 0.321) in 
the TouchZoom condition, indicating that users can perform 
equally well across the ribbon.  

 
Figure 11 – Left: average task time shown for each target zone 
by technique. Right: off-screen rate shown by group sizes.  
Selection Error 
For selection errors, there was a significant effect of Tech-
nique (F3,33  = 8.18, p < 0.001), but no significant effect of 
Target Zone (F2,22  = 0.03, p = 0.97) or interaction effects.  
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TouchCuts had significantly less errors (0.02 s.e. 0.01) than 
the TouchZoom (0.11 s.e. 0.025), Mouse cursor (0.07 s.e. 
0.01), and Shift (0.08 s.e. 0.02). We found no significant dif-
ference between TouchZoom, Mouse cursor, and Shift.  

In the TouchZoom condition, we also found no significant 
effect of Target zone (F2,22  = 0.07, p = 0.93). This again con-
firms that users can perform equally well across the ribbon. 
Average off-screen error rate for the TouchZoom condition 
was 0.014(s.e. 0.006). We also found no significant effect of 
Target zone on off-screen error (F2,22  = 0.836, p = 0.45). 
This was an encouraging result, demonstrating that the hy-
brid interpolation we designed based on the results of Ex-
periment 2 effectively minimized the chance of off-screen 
errors, in comparison to the static group sizes (shown in Fig-
ure 11 right). Application designers could color code ribbon 
or toolbar icons that indicate the zones utilized by the hybrid 
interpolation. 

Subjective Preference 
A short questionnaire was administered after the study. All 
scores reported below are based on a 7-point Likert scale, 
with 7 indicating highest preference.  

The participants gave an average of 6.7 to TouchCuts and 5.2 
to TouchZoom as the two most easy to use techniques. 
Whereas, Shift and Mouse cursor received an average of 3.7 
and 4.6 respectively. Additionally, the participants gave an 
average of 6.9 to TouchCuts and 5.3 to TouchZoom as the 
two most enjoyable techniques. Shift and Mouse cursor re-
ceived an average of 3.9 and 4 respectively. The mouse was 
rated lower because of both the switching between the key-
board and mouse, and also the small target sizes. Shift was 
rated lower because of the longer acquisition times. In addi-
tion, numerous users reported Shift as being fatiguing be-
cause it required careful movements of the finger while it 
was positioned on the screen. When shown a mockup of our 
techniques in an actual user interface (Microsof PowerPoint), 
feedback from users was gerneally encouraging. Overall, 
83%, 67%, 67%, and 33% of all our participants expressed 
the desire to use TouchCuts, TouchZoom, Mouse, and Shift in 
the future. 

DISCUSSION AND FUTURE WORK 
In comparison to a mouse, TouchCuts reduced selection 
times by 40%, but does not provide access to every UI ele-
ment. It will thus be important to study adoption and per-
formance of TouchCuts in realistic settings, given the poten-
tial confusion caused by only some functionality being acces-
sible. Our belief is that this may not be problematic, since 
traditional hotkeys are similarly only available and used for a 
subset of commands.  

In contrast, TouchZoom gives the user access to an entire 
ribbon, and reduced selection times by 12% in comparison to 
a mouse. We also know from Experiment 1, that if the user 
does not have a mouse attached to their laptop, and has to use 
a touchpad, the levels of improvement would be even more 
substantial. 

It is worth pointing out that we are not trying to replace the 
mouse. To the contrary, we made our design decisions care-
fully so that traditional cursor interaction would be unaf-
fected. Note that our techniques are particularly beneficial 
when frequent mouse-keyboard switching is necessary. If the 
user is already performing mouse interactions close to the top 
of the screen, it may make more sense to acquire ribbon icons 
with the mouse. However, if the user is performing cursor 
intensive interactions, the non-dominant hand could be used 
to access UI elements in parallel, saving a round trip of the 
cursor (for example, changing colors while drawing). While 
our studies did show that touch can be effective with the non-
dominant hand, future studies could explore this form of par-
allel, bimanual input.  

Although the differences were not significant from the mouse 
or Shift, TouchZoom did exhibit a higher error rate (11%) in 
Experiment 3 than we expected. Our observations indicated 
that some of these errors were caused by users accidently 
touching the screen at the end of their first ballistic move-
ments, just after the ribbon expanded. Since this error rate 
was higher than in Experiment 2 (6.2%), one potential expla-
nation is that there were detrimental transfer effects from the 
Shift and TouchCuts techniques, where participants could 
touch the screen imprecisely after an initial ballistic move-
ment.  

Our work focused on a laptop configuration for three rea-
sons: Most major manufactures have touch-enabled laptops; 
the hands are positioned close to the display; a mouse may 
not be available, and the track-pad is inefficient for pointing 
tasks. However, our work could generalize to desktop set-
tings as well, but fatigue issues must be considered, since 
further reaching may be required. In addition, our work as-
sumed proximity sensing was available, and for TouchZoom, 
the control being zoomed is horizontal. In the next section, 
we discuss several design variations to demonstrate how our 
techniques could generalize to other scenarios.  

Further Design Alternatives 
Functionality reduction controls – inspired by TouchCuts, we 
introduce functionality reduction controls to facilitate finger 
input. A functionality reduction control transitions to a preset 
touch-optimized component, that has the same screen foot-
print, but offers a subset of the functionality of its cursor-
based counterpart. For example, we implemented a function-
ality reduction color palette, which replaces the color picker 
with 12 large color icons when the finger approaches. When 
users know they want to select one of these main colors, they 
can do so quickly with the non-dominant hand, saving a cur-
sor round-trip. 

Multi-level expansion – In this technique, the ribbon has 2 
expansion points: 50% and 80%. It expands half-way if the 
finger crosses the 50% distance, and fully expands after the 
finger crosses the 80% distance. No discontinuity will be 
seen if the finger crosses the 2 expansion point at a sufficient 
speed. This technique was mainly designed to help users 
learn to use the TouchZoom technique.   
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Depth-based expansion – Depth-based expansion triggers the 
expansion when the finger is within a threshold distance to 
the screen, with the center of expansion equal to the on-
screen projection of the current finger position. The finger is 
first positioned directly above the target of interest, and then 
the finger moves towards the screen to trigger the expansion. 
This could be particularly useful for implementing Touch-
Zoom on vertical tool palettes, since endpoint prediction 
would be difficult. In addition, it could be useful on systems 
with a small proximity sensing range. 

Touch activated expansion – To demonstrate the use of 
TouchCuts without proximity sensing, we delay expansion 
until the finger actually makes contact with the screen. This 
could also be used for functionality reduction controls, if 
the touch-optimized layout is predictable. 

CONCLUSION  
We have presented 3 studies to motivate and evaluate our 
design of TouchCuts and TouchZoom. We demonstrated 
that finger input has the benefit of allowing homing and 
pointing to be carried out concurrently, but suffers from 
extremely high error rates on icons in existing legacy appli-
cations. To support touch in such applications, our tech-
niques trigger a transition of the user interface only when a 
finger approaches. Thus, controls can be effectively shared 
by both a traditional cursor and touch. Our study showed 
positive benefits of both techniques. Furthermore, the re-
sults of our studies show the hybrid interpolation used for 
TouchZoom effectively reduces the chance of off-screen 
errors. Finally, we present several alternative designs to 
show how our techniques could generalize to scenarios 
which we did not explicitly study. We believe with the con-
tinued increase in popularity of touch-based displays, our 
techniques may serve as important groundwork for integrat-
ing the benefits of touch into existing applications. 
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