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Abstract Heretofore, the Serret–Frenet frame has been the ubiquitous choice for analyzing
the elastic deformations of beam elements. It is well-known that this frame is undefined at
the inflection points and straight segments of the beam where its curvature is zero, leading to
singularities and errors in their numerical analysis. On the other hand, there exists a lesser-
known frame called Bishop which does not have the caveats of the Serret–Frenet frame and
is well-defined everywhere along the beam center-line. Leveraging the Bishop frame, in this
paper, we propose a new spatial, singularity-free low order beam element based on the abso-
lute nodal coordinate formulation for both small and large deformation applications. This el-
ement, named ANCF14, has a constant mass matrix and can capture longitudinal, transverse
(bending) and torsional deformations. It is a two-noded element with 7 degrees of freedom
per node, which are global nodal coordinates, nodal slopes and their cross-sectional rotation
about the center-line. The newly developed element is tested through four complex bench-
marks. Comparing the ANCF14 results with theoretical and numerical results provided in
other studies confirms the efficiency and accuracy of the proposed element.

Keywords Torsion-deformable beam · Absolute nodal coordinate formulation · Bishop
frame · Multibody dynamic systems

1 Introduction

Multibody systems (MBSs) are mechanical assemblies consisting of interconnected rigid
and flexible components that may undergo large rotations and displacements, as well as
large deformations in their flexible parts. Simulation of MBSs has been an attractive subject
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of interest in engineering literature and numerous studies have been devoted to improving
the accuracy and efficiency of the numerical techniques for simulating the behavior of such
systems [17, 31, 34, 36]. This paper presents the development of a new singularity-free
three-dimensional beam element capable of handling longitudinal, bending and torsional
deformations with a reduced number of degrees of freedom (DOF), compared to the orig-
inal spatial elements introduced in [37] and [45], based on the absolute nodal coordinate
formulation (ANCF) and Bishop frame.

Several formulations have been proposed for analyzing the nonlinear deformation of
beams in static and dynamic MBSs. The floating frame of reference [9], the incremental
finite element [29, 32], the large rotation vector [39], the geometrically exact beam [2, 17,
39–41] and the absolute nodal coordinate formulation [19, 28, 33, 37, 45] are the most
widely used. In the floating frame of reference method, two coordinate systems are associ-
ated with each flexible body; one capturing its rigid-body motion (i.e. large rotations and
displacements) and the other for its elastic deformations with respect to the first frame. This
approach leads to zero strains for a pure rigid-body motion and yields the same stiffness
matrix as that in the linear elasticity finite element method. However, it is limited to small
deformations and results in a nonlinear time-dependent mass matrix, centrifugal forces and
Coriolis forces in the dynamic equations.

The incremental finite element formulation, on the other hand, can model large elastic
deformations. In this technique, large rotations of elements are described incrementally by
a sequence of infinitesimal rotations and elements are configured using their nodal coordi-
nates and angles. This method leads to non-zero strains in the case of rigid-body rotations
which makes it inapplicable to the problems with geometric nonlinearities. The large ro-
tation vector approach can handle both large deformations and rotations by representing
the configuration of each element using their global nodal coordinates and rotations. This
method, however, leads to a time-dependent mass matrix and an excessive shear force in
the element’s cross-section [35]. The geometrically exact beam formulation is also able to
account for large deformations in beams, but similar to all other aforementioned methods re-
sults in a non-constant mass matrix that needs to be updated at each time-step of the solution
process [18].

The ANCF describes the configuration of finite elements by their nodal positions and
slopes in the global coordinate system. The ANCF has been extensively used for simulat-
ing beams, plates [11, 25] and solids [27], in static and dynamic scenarios and is capable
of describing rigid-body modes and solving large deformation problems. Unlike previous
methods, the ANCF results in a constant mass matrix for the elements and eliminates the
nonlinear terms of centrifugal and Coriolis forces in the equations of motion. These can
alleviate the computational costs associated with solving the dynamic equations and sig-
nificantly simplify the equations involved in the sensitivity analysis for optimizing MBSs
[15]. Also, constraint equations defining the coupling between the bodies can be expressed
in simple terms, thus facilitating the development of different joint types.

The original ANCF was proposed by Shabana for two-dimensional beam elements in
1996 [33]. Since then, it has gone through many improvements regarding its accuracy and
efficiency. A thorough review of the various ANCF-based beam and plate elements can be
found in [19]. A subtle and complex deformation mode in beam elements is the torsion
of their cross-section about their center-line and many techniques have been developed to
analyze it using the ANCF. Von Dombrowski [12] introduced torsional effects by includ-
ing parameterized rotation into the equations of motion. This, however, leads to a time-
dependent mass matrix for the elements, which compromises the aforementioned benefits
of having a constant mass matrix in the ANCF. In Yakoub and Shabana [45], Dmitrochenko



A low order, torsion deformable spatial beam element. . .

and Pogorelov [11] and Yoo et al. [46], different sets of DOF are used to represent the
configuration of three-dimensional shear and torsion deformable beam elements. These pro-
posals, like many other ANCF-based formulations, rely on the Serret–Frenet (SF) frame [8]
to define the transverse bending deformation and cross-sectional torsion (twist).

A notorious characteristic of the SF frame for spatial curves is that it is undefined at
inflection points (points with zero curvature) and straight segments of the curve [21]. Fur-
thermore, while sweeping through the inflection points, the SF frame exhibits unnecessary
rotation about the curve’s tangent vector that leads to an excessive torsional energy and a
sudden flip of this frame. Therefore, singularities may arise in solving the governing equa-
tions.

To cope with these issues, we propose a new beam element based on the ANCF that uses
the Bishop frame [7] for describing the beam kinematics. The Bishop frame has a sound
mathematical foundation in terms of the center-line’s equation and is well-defined even in
the case of a vanishing curvature, thus delivering a singularity-free formulation for char-
acterizing the beam configuration. This beam element can handle torsional deformations
and requires fewer number of DOF compared to its ANCF-based counterparts, which could
significantly reduce the relative computational costs associated with solving the dynamic
equations. Similar to the element proposed by Yoo et al. in [46], global nodal coordinates
and their slopes are utilized to define the center-line and the cross-sectional torsion is de-
termined by a rotation angle about the beam center-line. This beam element follows the
Euler–Bernoulli beam theory and has 7 DOF per node, thus 14 for its two-noded version,
and is named ANCF14.

The remainder of the paper is organized as follows. In the next section, the SF and Bishop
frames for spatial curves and their differences are explained. Using the definition of the
Bishop frame in Sect. 2, the kinematics of our newly proposed element are provided in
Sect. 3. Section 4 introduces the dynamic equations of ANCF14 and formulates its kinetic
and potential energies, as well as its mass matrix. Section 4 also derives the equations of
the elastic potential energy and its virtual work for ANCF14. Four numerical examples are
presented in Sect. 5, followed by concluding remarks in Sect. 6.

2 Coordinate systems for spatial curves

In the ANCF theory, the properties of the beam center-line fully determine the longitudinal
deformation of the beam. For the bending deformation and cross-sectional torsion, on the
other hand, a local coordinate system and its evolution between the two ends of the beam
are required. Therefore, it is of substantial importance to be able to consistently define a
local coordinate system along the beam and track its evolution to properly model the beam’s
elastic deformations.

For a spatially parameterized curve such as r(x), potentially infinitely many adapted
Cartesian coordinate systems can be defined. If their tangent, normal and bi-normal axes
are represented, respectively, by t(x), n(x) and b(x), considering their orthonormality, there
exist scalar functions κ1(x), κ2(x) and τ(x) such that [1]

t′(x) = κ1(x)n(x) + κ2(x)b(x),

n′(x) = −κ1(x)t(x) + τ(x)b(x),

b′(x) = −κ2(x)t(x) − τ(x)n(x),

(1)
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Fig. 1 The meaning of κ1, κ2
and τ for a frame

where a prime denotes differentiation with respect to x and

κ1(x) = t′(x) · n(x), κ2(x) = t′(x) · b(x), τ (x) = n′(x) · b(x). (2)

In a compact form, Eq. (1) can be written as

t′(x) = �(x) × t(x),

n′(x) = �(x) × n(x),

b′(x) = �(x) × b(x),

(3)

in which �(x) is the so-called Darboux vector of the frame, given by

�(x) = τ(x)t(x) − κ2(x)n(x) + κ1(x)b(x). (4)

As depicted in Fig. 1, κ1(x), κ2(x) and τ(x) describe the rates of rotation of the frame
about b(x), n(x) and t(x), respectively. In fact, κ1(x) and κ2(x) represent the curve’s curva-
tures and τ(x) indicates the frame’s twist (torsion) about the tangent vector.

Equation (3) is a system of differential equations describing the evolution of a frame
along the curve and depending on the conditions (i.e. constraints) imposed on it, different
coordinate systems can be generated for the curve. By construction, the SF and Bishop
frames are defined by assuming κ2(x) = 0 and τ(x) = 0, respectively. Heretofore, in the
ANCF-based beam models and perhaps most of the other beam theories, the SF frame has
been the standard choice, since it can be easily computed analytically through Eq. (1), using
solely the curve equation. For a three-dimensional parameterized curve (e.g. beam center-
line), the SF frame behaves unpredictably at inflection points where the second derivative
of the curve is zero [21]. The Bishop frame, however, is well-defined even for the straight
segments of the curve. In this section, these two frames are briefly introduced.

2.1 Serret–Frenet frame

Setting κ2(x) = 0 reduces Eq. (1) to

t′(x) = κ(x)n(x),

n′(x) = −κ(x)t(x) + τ(x)b(x),

b′(x) = −τ(x)n(x),

(5)
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Fig. 2 The evolution of (a) SF
frame and (b) Bishop frame
along a spatial curve

with κ(x) := κ1(x). The Darboux vector of the SF frame also simplifies to

�SF(x) = κ(x)b(x) + τ(x)t(x). (6)

For the SF frame, κ(x) and τ(x) are analytically defined by

κ(x) =
∥
∥r′(x) × r′′(x)

∥
∥

‖r′(x)‖3 ,

τ (x) =
(

r′(x) × r′′(x)
) · r′′′(x)

‖r′(x) × r′′(x)‖2 .

(7)

The three axes t(x), n(x) and b(x) can be computed using Eq. (5) through Eq. (7) as

t(x) = r′(x)

‖r′(x)‖ ,

b(x) = r′(x) × r′′(x)

‖r′(x) × r′′(x)‖ ,

n(x) = b(x) × t(x).

(8)

The normal and bi-normal vectors define the normal plane to the center-line. For Euler–
Bernoulli beams, this plane coincides with the cross-section. It is clear from Eq. (8) that the
bi-normal vector and, subsequently, the normal vector are undefined where r′′(x) = 0, thus
causing numerical problems when used for analyzing the beam deformations. Figure 2(a)
illustrates the evolution of the SF frame for a spatial curve. Notice that the frame is undefined
on the straight segment of the curve and swings abruptly while passing through this zero-
curvature region.

2.2 Bishop frame

The Darboux vector of the SF frame, Eq. (6), contains a component along the tangential
direction, which means that a coordinate system would twist if it is transported along a
curve according to this vector. The Bishop frame, on the other hand, provides a way to
move the frame with a uniform zero twist along the same curve. Hence, it leads to the most
geometrically natural evolution of the local frame [5]. To distinguish between this frame
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and the SF frame, let t(x), u(x) and v(x) correspond to the three axes of the frame at x. By
definition, in the Bishop frame τ(x) = 0 [7], resulting in the following differential equations
for this coordinate system:

t′(x) = κ1(x)u(x) + κ2(x)v(x),

u′(x) = −κ1(x)t(x),

v′(x) = −κ2(x)t(x),

(9)

Equation (9) can be further shortened to

t′(x) = �Bishop(x) × t(x),

u′(x) = �Bishop(x) × u(x),

v′(x) = �Bishop(x) × v(x).

(10)

The Bishop frame’s Darboux vector is thus expressed as

�Bishop(x) = κ1(x)v(x) − κ2(x)u(x). (11)

This vector has no tangential component and moves the frame along the curve with no
twist, as demonstrated in Fig. 2(b). The vector t(x) of the Bishop and SF frames are the
same and can be computed analytically utilizing Eq. (8). To find u(x) and v(x), Eq. (9)
needs to be solved. Doing so is not as straightforward as for the SF frame, so a number of
approximation techniques, such as the rotation method, the double reflection method and
the numerical integration method have been developed [44], the first one being the one most
widely used. In this paper, we adopt the rotation method proposed by Hanson and Ma [21].

2.2.1 Finding the Bishop frame along a spatial curve

Equation (9) is an initial-value problem and given an initial condition at x = 0, its solution
can be uniquely found along the curve. Suppose at x = 0, a Cartesian coordinate system
denoted by

{

t0,u0,v0
}

is defined and the goal is to find the Bishop frame at the desired
N locations along the curve. This is an admissible assumption, as for solving the dynamic
equations of beams, the physical quantities of interest (explained in the forthcoming sec-
tions) are integrated numerically along the center-line. Hence, having the Bishop frame only
at the integration points (e.g. Gaussian quadrature points) is adequate for the sake of this
study. The algorithm proceeds as described in Algorithm 1.

In fact, the Bishop frame is obtained through the successive alignment of the tangent
vectors along the beam. Of course, increasing the number of intermediate points would
improve the accuracy of the approximation. Figure 3 depicts the SF and Bishop frames
(employing respectively Eq. (8) and Algorithm 1) for two piecewise third-order polynomial
planar curves.

3 Kinematics of ANCF14

To account for the cross-sectional torsion, a consistent way of tracking the rotation of the
cross-section along the beam center-line is required. This can be achieved by leveraging
the Bishop frame. Depicted in Fig. 4, assume that at each x, a coordinate system called
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Algorithm 1: The Bishop frame for a selected number of points along a spatial curve

Input: Curve equation r(x),
{

t0,u0,v0
}

and the desired xi locations
Output: Bishop frame

{

ti ,ui ,vi
}

for i = 1, . . . ,N

1 for i = 1, . . . ,N do
2 ti ← r

′
(xi)/‖r

′
(xi)‖;

3 n ← ti−1 × ti ;
4 if ‖n‖ = 0 then
5 ui ← ui−1;
6 vi ← vi−1;
7 else
8 n ← n/‖n‖;
9 φ ← arccos

(

ti−1 · ti
)

;
10 ui ← ui−1 cos(φ) + (

n × ui−1
)

sin(φ) + n
(

n · ui−1
)

(1 − cos(φ));
11 vi ← vi−1 cos(φ) + (

n × vi−1
)

sin(φ) + n
(

n · vi−1
)

(1 − cos(φ));
12 end
13 end

the material frame is rigidly attached to the cross-section that rotates along with it about
the center-line. Suppose θ(x) denotes this rotation relative to the Bishop frame at x. The
material frame consists of an axis coinciding with t(x) and two orthonormal vectors y(x) and
z(x) perpendicular to t(x). Having the Bishop frame at x, y(x) and z(x) can be computed
by

y(x) = cos (θ(x))u(x) + sin (θ(x))v(x),

z(x) = − sin (θ(x))u(x) + cos (θ(x))v(x).
(12)

Similar to the SF and Bishop frames, the equations for evolving the material frame along
the center-line can be written as

t′(x) = �m(x) × t(x),

y′(x) = �m(x) × y(x),

z′(x) = �m(x) × z(x),

(13)

with �m(x) as the Darboux vector of this coordinate system

�m(x) = (

y′(x) · z(x)
)

t(x) − (

t′(x) · z(x)
)

y(x) + (

t′(x) · y
)

z(x)

= τm(x)t(x) − γ2(x)y(x) + γ1(x)z(x)
(14)

where γ1 and γ2 are the material frame’s curvatures and τm is its torsion about t. Following
Eq. (12) and Eq. (14), τm(x) reads

τm(x) = y′(x) · z(x)

= θ ′(x) − 2 θ ′(x) sin(θ(x)) cos(θ(x)) (u(x) · v(x))

− sin2(θ(x))
(

u(x) · v′(x)
)+ cos2(θ(x))

(

v(x) · u′(x)
)

.

(15)
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Fig. 3 (a) SF and (b) Bishop frames for two planar curves with an inflation point (top) and a straight line
segment (bottom)

Fig. 4 The material and Bishop
frames for a cross-section

Considering the orthonormality of vectors u(x) and v(x), and the fundamental characteristic
of the Bishop frame that is u(x) · v′(x) = v(x) · u′(x) = 0, the final expression for τm(x)

becomes

τm(x) = θ ′(x). (16)
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Fig. 5 The ANCF14 beam
element in the (a) undeformed
and (b) deformed configurations

Accordingly, θ(x) describes both the cross-sectional rotation (mechanical torsion) and
the coordinate system’s twist (geometrical torsion) and is taken as a nodal degree of freedom
for ANCF14, leading to the following time-dependent vector of nodal coordinates for this
element:

q(t) := [

rT
i ∂rT

i /∂x θi rT
j ∂rT

j /∂x θj

]T (17)

where i and j are the two nodes of the element, and r, ∂r/∂x and θ represent respectively
the global coordinates, global slopes and cross-sectional rotation about the center-line at
those nodes. An ANCF14 beam element is illustrated in Fig. 5.

Following Fig. 4, if the position of a point P on the cross-section in the material frame is
denoted by h := [

0 ȳ z̄
]T

, its global position rP(x) can be calculated through

rP(x, t) = r(x, t) + R(x, t)h = S(x)q(t) + R(x, t)h, (18)

in which R := [

t y z
]

represents the material frame and S is the time-independent shape
function matrix stated as

S(x) = [

s1I3 s2I3 03 s4I3 s5I3 03
]

,

s1 = 1 − 3(
x

l
)2 + 2(

x

l
)3, s2 = l

(

(
x

l
) − 2(

x

l
)2 + (

x

l
)3
)

,

s3 = 3(
x

l
)2 − 2(

x

l
)3, s4 = l

(

(
x

l
)3 − (

x

l
)2
)

,

(19)

with 03 := [

0 0 0
]T

and I3 the 3 × 3 identity matrix. In Eq. (19), l is the element’s
length in the undeformed configuration and x is measured from Node i in the undeformed
configuration. The rotation angle θ(x) is interpolated linearly from Node i to Node j via

θ(x, t) =
(

1 − x

l

)

θi + x

l
θj = S̄(x)q(t), (20)

leading to the following time-independent shape function matrix for the cross-sectional ro-
tation:

S̄(x) = [

0 0 0 0 0 0 1 − x/l 0 0 0 0 0 0 x/l
]

. (21)

4 Multibody dynamics governing equations

Due to Hamilton’s principle, the motion of a dynamic system can be determined by finding
the stationary values of its action integral. For a conservative constrained MBS the contin-
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uous action integral for time t ∈ [0, T ] is given by

S(q) =
∫ T

0
(L (q, q̇) − λ · g(q)) dt (22)

where L(q, q̇) is the MBS’s Lagrangian and g(q) ∈ R
m represents m holonomic constraint

(joints) equations between different bodies in the assembly. In this equation, q ∈ R
n and

q̇ ∈ R
n are the vectors of all DOF of the system and their time derivatives, respectively. Also,

λ ∈ R
m describes the vector of Lagrange multipliers associated with the m constraints. The

Lagrangian function L is the difference between the system’s kinetic energy T and potential
energy U

L(q, q̇) = T (q̇) − U(q). (23)

Taking the variation of Eq. (22) with respect to q, setting it to zero and incorporating the
constraint equations lead to the Euler-Lagrange equations governing the motion of MBSs
in space and time

d

dt

(
∂T

∂q̇

)

− ∂T

∂q
+ ∂U

∂q
+ ∂g

∂q

T

λ = 0,

g = 0.

(24)

In this equation, ∂U/∂q refers to the virtual work of the potential energies. The rest of
this section elaborates the kinetic and potential energy terms of Eq. (24) for ANCF14.

4.1 Kinetic energy of ANCF14

Referring to Eq. (18), the velocity vector of a point P on the cross-section in the inertial
(global) frame reads

drP

dt
= ṙP = ṙ + Ṙh. (25)

Using this equation, the kinetic energy of an ANCF14 element can be formulated as

TANCF14 = 1

2

∫

V

ρ
(

ṙT
P ṙP

)

dV = 1

2

∫

V

ρ
(

ṙTṙ + 2ṙTṘh + (

Ṙh
)T (

Ṙh
))

dV . (26)

Knowing that Ṙ = [

ṫ ẏ ż
]

and h = [

0 ȳ z̄
]T

, Eq. (26) becomes

TANCF14 = 1

2

∫

V

ρ
(

ṙTṙ + 2ṙTṘh + ȳ2ẏTẏ + 2ȳz̄ẏTż + z̄2żTż
)

dV . (27)

As the beam center-line passes through the cross-section’s centroid, applying Eq. (12) to
Eq. (27) results in

TANCF14 = 1

2

∫

V

ρ
(

ṙTṙ + θ̇2hTh
)

dV := Ttranslational + Trotational. (28)
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Therefore, the kinetic energy consists of translational and rotational energy terms associated
with the center-line motion and cross-sectional rotation, respectively. For an ANCF14 beam
element with length l, uniform cross-sectional area A, uniform second polar moment of area
J and density ρ, incorporating Eq. (18) and 20 into Eq. (28) leads to

TANCF14 = ρA

2
q̇T

[∫ l

0
STSdx

]

q̇

+ ρJ

2

[

θ̇i θ̇j

]
[∫ l

0

[
(1 − x

l
)2 x

l
(1 − x

l
)

x
l
(1 − x

l
) x

l

2

]

dx

]{

θ̇i

θ̇j

}

:= 1

2
q̇T MANCF14 q̇

(29)

with MANCF14 denoting the positive-definite mass matrix of ANCF14 written as

MANCF14 = ρl

420

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

156AI3

22AlI3 4Al2I3

0T
3 0T

3 140J sym.

54AI3 13AlI3 0 156AI3

−13AlI3 −3Al2I3 0 −22AlI3 4Al2I3

0T
3 0T

3 70J 0T
3 0T

3 140J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(30)

where I3 is the 3 × 3 identity matrix. There is no time-dependent terms in Eq. (30) and
thus the mass matrix of ANCF14 is constant and needs to be computed only once at the
beginning of the simulation. For a multibody system composed of only beams discretized
by ANCF14 elements and joints between them, Eq. (24) simplifies to

Mq̈ + ∂U

∂q
+ ∂g

∂q

T

λ = 0,

g = 0,

(31)

where M is the mass matrix of the entire multibody system.

4.2 Potential energy of ANCF14

The potential energy of an ANCF14 element is due to gravity and its elastic deformations,

UANCF14 := Ugravity + Uelastic. (32)

The gravity potential energy is the same as that of the standard ANCF-based beam elements

Ugravity = −
∫

V

ρ rTν dV = −
∫

V

ρ (Sq)T ν dV (33)



M. Ebrahimi et al.

with ν as the gravity vector. The virtual work of gravity for an ANCF14 therefore becomes

∂Ugravity

∂q
= −

∫

V

ρSTν dV = − 1

12
ρAl

[

6I3 lI3 03 6I3 −lI3 03
]T

ν. (34)

In the next section, the derivation of elastic energy for isotropic ANCF14 beam elements
considering the general case of large deformations is presented.

4.3 Elastic energy of ANCF14

Using the second Piola–Kirchhoff stress tensor σ and the Green–Lagrange strain tensor E,
the elastic energy of a deformable body is formulated as

Uelastic = 1

2

∫

V

σ : E dV = 1

2

∫

V

CE : E dV (35)

where C is the fourth-order stiffness tensor. For ANCF14, a simple expression for Uelastic

can be obtained as follows. In terms of the deformation gradient tensor F, the tensor E is
given by

E = 1

2

(

FTF − I
)

. (36)

Noting the material frame R = [

t y z
]

and considering Eq. (18), F for a point P on the
cross-section by definition is

F(x, ȳ, z̄) = [

∂rP/∂x ∂rP/∂ȳ ∂rP/∂z̄
]

= [

∂r/∂x + (∂R/∂x)h R (∂h/∂ȳ) R (∂h/∂z̄)
]

= [

r′ + R′h y z
]

,

(37)

where x is the cross-section’s distance along the center-line from Node i. Left-multiplying
F by RT and subtracting I from it leads to tensor D providing a measure of the beam’s
deformation

D(x, ȳ, z̄) = RTF − I := [

d1 d2 d3
]

= [

RT
(

r′ + R′h
)− X 03 03

]

= [

RT
(

r′ − t
)+ RTR′h 03 03

]

,

(38)

in which X := [

1 0 0
]T

. Note that D is different from the material (Lagrangian) dis-
placement gradient tensor defined as F − I. Also, D is not symmetric and so not the
same as the Biot strain tensor as well. The second and third columns of D correspond
to the cross-section’s deformation along the y and z axes of the material frame. Having
d2 = d3 = 03 implies that the cross-section remains orthogonal to the center-line and rotates
rigidly about it, complying with the Euler–Bernoulli beam theory assumed initially. Know-
ing h = [

0 ȳ z̄
]T

, t = [

t0 t1 t2
]T

, y = [

y0 y1 y2
]T

and z = [

z0 z1 z2
]T

, and
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based on Eq. (14) γ1 = t · y′, γ2 = t · z′ and τm = y · z′, vector d1 can be re-formulated to

d1 = RT
(

r′ − t
)+ RTR′h =

⎧

⎨

⎩

‖r′‖ − 1
0
0

⎫

⎬

⎭
+
⎡

⎢
⎣

t0 t1 t2

y0 y1 y2

z0 z1 z2

⎤

⎥
⎦

⎡

⎢
⎣

t ′0 y ′
0 z′

0

t ′1 y ′
1 z′

1

t ′2 y ′
2 z′

2

⎤

⎥
⎦

⎧

⎨

⎩

0
ȳ

z̄

⎫

⎬

⎭

=
⎧

⎨

⎩

‖r′‖ − 1
0
0

⎫

⎬

⎭
+
⎡

⎢
⎣

0 t · y′ t · z′

y · t′ 0 y · z′

z · t′ z · y′ 0

⎤

⎥
⎦

⎧

⎨

⎩

0
ȳ

z̄

⎫

⎬

⎭

=
⎧

⎨

⎩

‖r′‖ − 1
0
0

⎫

⎬

⎭
+
⎧

⎨

⎩

γ1ȳ + γ2z̄

τmz̄

−τmȳ

⎫

⎬

⎭
.

(39)

The first part of d1 describes the longitudinal deformations and the second part characterizes
bending and torsional deformations. Utilizing the derived tensor D, the Green–Lagrange
strain becomes

E = 1

2

(

FTF − I
)= 1

2

(

D + DT + DTD
)

. (40)

Upon putting Eq. (38) and Eq. (39) into Eq. (40), one finds

E :=
⎡

⎣

ε11 ε12 ε13

ε12 0 0
ε13 0 0

⎤

⎦ ,

ε11 = 1

2

((‖r′‖ − 1 + γ1ȳ + γ2z̄
)2 + τ 2

mȳ2 + τ 2
mz̄2 + 2

(‖r′‖ − 1 + γ1ȳ + γ2z̄
))

,

ε12 = 1

2
τmz̄ , ε13 = −1

2
τmȳ.

(41)

The expression for ε11 suggests a coupling between the longitudinal, transverse bending
and torsional deformations. This dependence arises from the quadratic term DTD in Eq. (40).
It is well known that, if the deformations are small and within the linear elastic regime, this
term can be neglected [36], and ε11 simplifies to εsmall

11 as

εsmall
11 = ‖r′‖ − 1 + γ1ȳ + γ2z̄, (42)

which results in

ε11 = εsmall
11 + 1

2

((

εsmall
11

)2 + τ 2
m

(

ȳ2 + z̄2
))

. (43)

Putting Eq. (41) into Eq. (35), the total elastic energy of an ANCF14 element reads

Uelastic = 1

2

∫

V

Eε2
11 + 4Gε2

12 + 4Gε2
13 dV (44)

where E is the Young modulus and G denotes the shear modulus. Provided these conditions
for the cross-section: i) it is uniform along the element ii) the origin of the material frame
coincides with its centroid, and iii) either y or z is its symmetry axis, the elastic energy for
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small strains reduces to

Uelastic

∣
∣
∣
small

= EA

2

∫ l

0

(‖r′‖ − 1
)2

dx

+ EIz

2

∫ l

0
γ 2

1 dx + EIy

2

∫ l

0
γ 2

2 dx + GJt

2

∫ l

0
τ 2
m dx

(45)

in which Iy and Iz are the cross-section’s second moments of area about y and z; and Jt is the
torsional constant of the beam’s cross-section. Under the same conditions set for deriving
Eq. (45) and assuming the fourth moments of area

∫

A

ȳ4 dA ≈ 0,

∫

A

z̄4 dA ≈ 0,

∫

A

ȳ2z̄2 dA ≈ 0, (46)

the elastic potential energy for the general case of large deformations yields

Uelastic = EA

8

∫ l

0

(‖r′‖2 − 1
)2

dx

+ EIz

4

∫ l

0
γ 2

1

(

3‖r′‖2 − 1
)

dx

+ EIy

4

∫ l

0
γ 2

2

(

3‖r′‖2 − 1
)

dx

+ GJt

2

∫ l

0
τ 2
m dx + EJt

4

∫ l

0
τ 2
m

(‖r′‖2 − 1
)

dx.

(47)

This equation shows that in large deformation cases, the longitudinal, bending and torsional
deformations are strongly coupled. The derivation of Eq. (47) is detailed in Appendix A.
Both Eq. (45) and Eq. (47) are in the so-called structural mechanics-based formulation
[26], [39].

4.4 Virtual work of elastic energy

The virtual work of elastic energies (i.e. the internal elastic forces) is the derivative of the
elastic energy with respect to the element’s state variables. Thus, employing Eq. (43) and
Eq. (44) yields

∂Uelastic

∂q
=
∫

V

(

Eε11
∂ε11

∂q
+ 4Gε12

∂ε12

∂q
+ 4Gε13

∂ε13

∂q

)

dV

= E

∫

V

ε11

(

(1 + εsmall
11 )

∂εsmall
11

∂q
+ τm

(

ȳ2 + z̄2
) ∂τm

∂q

)

dV

+ G

∫

V

(

τm

(

ȳ2 + z̄2
) ∂τm

∂q

)

dV .

(48)

Based on Eq. (42)

∂εsmall
11

∂q
= 1

‖r′‖r′T ∂r′

∂q
+ ȳ

∂γ1

∂q
+ z̄

∂γ2

∂q
(49)
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and using the assumptions made for Eq. (45), Eq. (48) for small strains reduces to

∂Uelastic

∂q

∣
∣
∣
small

= E

∫

V

(

εsmall
11

∂εsmall
11

∂q

)

dV + G

∫

V

(

τm

(

ȳ2 + z̄2
) ∂τm

∂q

)

dV

= EA

∫ l

0

[(

1 − 1

‖r′‖
)

r′T ∂r′

∂q

]

dx

+ EIz

∫ l

0
γ1

∂γ1

∂q
dx + EIy

∫ l

0
γ2

∂γ2

∂q
dx + GJt

∫ l

0
τm

∂τm

∂q
dx,

(50)

in which the terms involving EA, EIz, EIy and GJt account for the virtual work of the
elastic energies (internal forces), respectively associated with axial, bending about local y
axis, bending about local z axis and torsional deformations. For large deformations Eq. (47),
∂Uelastic/∂q can be calculate in a similar manner as

∂Uelastic

∂q
= EA

2

∫ l

0

[
(‖r′‖2 − 1

)

r′T ∂r′

∂q

]

dx

+ EIz

2

∫ l

0

[
(

3‖r′‖2 − 1
)

γ1
∂γ1

∂q
+ 3γ 2

1 r′T ∂r′

∂q

]

dx

+ EIy

2

∫ l

0

[
(

3‖r′‖2 − 1
)

γ2
∂γ2

∂q
+ 3γ 2

2 r′T ∂r′

∂q

]

dx

+ EJt

2

∫ l

0

[
(‖r′‖2 − 1

)

τm
∂τm

∂q
+ τ 2

mr′T ∂r′

∂q

]

dx

+ GJt

∫ l

0
τm

∂τm

∂q
dx,

(51)

which again demonstrates the strong coupling between the longitudinal, bending and tor-
sional deformations, as well as their associated internal forces, in large deformations.

Both of Eq. (50) and Eq. (51) are nonlinear in terms of q, as is the case for ∂Uelastic/∂q
of other ANCF-based beam elements, and numerical integration methods (e.g. Gaussian
quadrature) can be employed to compute them. To do so, however, ∂r′/∂q, ∂γ1/∂q, ∂γ2/∂q
and ∂τm/∂q at the integration points are required. This can be accomplished utilizing the
definition of the material frame provided in Sect. 3. For the sake of brevity, the details are
laid out in Appendix B. Once the virtual work of elastic energies is known, adopting an
appropriate time-stepping technique (e.g. Runge–Kutta, geometric variational integrators
[24], Newmark) solves the equations of motion in Eq. (31).

5 Numerical examples

In order to validate the proposed beam element four numerical examples are provided.
As capturing the torsional deformations is one the main promises of this proposal, exam-
ples in which torsion plays a major role are selected. An Autodesk’s proprietary multibody
static/dynamic library called Momentum has been used to run the numerical experiments.
To solve the equations of motion, a geometric variational integrator introduced by Leyen-
decker et al. [24], also detailed in [15], is employed. A Newton–Raphson scheme is used to
solve the nonlinear equations that arise during the solution process.
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To show the accuracy of ANCF14 results, they are compared against the theoretical re-
sult in the first example and against the numerical results of different beam formulations
provided in [4] and [45] for the other three benchmarks. In [4] a set of standard numerical
tests for validating beam finite elements in multibody dynamic problems are provided. In
that study, the performance of different beam models [3, 6, 10, 20, 22, 23, 26, 42] are re-
ported in the presented tests which serves as a proven reference to determine the accuracy
of the results produced by ANCF14.

To extract the data from the plots presented in [4], an open-source tool called WebPlot-
Digitizer [30] is used. As analyzing the computational efficiency of different beam elements
strongly depends on their implementation from the programming perspective and the ma-
chine used to run the experiments, it does not seem plausible to compare their computational
efficiency utilizing their simulation time reported in other studies. Nevertheless, to demon-
strate ANCF14’s efficiency, we have implemented the two-noded version of the 3D ANCF
element with 24 DOF introduced in [45], referenced hereafter as ANCF24, and their sim-
ulation times are compared against each other. Note that ANCF24 can also account for the
cross-sectional shear deformations and the comparison of its computational efficiency with
that of ANCF14 in this study is solely to reflect the effect of using extra degrees of free-
dom in the simulation time. The computer used to execute the numerical tests is a Windows
machine with an Intel Xeon E5 CPU and 32 GB of RAM.

5.1 Helical spring

The goal of the first test, inspired by [16], is to compare the linear stiffness k of a helical
spring with a circular cross-section modeled by ANCF14 against its theoretical value [38]
approximated through

k ≈ G d4

8NaD3
(52)

where G, d , D and Na are the shear modulus, wire diameter, mean spring diameter and
number of active coils in the spring, respectively. In this example, G = 80 GPa, d = 2 mm,
D = 40 mm and Na = 1.5, thus leading to k ≈ 1.667 N/mm. The undeformed geometry of
this spring, illustrated in Fig. 6, is defined as

r(x) =
⎧

⎨

⎩

0.05x

0.02 a(x) cos(8πx)

0.02 a(x) sin(8πx)

⎫

⎬

⎭
(53)

with

a(x) =

⎧

⎪⎨

⎪⎩

0.5 (1 + tanh (50x − 3)) 0 ≤ x < 0.15,

1 0.15 ≤ x ≤ 0.35,

0.5 (1 + tanh (22 − 50x)) 0.35 < x ≤ 0.5.

(54)

The spring is connected to the ground by a spherical joint at Node A and is pulled along
the positive X axis from Node B, as depicted in Fig. 6. To ensure the discretization (mesh)
independency, the test is run using 10, 15, 20 and 25 straight ANCF14 elements assuming
large deformations. The force–displacement diagram for Node B is presented in Fig. 7.
Accordingly, by increasing the number of elements, the linear spring behavior converges
toward the theoretical prediction. The curves for 20 and 25 elements coincide, and so the
simulated behavior is shown to be mesh-independent for 20 elements onward. Running the
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Fig. 6 The undeformed geometry of the spring

Fig. 7 The force–displacement diagram of Node B

test with a significantly higher number of elements (e.g. 100) ensured no shear locking
issue, as expected, since the cross-sectional shear deformations are not taken into account
in ANCF14. Note that the spring behaves linearly at first and as Node B is further pulled, its
force–displacement relationship becomes nonlinear. The computed linear spring stiffness
using 20 elements is 1.674 N/mm, which coincides almost perfectly with its theoretical
value.
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Fig. 8 The evolution of absolute relative error in X-displacement of Node B

The same results are achieved using 20 ANCF24 elements, however, with 105 degrees
of freedom more than 20 ANCF14 elements. This difference in the number of degrees of
freedom leads to about 55 percent increase in the simulation time for ANCF24.

Figure 8 shows the evolution of absolute relative error in X-displacement of Node B
versus the number of elements used to discretize the spring. The ground truth displacement
is computed using the theoretical value of linear spring constant. As illustrated, the error
reduces almost quartically (≈ 3.7) by increasing the number of elements.

5.2 Princeton beam experiment

The Princeton beam experiment is the quasi-static analysis of a cantilever beam with a
rectangular cross-section undergoing geometric nonlinearities (large deformations and rota-
tions) subject to a point load applied to its tip [13, 14]. Due to the complex behavior of the
beam, this problem has become a standard benchmark to study the accuracy of the newly
developed beam models for multibody dynamic applications.

The experiment set-up is illustrated in Fig. 9. The beam is made of T7075 aluminum
with Young’s modulus E = 71.7 GPa and Poisson’s ratio ν = 0.31. It is clamped to a rotor
at Point A and a downward force is applied at Point B. The experiment studies the tip
displacements along the local y and z axes, as well as its cross-section’s twist for different
angles φ measured with respect to the global Z axis. The test is run for φ ∈ [0◦,90◦] with
15◦ increments subject to three different load magnitudes P1 = 4.448 N, P2 = 8.896 N
and P3 = 13.345 N. The beam has a length of L = 0.5080 m, and a rectangular cross-
section with thickness t = 3.2024 mm, height of h = 12.3770 mm and torsion constant
Jt = 113.3872 mm4.

The beam is discretized using 8 ANCF14 elements with the large deformation assump-
tion. Figures 10, 11, 12 compare our simulation results with those of several different multi-
body solvers (beam models) reported in [4] and 8 ANCF24 elements. As can be seen, the re-
sults are in excellent agreement. For this test, the simulation time for ANCF14 and ANCF24
elements are approximately 1.21 sec and 1.92 sec, respectively.
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Fig. 9 The set-up of the
Princeton beam experiment

Fig. 10 The tip displacement
along the local y axis of the
Princeton experiment for
different beam angles

In Figs. 10–12, the experimental results are also presented. Accordingly, there is a small
discrepancy between them and those of ANCF14, ANCF24 and those reported in Bauchau
et al. [4], particularly for the cross-section’s twist. This may be attributed to one or a com-
bination of these three reasons: i) the linear interpolation of the twist angle in ANCF14,
ii) the Euler–Bernoulli beam assumption and ignoring the cross-section’s shear, especially
in large deformations and iii) the difference between the properties used for the numerical
analysis and those to conduct the physical testing. Considering the insignificant differences
and the agreement between the outputs of ANCF14 and all the other solvers (formulations),
the latter can be the most plausible possibility.

5.3 Unbalanced rotating shaft

Introduced in [4], this benchmark seeks to study the nonlinear dynamic behavior of an unbal-
anced rotating shaft subject to a downward gravity g = 9.81 m/s2 and a prescribed angular
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Fig. 11 The tip displacement
along the z axis of the Princeton
experiment for different beam
angles

Fig. 12 The tip’s cross-sectional
twist of the Princeton experiment
for different beam angles

velocity �(t) as

�(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0.4 ω (1 − cos (2πt)) 0 ≤ t < 0.5,

0.8 ω 0.5 ≤ t < 1,

0.2 ω (5 − cos (4π(t − 1))) 1 ≤ t < 1.25,

1.2 ω 1.25 ≤ t ≤ 2.5,

(55)

where ω = 60 rad/s, close to the first bending natural frequency of the shaft (about 56.7
rad/s). The shaft is deformed initially at time t = 0 under the effect of gravity. It is
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Fig. 13 The set-up of the
unbalanced rotating shaft
benchmark

made of steel with Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3 and density
ρ = 7800 kg/m3. The shaft is L = 6 m long and has a hollow circular cross-section with in-
ner radius ri = 0.045 m and outer radius ro = 0.05 m. It is connected to the ground through
a revolute joint at End A and a cylindrical joint at End B. At the shaft’s mid-span, Point
C, a rigid disk is welded whose center is d = 0.05 m above the shaft’s center-line. The
disk’s mass m and its diagonal inertial tensor Idisk (in the inertial frame) are 70.573 kg
and diag(2.0325, 1.0163, 1.0163) g m2, respectively. The problem set-up is demonstrated in
Fig. 13.

Figure 14 shows the displacement of Point C along the global Y and Z axes in time. In
both plots, the displacement amplitudes start amplifying at around time t ≈ 1.1 s, when the
angular velocity passes the first bending natural frequency (Eq. (55)). At this time instance,
the shaft’s behavior transitions from sub-critical to super-critical. Figure 15 pictures the
evolution of θA − θC with time, where θA and θC are the cross-section’s rotation at End A
and Point C (Eq. (20)). Clearly, its behavior changes distinctly when passing the critical �.

In Fig. 14, the numerical results of using ANCF24 and those reported in Bauchau et
al. [4] are presented as well. Accordingly, ANCF14 results are in great agreement with
those of other formulations. For this benchmark, 6 ANCF14 elements (thus 7 nodes) with
the large deformation assumption suffice to guarantee mesh-independent results. As each
node of ANCF14 has 7 DOF, the total number of DOF used is 49. On the other hand,
using 6 ANCF24 elements leads to the total 168 DOF causing about 63 percent longer
simulation time. For more complex problems, this difference could be even more significant,
thus making ANCF14 more computationally advantageous.

In order to investigate the importance of assuming large deformations for this example, it
is run using 6 ANCF14 elements with the small deformation assumption as well. Figure 16
compares the simulation results for the two cases. As can be seen, at the beginning where
the shaft’s angular velocity is below its critical value and the displacements are small, the
results coincide. However, as the shaft accelerates and the displacements grow, the results
start to deviate.

5.4 Lateral torsional buckling of a slender beam

When a beam is subject to a pure transverse load and bends, either its top or bottom face or-
thogonal to the load undergoes compression depending on the direction of the applied load.
If the load is greater than a certain limit and the beam is unrestrained laterally, the com-
pressed face would buckle locally and due to the tension of the other face, the cross-section
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Fig. 14 The displacement of Point C in time (a) along the Y axis (b) along the Z axis

would twist about the beam’s longitudinal axis, leading to both lateral and torsional defor-
mations [43]. This phenomenon is called lateral torsional buckling and must be accounted
for in the design stage, as it considerably reduces the structure’s capacity in supporting the
applied loads.

Considering its importance and the complex behavior of a beam under such circum-
stances, the last benchmark is dedicated to studying this event. Originally introduced in [4]
and depicted in Fig. 17, in this example, the tip of a slender beam is subject to an upward
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Fig. 15 The evolution of θA − θC with time

Table 1 The values of
parameters in the lateral torsional
buckling test

Parameter Value Unit

Young’s Modulus E 73 GPa

Poisson’s ration ν 0.3

Density ρ 2680 kg/m3

Beam’s length L 1.0 m

Height of beam’s cross-section h 0.01 m

Width of beam’s cross-section w 0.001 m

Beam’s torsion constant Jtb 3.12 × 10−8 m4

Link’s length Ll 0.25 m

Radius of link’s cross-section rl 0.012 m

Link’s torsion constant Jtl 3.26 × 10−8 m4

Crank’s length Lc 0.05 m

Radius of crank’s cross-section rc 0.024 m

Crank’s torsion constant Jtc 5.21 × 10−8 m4

Offset d 10−4 m

displacement applied through a link-crank mechanism. The beam has a length of L and a
uniform rectangular cross-section with a height h and width w. It is clamped to the ground
from End A and is connected to the link via a rigid connection and a spherical joint at End
B. The rigid connection is off by a small distance d from the beam’s center-line in order
to trigger the torsional buckling. The link and crank have uniform circular cross-sections
with radii rl and rc, respectively. Their lengths are Ll and Lc. All components are made of
aluminum with Young’s modulus E, Poisson’s ration ν and density ρ. The values of the
parameters are provided in Table 1. The crank is connected to the link and a rotor through
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Fig. 16 The displacement of Point C in time for large and small deformation assumptions (a) along the Y
axis (b) along the Z

revolute joints. The following rotation about the global Y axis is prescribed to the crank:

φY(t) =
{

0.5π (1 − cos (πt/T )) 0 ≤ t < T

π T ≤ t ≤ 0.5
(56)

where T = 0.4 s. Figure 18 compares the plot of the beam’s mid-span (Point P) displacement
along the global Y axis and those reported in [4] and obtained by ANCF24. Accordingly,
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Fig. 17 The set-up of the lateral torsional buckling of a slender beam benchmark

Fig. 18 The displacement of Point P in time along the Y axis

the results are in excellent agreement. In terms of simulation time, the test with ANCF14
elements runs approximately 51 percent faster than the one with ANCF24 elements. The
evolution of the cross-section’s rotation (θP) at Point P is illustrated in Fig. 19. In this aspect
too, ANCF14 can match the results of ANCF24 and [4].

Fig. 20 shows the displacement of Point P along the global Z axis in time. As can be ob-
served, at the beginning of the process, the beam’s mid-span displacement is only along the
Z axis and the cross-section has no twist at that location. However, at about time t ≈ 0.12 s
when the displacement threshold has reached, the beam buckles and starts simultaneously
twisting and moving laterally along Y and Z axes. Figure 21 depicts the beam at different
φY. Note that the test is run assuming large deformations.
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Fig. 19 The cross-section’s rotation θP in time

Fig. 20 The displacement of Point P in time along the Z axis

To show the significance of including torsion in the overall behavior of the beam, this
problem is run disregarding the torsional effects. Figure 22 plots the displacement of Point P
with this assumption against the results obtained previously. Note that the behaviors are sub-
stantially different. Since the torsional deformations are ignored, the beam does not buckle,
so it has no displacement along the Y axis throughout the simulation. The displacement pro-
file along the Z axis suggests a stable behavior with no oscillations and excessive movements
throughout the entire simulation.
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Fig. 21 The beam at different φY in the lateral torsional buckling test

Fig. 22 The displacement of Point P with and without including torsional effects
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6 Conclusion

In this paper, we have proposed a new low order Euler–Bernoulli beam element capable of
handling torsional deformations leveraging the absolute nodal coordinate formulation and
the Bishop frame. This new element is called ANCF14 and has two nodes, each with 7 DOF
that are global nodal coordinates and slopes as well as their cross-sectional rotation about
the center-line. To describe its elastic deformations, the Bishop instead of the Serret–Frenet
frame is chosen. It is shown that the former, unlike the latter, is always well-defined along
the beam, thus leading to a singularity-free model even in the zero-curvature segments of
the beam. Using the Bishop frame, the equations for ANCF14’s elastic energy and its virtual
work for small and large deformations are presented.

To assay the newly developed element, four numerical examples are provided. In all
these examples, the beams under study are subject to a combination of longitudinal, trans-
verse bending and torsional deformations, and failing to capture them accurately would com-
pletely change their ultimate simulated behavior. It is shown that the results of employing
ANCF14 are in excellent agreement with the theoretical and numerical results of other beam
formulations reported in similar studies. From the computational efficiency standpoint, it is
shown that for all the provided numerical examples the simulation times using ANCF14 are
considerably (about 50 percent) lower than those with ANCF24 elements. This difference is
due to the fewer degrees of freedom of ANCF14 compared to ANCF24 elements which is
of more computational significance for larger problems.

For the sake of brevity, in this paper, the beam is considered straight in its undeformed
configuration. This is not, however, a limiting assumption and the proposed element can
be easily extended to handle initially curved beams with some minor modifications, namely
considering x in Fig. 5 as the arc length from Node i rather than the Euclidean distance from
it. Also, ANCF14 is considered two-noded. It is straightforward to create a three-noded
version of it. This would enable the quadratic interpolation of the cross-sectional rotation
which may provide a more accurate analysis of torsional deformations.

The application of beam-like components in engineering structures is ubiquitous. The
main intent of modeling these three-dimensional parts by beam finite elements is to some-
what alleviate the computational burden of simulating large scale real-world problems. This,
however, comes with a compromise in the quality of their numerical solutions. Thus, in
developing new element models, it is crucial to take into account both the computational
efficiency and numerical accuracy at the same time. The current work demonstrates that
ANCF14 can be beneficial in both regards.
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Appendix A

Putting Eq. (41) into Eq. (44) and defining ε̄ := ‖r′‖2 − 1 we have

Uelastic = 1

2

∫

V

Eε2
11 + 4Gε2

12 + 4Gε2
13 dV = 1

2

∫

V

Eε2
11 + Gτ 2

m

(

ȳ2 + z̄2
)

dV

= E

8

∫

V

[

ε̄ + (γ1ȳ + γ2z̄)
2 + 2‖r′‖ (γ1ȳ + γ2z̄) + τ 2

m

(

ȳ2 + z̄2
)]2

dV

+ G

2

∫

V

τ 2
m

(

ȳ2 + z̄2
)

dV
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= E

8

∫

V

[

ε̄2 + (γ1ȳ + γ2z̄)
4 + 4‖r′‖2 (γ1ȳ + γ2z̄)

2 + τ 4
m

(

ȳ2 + z̄2
)2
]

dV (57)

+ E

4

∫

V

[

ε̄ (γ1ȳ + γ2z̄)
2 + 2ε̄‖r′‖ (γ1ȳ + γ2z̄) + ε̄τ 2

m

(

ȳ2 + z̄2
)]

dV

+ E

4

∫

V

[

2‖r′‖ (γ1ȳ + γ2z̄)
3 + τ 2

m

(

ȳ2 + z̄2
)

(γ1ȳ + γ2z̄)
2
]

dV

+ E

4

∫

V

[

2‖r′‖τ 2
m

(

ȳ2 + z̄2
)

(γ1ȳ + γ2z̄)
]

dV + G

2

∫

V

τ 2
m

(

ȳ2 + z̄2
)

dV .

Provided we have the same assumptions as those considered for deriving Eq. (45) and as-
suming the fourth moments of area

∫

A

ȳ4 dA ≈ 0,

∫

A

z̄4 dA ≈ 0,

∫

A

ȳ2z̄2 dA ≈ 0, (58)

Equation (57) reduces to

Uelastic = E

8

∫

V

ε̄2 dV + G

2

∫

V

τ 2
m

(

ȳ2 + z̄2
)

dV

+ E

4

∫

V

[

ȳ2γ 2
1

(

2‖r′‖2 + ε̄
)+ z̄2γ 2

2

(

2‖r′‖2 + ε̄
)+ ε̄τ 2

m

(

ȳ2 + z̄2
)]

dV

= E

8

∫

V

(‖r′‖2 − 1
)2

dV

+ E

4

∫

V

ȳ2γ 2
1

(

3‖r′‖2 − 1
)

dV + E

4

∫

V

z̄2γ 2
2

(

3‖r′‖2 − 1
)

dV

+ E

4

∫

V

(

ȳ2 + z̄2
)

τ 2
m

(‖r′‖2 − 1
)

dV + G

2

∫

V

(

ȳ2 + z̄2
)

τ 2
m dV

= EA

8

∫ l

0

(‖r′‖2 − 1
)2

dx

+ EIz

4

∫ l

0
γ 2

1

(

3‖r′‖2 − 1
)

dx + EIy

4

∫ l

0
γ 2

2

(

3‖r′‖2 − 1
)

dx

+ EJt

4

∫ l

0
τ 2
m

(‖r′‖2 − 1
)+ GJt

2

∫ l

0
τ 2
m dx dx.

(59)

Appendix B

Based on Eq. (18), one has r = Sq and consequently

∂r′

∂q
= S′. (60)
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Algorithm 2: Calculating ∂u/∂q and ∂v/∂q of the Bishop frame for a selected number
of points along a spatial curve

Input: Curve equation r(x),
{

t0,u0,v0
}

and the desired xi locations
Output: ∂ui/∂q, ∂vi/q for i = 1, . . . ,N

1 for i = 1, . . . ,N do
2 ti ← r

′
(xi)/‖r

′
(xi)‖;

3 n ← ti−1 × ti ;
4 if ‖n‖ = 0 then
5 ∂ui/∂q ← ∂ui−1/∂q;
6 ∂vi/∂q ← ∂vi−1/∂q;
7 else
8 n̂ ← n/‖n‖;
9 Compute ∂ti/∂q from Eq. (63) ;

10 ∂n/∂q ← ∂ti−1/∂q × ti + ti−1 × ∂ti/∂q;
11 ∂n̂/∂q ← (1/‖n‖) (I − nnT/‖n‖2

)

(∂n/∂q);
12 φ ← arccos

(

ti−1 · ti
)

;

13 ∂φ/∂q ← −
(

ti
T (

∂ti−1/∂q
)+ ti−1T (

∂ti/∂q
))

/
√

1 − ti−1 · ti ;

14 ui ← ui−1 cos(φ) + (

n̂ × ui−1
)

sin(φ) + n̂
(

n̂ · ui−1
)

(1 − cos(φ));
15 vi ← vi−1 cos(φ) + (

n̂ × vi−1
)

sin(φ) + n̂
(

n̂ · vi−1
)

(1 − cos(φ));
16 Compute ∂ui/∂q and ∂vi/∂q accordingly;
17 end
18 end

Also using Eq. (16) and Eq. (20), ∂τm/∂q can be analytically calculated everywhere along
the element through

∂τm

∂q
= ∂θ ′

∂q
= S̄′. (61)

According to Eq. (14), ∂γ1/∂q and ∂γ2/∂q are

γ1 = t′ · y =⇒ ∂γ1

∂q
= yT ∂t′

∂q
+ t′T ∂y

∂q
,

γ2 = t′ · z =⇒ ∂γ2

∂q
= zT ∂t′

∂q
+ t′T ∂z

∂q
.

(62)

Knowing t = r′/‖r′‖, for any point on the center-line, t′ and ∂t′/∂q can be analytically
computed via

∂t
∂q

= 1

‖r′‖
(

I − r′r′T

‖r′‖2

)
∂r′

∂q
,

∂t′

∂q
= 1

‖r′‖
(

I − r′r′T

‖r′‖2

)(
∂r′′

∂q
− r′Tr′′

‖r′‖2

∂r′

∂q

)

+ 1

‖r′‖3

(
r′Tr′′

‖r′‖3
r′r′T − r′′r′T − r′r′′T

)
∂r′

∂q
,

(63)
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where r′ = S′q and r′′ = S′′q. Using Eq. (12), ∂y/∂q and ∂z/∂q become

∂y
∂q

= −∂θ

∂q
sin(θ)u + ∂θ

∂q
cos(θ)v + cos(θ)

∂u
∂q

+ sin(θ)
∂v
∂q

,

∂z
∂q

= −∂θ

∂q
cos(θ)u − ∂θ

∂q
sin(θ)v − sin(θ)

∂u
∂q

+ cos(θ)
∂v
∂q

,

(64)

in which u, v are obtained employing Algorithm 1. Their derivatives ∂u/∂q and ∂v/∂q,
therefore, can be found by Algorithm 2.

Here ∂ti−1/∂q× ti means the cross-product of each column of ∂ti−1/∂q by ti from right;
and ti−1 × ∂ti/∂q is the cross-product of ti−1 by each column of ∂ti/∂q from left.
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