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Figure 1. Distribution of survey responses when asked to “rate the blackness” of 50 shades of grey, spread at perceptually equal 
distances between white and black. The only difference between the surveys is the visual presentation of the slider (on the left), 
shown with no tick marks, or 5 tick marks. Arrows on the x-axis of the graphs indicate the locations of the tick marks. 

ABSTRACT 
Sliders and Visual Analogue Scales (VASs) are input 
mechanisms which allow users to specify a value within a 
predefined range. At a minimum, sliders and VASs typically 
consist of a line with the extreme values labeled. Additional 
decorations such as labels and tick marks can be added to 
give information about the gradations along the scale and 
allow for more precise and repeatable selections. There is a 
rich history of research about the effect of labelling in 
discrete scales (i.e., Likert scales), however the effect of 
decorations on continuous scales has not been rigorously 
explored. In this paper we perform a 2,000 user, 250,000 trial 
online experiment to study the effects of slider appearance, 
and find that decorations along the slider considerably bias 
the distribution of responses received. Using two separate 
experimental tasks, the trade-offs between bias, accuracy, 
and speed-of-use are explored and design recommendations 
for optimal slider implementations are proposed. 

INTRODUCTION 
Rating scales are a commonly used tool for collecting 
responses from subjects and participants in many fields of 
research, including psychology, human-computer 
interaction, medicine, and sociology. One of the most widely 
used approaches for survey research is the Likert scale [22], 
where a participant chooses a response from a discrete 
number of choices along a single-dimension linear scale.  

An alternative to the Likert scale is the visual analogue scale 
(VAS), in which respondents specify their response by 
indicating a position along a continuous line between two 
end points [16]. Continuous sliders have the implicit 
assumption that users are equally likely to make their 
selection at any point along the line. Prior work has shown 
that VASs provide some advantages over categorical scales 
[11,12,31]. In particular, the continuous data collected with 
VASs can be used for a greater number of statistical tests and 
goodness of fit tests may be more powerful [11]. 

Recently, major attention has been given to web-based 
research methods and data collection [17,21]. Online survey 
systems [39,40], as well as crowd-sourcing systems [41], 
allow researchers to rapidly recruit and collect responses to 
survey questions and allow for the use of multimedia stimuli. 
VASs are commonly used for such research methods, and it 
has thus become important to understand the design and 
characteristics of VASs. Given the volume of responses 
which web-based surveys can produce, it is important that 
such responses are collected efficiently and without any 
artificial bias from the design of the response mechanism. In 
particular, it has been shown that subtle changes in the layout 
and appearance of rating scales can affect responses [20,30]. 

However, little research has been conducted on how the 
visual design and mechanics of VASs may impact the 
collection of responses. More specifically, the presence of 
decorations such as labels and tick marks can be added to 
give information about the gradations along the scale and 
allow for more precise and repeatable selections [35]. While 
such visual attributes have been studied in detail for the 
labelling of discrete scales [38], their impact on VASs, and 
their effect on the distribution of collected responses has not 
been rigorously examined. 

N
u
m
 
R
a
t
i
n
g
s

N
u
m
 
R
a
t
i
n
g
s

White Black

No Ticks

N
u
m
 
R
a
t
i
n
g
s

N
u
m
 
R
a
t
i
n
g
s

White Black

5 Ticks

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org. 
CHI'16, May 07 - 12, 2016, San Jose, CA, USA 
Copyright is held by the author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-3362-7/16/05…$15.00  
DOI: http://dx.doi.org/10.1145/2858036.2858063 



2 

Our work explores if and how visual design variations of 
VASs impacts the results obtained from web-based 
collection systems. We perform a 2,000 user, 250,000 trial 
Mechanical Turk experiment, to study the impact of slider 
decorations on VAS responses. We test a number of design 
variations that involve the mark-up of the slider scale with 
tick marks, labels, and other decorations. We provide a 
thorough analysis of the collected results, which help 
identify designs which should be avoided due to the induced 
bias in responses. Furthermore, through the use of two 
separate experimental tasks, we are able to analyze the trade-
offs between bias, accuracy, and speed-of-use. 

Our results show that the presence of decorations along the 
slider (and in particular tick marks) can considerably bias the 
distribution of responses received. However, the use of 
decorations can favourably increase precision and reduce 
response time. Our analysis of the trade-offs of these factors 
lead us to a grounded discussion on design recommendations 
for optimal slider implementations. In particular, a banded 
slider design was shown to outperform the traditional 
undecorated slider in terms of speed and accuracy, while 
maintaining a similar level of response bias. 

RELATED WORK 

Visual analogue scales (VASs) have a history of use in 
psychology, psychiatry, and healthcare, to measure a range 
of subjective experiences, such as mood, depression, pain, 
and physical exertion [23]. The VAS was introduced by 
Hayes & Paterson in 1921 as a method for factory foremen 
to rate the performance of workers [16]. In 1923 Freyd 
discussed the broader application of the technique in the field 
of psychology, providing heuristic guidelines for visual 
appearance [10]. VASs have traditionally been displayed on 
paper, with their key advantages over other techniques being 
that they can be self-administered with little training, and 
provide extremely sensitive (granular) measurement. Their 
disadvantages have traditionally been that they are visual, 
cannot be administered aurally, and take longer to encode 
(measure/transcribe). However, when administered on a 
computer, the measuring step can be automated, making 
VASs a viable alternative to discrete Likert scales. Software 
tools allow for the automatic creation and encoding of VASs 
[23,31] generating a renewed interest in VASs. Our paper 
aims to better understand the nature of responses generated 
by VASs to ensuring they are collected without artificial bias.  

There is a large body of research comparing the effectiveness 
of VASs compared to other rating systems [15,18,24,26,36], 
looking at the effect of labelling on discrete rating systems 
[2,4,37], and looking at how question phrasing influences 
participant response [13,25,27,29]. However, there has been 
relatively little research investigating the how changes in 
visual appearance or labelling affect VASs. In the 1970s 
Scott & Huskisson looked at how the graphical 
representation of paper-based VASs influenced the results of 
a pain severity questionnaire and found that a vertical 
orientation of the slider lead to more “clumping” than 

horizontal orientations [34] and that the presence of labels 
could attract responses [19]. Later, Dauphin et al. [28] 
performed a similar study and found the orientation of the 
scale affected the number of ratings at the end points. 
Performed at a small scale (~100 trials per condition), the 
visible effects were limited. In this paper we systematically 
explore the potential causes of bias in VASs on a large scale 
for digitally administered surveys. 

STUDY #1: PERCEPTUAL JUDGEMENT TASK 
In this first study, we investigate the effect that the 
appearance of visual analogue scales has on the rating 
behaviour of survey respondents. Through a series of 
conditions, we explore visual decorations used to markup 
scales such as tick marks, labels, and banded sliders. We also 
explore the shape of the thumb which marks the selected 
value, and test a “dynamic” slider which continuously 
displays the currently selected value. Each condition was 
tested using a perceptual judgement task, requiring 
participants to rate the “blackness” of a shade of grey. 

Task – Shades of Grey 
Developing a set of stimuli to use as a test of rating behaviour 
is a difficult and well-studied problem [33]. We chose a task 
which presents the participant with a shade of grey and 
requires them to rate the shade on a scale between “White” 
and “Black”. Borg and Borg [1] extensively studied using a 
“scale of blackness” as a stimulus and concluded that it 
serves as a good test of general rating behaviour. Our task is 
modelled on the task used by Neely and Borg to test the 
performance of a VAS compared to a graduated Likert scale 
[15]. A collection of 50 shades of grey (Figure 2) were 
selected in perceptually equal steps between white and black 
according to the CIE L*a*b* colour space [3]. 

 
Figure 2. 50 shades of grey used for the perceptual judgment 
task of Study #1, selected at perceptually equal distances 
using the CIE L*a*b* colour system. 

While each shade of grey does have a theoretically “correct” 
position on the scale, pilot tests suggested a relatively wide 
range of responses could be entered for any given shade. For 
example, Figure 3 shows the distribution of responses from 
a pilot study for two selected shades. 

 
Figure 3. Response distributions for two representative 
shades of grey from a pilot study. 

Crowdsourcing 
Participants for the study were recruited using Amazon’s 
Mechanical Turk. Previous work [14,17] has shown 
“turkers” to be suitable participants for visualization research 
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and to represent a comparatively diverse participant pool 
[32]. The short time between posting a study and getting 
results allowed exploration of more variations than practical 
for an in-person study. The study took ~ 6 minutes to 
complete and participants were compensated $1 USD. 

Experimental Design 
To investigate the issue of whether the visual appearance of 
a slider influences the data collected, we divided the problem 
into a number of questions we wanted to answer: 

 Does the presence of tick marks have an effect? 
 Does the number of tick marks matter? 
 Does the visual weight of the ticks matter? 
 Do alternating major/minor tick weights have an effect? 
 Does the shape of the slider thumb matter? 
 What is the effect of labels vs. ticks vs. labels and ticks? 
 What is the effect of banded representations? 
 What is the effect of a dynamically labelled thumb? 

We describe the specific conditions to answer each of these 
questions within the results section. 

Apparatus 
The experiment was developed as a JavaScript application 
and embedded on a standard HTML webpage compatible 
with all modern browsers and operating systems. 

Before each trial, the slider (measuring 600 pixels wide) is 
positioned on screen without the thumb graphic. To prevent 
leaving the cursor in the same place for multiple trials, a blue 
“start position” circle is placed below the slider (Figure 4, 
Step 1). After the cursor is moved over the start position, the 
trial begins and the stimulus is displayed (Figure 4, Step 2). 
Once the cursor is within 100 pixels of the slider, the thumb 
appears at the current x-coordinate of the cursor, and the user 
clicks the left mouse button to register their rating. After 
clicking, the stimulus disappears and the blue “start position” 
is displayed again (counterbalanced to appear on both the left 
and right side equally). For all slider conditions the input 
space and slider response was exactly the same; a one-to-one 
mapping between cursor’s x-coordinate and slider thumb 
position, and in all cases the slider thumb moved freely and 
continuously along the scale and never “snapped” to any of 
the tick or label locations. The only difference between any 
two conditions is the visual appearance of the scale. 

Participants were given the instructions to “Please move the 
cursor and click to indicate your perceived level of 
‘blackness’ for the below square”. To disable comparing the 
colour of the stimulus to the white background of the page, 
the stimulus was presented over a greyscale noise pattern. 

Organization 
The study was structured as a between-subjects design with 
each participant completing 200 trials, all with the same 
slider condition. Once a participant completed one condition, 
they were excluded from participating in any other 
conditions of the experiment. The 200 trials were organized 
into 4 blocks of 50 trials, where each block consisted of one 
trial for each of the 50 shades of grey presented in a 
randomized order. Thus, the participant rated each shade of 
grey 4 times. The location of the “start position” was counter-
balanced between these 4 trials. Results from the first and 
last blocks were compared to verify fatigue was not a 
substantial factor over the duration of the study. Differences 
in monitor calibration, lighting conditions, individual colour 
perception, etc. prevents us from reliably calculating an 
“absolute error” for any particular trial. However, by 
repeated measurements over multiple blocks with the same 
set of stimuli we are able to measure the “consistency” of 
individual participants. 

For each condition, 75 participants were recruited. Individual 
trials further than half the slider width away from their “true” 
location on the scale were identified as probable accidental 
clicks and removed. Anomalous participants were identified 
using Tukey’s outlier filter based on inter-block consistency. 
Between those participants who left before completing all 
trials, and those removed as outliers, each condition ended 
with between 53 and 67 participants, resulting in between 
10,399 and 13,170 trials for each condition. 

Metrics 
Given that the greyscale stimuli are selected at perceptually 
linear increments across the range of the scale, a “perfect” 
set of responses would be evenly distributed between the 
minimum and maximum points of the scale (Figure 5, A). If 
monitor calibration, lighting conditions, or individual 
perceptual variation caused a participant’s responses to skew 
either high or low, we would still expect to get a smooth 
distribution of responses, perhaps skewed to one side (Figure 
5, B). We consider either of these as “low bias” distributions. 

 
Figure 5. Example low and high-bias rating distributions. 

A noisy, or irregular distribution of responses with one or 
multiple “spikes” along the range of values (Figure 5, C/D) 
is not consistent with the evenly distributed stimuli used in 
the study and would be considered a “high bias” 
distributions. To mathematically represent the bias in a 
distribution of responses we calculate the “smoothness” by 
grouping the data into 100 bins and calculating the standard 
deviation of the difference between all adjacent bins:  
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Figure 4. The two steps of a single trial. 
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where Nb is the number of bins and xi is the number of ratings 
falling in each bin. With this calculation, a smooth, or low-
bias distribution will have a low bias score, and distributions 
with large differences between successive bins will have a 
high bias score. Since the slider implementation clamps 
values to the end points (0 and 600) creating artificially 
larger input regions than the other points on the range, the 
extreme values are removed before performing the bias 
calculation. The overall bias of a condition is calculated as 
the mean of the individual participant biases. 

Results 
Due to growing concerns in various research fields over the 
limitations of null hypothesis significance testing for 
interpreting and reporting experimental results [5,8,9,42] we 
base our analyses and discussions on effect sizes and 
confidence intervals [6]. The 95% confidence intervals (CIs) 
are computed using bootstrapping [7]. 

Q1: Do Ticks Marks Matter? 
The first, and most basic, question we wanted to investigate 
was to see if the presence of tick marks along a slider would 
have an effect on data collected. For this we compared the 
results for two designs: No Ticks, a slider without any tick 
marks, and 5 Ticks, a slider with 5 equally spaced tick marks 
along the width of the slider (Figure 6). 

 
Figure 6. Slider conditions used to answer the question "Do 
Ticks Matter?" 

Since the two slider conditions have the exact same input 
space, and the tick marks are “non-functional” in the sense 
that the slider does not automatically “snap” to these 
locations, we expected the effect of the tick marks to be 
minimal. However, looking at the distribution of responses 
for each of the conditions, the effect of tick marks is apparent 
(Figure 7). 

The y-axis intervals in the above charts are normalized to the 
expected number of responses. If the responses for each 
shade were evenly distributed around their “true” locations 
on the slider, we would expect each bin of the histogram to 

reach the ‘1x’ level. Locations above the 1x line have 
received more responses than should be expected, and those 
below have received less. For example, the spike at location 
300 (the middle of the slider) in the 5 Ticks condition 
indicates that location received >5.5 times more responses 
than would be expected with a uniform distribution. 

In these (and all other) conditions there is considerable bias 
towards the end points, particularly at the “black” end of the 
spectrum. As mentioned above, due to enlarged hit zones and 
increased susceptibility to monitor calibration differences, 
the end points are removed before performing the bias 
calculations. However, perhaps notable is that these two 
conditions have very similar results at both the low (1.69x 
vs. 1.68x) and high (10.9x vs. 10.9x) ends of the scale. To 
improve the visualization of the data in the middle of the 
scale, the vertical axis has been capped at 6x and the value 
of the right-most bin displayed alongside the broken bar.  

Visual inspection of Figure 7 suggests that tick marks do 
indeed have a bearing on the distribution of results, and 
agrees with analysis of the mean bias metric (Figure 8). 

 
Figure 8. Mean bias scores for the No Ticks and 5 Ticks 
conditions. Error bars show 95% CIs. 

For each condition, the bias metric is calculated for each user 
and the mean and 95% confidence intervals is computed 
using bootstrapping. On the chart, values towards the left 
indicate a smoother, less biased distribution, and values to 
the right indicate a less smooth, more biased set of results. 

It is interesting to note that even without any ticks or labels, 
the No Ticks conditions still exhibits a “bump” around the 
middle of the scale, suggesting that even without any 
decorations (and disregarding the end points) the distribution 
of responses on a VAS is not fully uniform. 

The mean completion time for the No Ticks and 5 Ticks 
conditions were very close, at 1.63s and 1.69s respectively. 
In fact, the completion times for all slider conditions for this 
task bunched very tightly between 1.6 and 1.8 seconds and 
were not analyzed further. 

Q2: Does the Number of Tick Marks Matter? 
Having established that the presence of tick marks affects the 
results, we next wanted to see what effect varying the number 
of tick marks would have. Besides the 5 Tick condition tested 
above, five other variations were tested: 2 Ticks, with tick 
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Figure 9. Slider conditions used to investigate the effect on 
varying the number of ticks. 
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Figure 7. Distribution of responses for the No Ticks and 5 
Ticks conditions. The red line at ‘1x’ shows the expected 
number of results in each bucket of the histogram. The x-
axis labels (and dashed lines) show the location of the tick 
marks displayed on the slider. 
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marks only at the extremes; 3 Ticks, tick marks at the ends 
and in the middle; and 11 Ticks and 21 Ticks, with 11 and 21 
evenly spaced tick marks respectively (Figure 9). 

For the higher number of tick conditions, we believed the 
effect of the ticks would be diminished – that if there are too 
many tick marks, spaced too tightly, that they will no longer 
influence the user and the results will trend back towards 
those from the No Ticks condition. The resulting distributions 
from this set of conditions are shown in Figure 10.  

We can see that the End Ticks distribution closely resembles 
that from the No Ticks condition (Figure 7) and the two 
conditions also have very similar bias distributions (Figure 
11). For the 3, 5, 11, and 21 Tick conditions, the effect of the 
individual tick marks is clearly visible. The individual spikes 
at the tick locations are smaller in the 21 Ticks condition, and 
the large spike seen at the middle location (300) in the 3, 5, 
and 11 tick conditions is also reduced (2.2x in the 21 Ticks 
condition compared to 4.8x in the 11 Ticks condition). 

The overall amount of tick bias in the 21 Ticks condition also 
appears to be somewhat reduced compared to the 3, 5, and 
11 Tick conditions (Figure 11), however all of the 3, 5, 11, 
and 21 Tick conditions produced markedly more biased 
results than the No Tick and End Tick conditions. 

Q3: Does the Visual Weight of the Tick Marks Matter? 
Besides the number of tick marks, we suspect that varying 
the appearance of the tick marks could have an effect on how 
likely it is for responses to gravitate towards them. Namely, 
we suspect that visually less imposing, or “lighter” tick 
marks will introduce less bias towards the ticks, and visually 
“heavier” ticks marks will increase bias.  

To test this theory, we created two additional variations of 
the 5 Tick slider: Light Ticks has very short, thin tick marks, 
and Heavy Ticks has wider and taller tick marks (Figure 12).  

 
Figure 12. Variations on the visual weight of tick marks. 

Rather unexpectedly, the visual weight of the tick marks did 
not appear to have much of an effect on the amount of tick 
bias. Visual inspection of the resulting distributions (Figure 
13) does not reveal any particular difference among the 
conditions, and analysis of the mean bias metric also 
suggests that the tick weight did not substantially change the 
amount of bias (Figure 14).  

Prior to running the study we were concerned that the tick 
marks in the Light Ticks condition were too minimal – that 

White BlackMedium Ticks

White BlackLight Ticks

White BlackHeavy Ticks
‘5 Ticks’ from Q1

Figure 10. Distributions of responses for the various 
number-of-tick conditions. 

Figure 11. Mean bias scores for varying number of tick 
marks. Error bars show 95% CIs. 
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Figure 14. Mean bias scores for varying the weight of the 
tick marks. Error bars show 95% CIs. 
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participants would have trouble even noticing that they 
existed, much less have them bias their responses. It is hard 
to imagine using tick marks any less visible in practice, but 
it would be an interesting exercise to see just how slight the 
ticks need to be to have no effect on the collected responses.  

Q4: What is the Effect of Major/Minor Ticks? 
All of the slider designs tested to this point have had a 
consistent tick appearance over the length of the slider. A 
commonly used design variation is to use “major” and 
“minor” tick marks along the length of a scale. We tested two 
variations of in this category: Major/Minor has the same tick 
locations as the 5 Tick condition, but the 1st, 3rd, and 5th ticks 
are rendered more heavily than the 2nd and 4th ticks, and 
Ruler, which employs 4 levels of tick weights (Figure 15). 
We suspect that in these conditions the smaller/lighter 
“minor” tick marks may influence the results less than the 
larger/heavier “major” ticks. 

 
Figure 15. Sliders used to test the effect of “major” and 
“minor” ticks on the same scale 

The distribution of responses in the Major/Minor condition 
(Figure 16) is very similar to that of the 5 Ticks condition, 
and the means and confidence intervals are also similar 
(Figure 17), suggesting that in this case, the presence of 
major/minor ticks did not greatly affect the level of bias. 

The three largest tick sizes in the Ruler condition have the 
same positions as the ticks in the 21 Ticks design. When there 
were 21 equally-weighted ticks in the (21 Ticks condition), 
the spikes around each of the ticks were relatively constant, 
with a small increase at the middle location (300). However, 
the Ruler condition has larger spikes at the larger tick marks, 
namely 150, 300, and 450, resulting in considerably more 
overall tick-bias than present in the 21 Ticks condition. Of 
note, the 4th level of very faint tick marks did not seem to 
noticeably influence the results. 

Q5: Does the Shape of the Thumb Matter? 
For visual analogue scales, it is common to represent the 
mark on the line as an ‘X’. The X mark is what respondents 
are asked to mark the line with when answering a VAS 
question on paper, and the convention has made its way to 
digital representations as well [31]. In desktop environments, 
the slider thumb is most commonly rectangular in shape, 
while in mobile scenarios, the slider is often a circle. We do 
not anticipate the shape of the slider will materially affect the 
distribution of responses, but to confirm, we ran the 5 Tick 
slider with three different thumb shape conditions: Rectangle 
Thumb, Circle Thumb, and ‘X’ Thumb (Figure 18). 

 
Figure 18. Thumb slider styles used. 

Comparison of the result distributions among the three slider 
type conditions did not suggest any differences between the 
conditions, and looking at the bias scores for the conditions 
similarly suggests that the shape of the thumb does not 
greatly affect the distribution of responses (Figure 19).  

 
Figure 19. Mean bias scores for varying the shape of the 
thumb slider. Error bars show 95% CIs. 

Q6: Labels vs. Ticks vs. Labels and Ticks 
In the previous conditions, the demarcations along the slider 
have been solely indicated by tick marks. It is also common 
to use labels, either on their own or in combination with tick 
marks, to represent positions on the continuum (Figure 20). 

 
Figure 20. Sliders to test the effect of the combination of 
labels and ticks. 

We suspected that perhaps the addition of labels to the tick 
marks (Ticks and Labels) would cause more clustering at the 
tick points than just the ticks alone (Just Ticks). When 
displaying only the labels, but not the ticks (Just Labels) we 
hypothesized that there would still exist bias towards the 
label positions but it would be less pronounced than in the 
conditions with ticks. 

The result distributions between the Just Ticks and Ticks and 
Labels conditions turned out to be quite similar (Figure 21), 
and while the Ticks and Labels condition had a marginally 
higher average measure of bias than Just Ticks (2.58 vs 2.41) 
the confidence intervals overlap substantially. The Just 
Labels condition exhibits more rounded spikes around the 
label positions, as expected, and overall exhibited less bias 
than the other two conditions (Figure 22). 
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Figure 16. Results for Major/Minor Tick Mark examples. 

 
Figure 17. Mean bias results for the Major/Minor tick mark 
conditions. 

0 150 300 450 600

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

10.9x

10.9x

0x

1x

2x

3x

4x

5x

6x

N
u
m
 
R
a
t
i
n
g
s

0x

1x

2x

3x

4x

5x

6x

N
u
m
 
R
a
t
i
n
g
s

0x

1x

2x

3x

4x

5x

6x

N
u
m
 
R
a
t
i
n
g
s

0x

1x

2x

3x

4x

5x

6x

N
u
m
 
R
a
t
i
n
g
s

Major/Minor

“Ruler”

1.8 2.0 2.2 2.4 2.6 2.8

21 Ticks (Consistant)

5 Ticks (Consistant)
5 Ticks (Major/Minor)

21 Ticks (Ruler)



7 

 
Figure 21. Results for ticks and/or labels. 

 
Figure 22. Mean bias scores for ticks and/or labels. 

Q7: What is the Effect of ‘Banded’ Representations? 
Besides simply adding ticks and labels to the basic line of the 
slider track we were interested in exploring how more 
substantial changes to the design of the slider track might 
work. As one possible alternative, we tested the idea of a 
“banded” slider (Figure 23). 

 
Figure 23. Two variations of a “banded” slider. 

We tested two variations of the “banded” slider: Banded 
consists of alternating filled rectangles of dark and light 
shades of grey, and Banded (hollow) has the same rectangles, 
but filled with white and outlined. These variations contain 
the same amount of information, and in fact, display the same 
information as the 11 Ticks condition (the boundaries 
between segments of the banded designs correspond to the 
tick mark locations in the 11 Ticks design). The results from 
these conditions were rather unexpected (Figure 24). 

The Banded (hollow) design produced a similar distribution 
pattern (and had substantially overlapping CIs) with the 11 
Ticks condition. However, quite surprisingly, the distribution 
of results in the Banded condition shows almost no bias in 
results towards the boundaries between bands except for a 
small spike in the middle (300). In fact, the mean bias-effect 
for the Banded condition is very similar to that of the No 
Ticks condition (Figure 25), suggesting that a banded 
representation of a slider might be a good way to provide the 
additional information afforded by tick marks, without 
introducing the associated bias. 

We were quite surprised by the results of the Banded slider. 
To ensure that the results were not due to the particular set of 
participants who were assigned this condition, we collected 

data from an additional 80 participants and found that they 
produced similar results. We hypothesize that the solid 
regions in the Banded condition “smooth out” the bias found 
in the Banded (hollow) condition by emphasizing the wide 
“band” areas, rather than the boundaries between the bands.  

Q8: Effect of Dynamically Labelled Thumb Slider 
The final design variation we explored is a dynamically 
updating label showing the current value of the slider. We 
designed this condition to appear the same as the No Ticks 
condition, with the addition of a text label over the thumb 
indicating the current value (Figure 26). 

 
Figure 26. Dynamically labelled slider design. 

The label above the slider ranged from 0% at the “white” to 
100% at the “black” end. We were not sure if this slider 
would encourage the relatively un-biased distribution 
generated by the No Ticks slider, or if perhaps the presence 
of the dynamic label above the thumb might bias the results 
towards “round” numbers. Looking at the distribution of 
responses (Figure 27) suggests that indeed the presence of 
the dynamic label did bias responses towards specific round 
values as observed by the spikes at 10%, 50%, 75%, etc. 
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Figure 24. Results for banded slider variations. 

Figure 25. Mean bias scores for the banded and banded 
(hollow) conditions. No Ticks and 11 Ticks are included for 
comparison. Error bars show 95% CIs.  
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Figure 27. Distribution of results for the dynamic slider. 

Figure 28. Bias comparison between Dynamic and No Ticks. 
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Looking at the bias ranges shows that the mean level of bias 
is higher with the Dynamic slider than the No Ticks design. 
However, compared to other conditions the Dynamic slider 
has a wide 95% CI, suggesting that the bias induced with this 
technique is not uniformly applied to all users (Figure 28).  

Summary 
Overall, we found that the visual design of VASs can heavily 
influence the responses which are obtained from online 
experiments. In particular, tick marks were found to bias the 
results towards the locations of the ticks. Bias was not 
affected by the visual weight of the ticks or the shape of the 
thumb. Labels on their own resulted in somewhat less bias 
than labels+ticks. The most promising result may be that the 
visual appearance of shaded bands reduces bias substantially 
when compared to the equivalent “ticked” design, and 
produces bias levels similar to that of the scale with no ticks. 

STUDY #2: OBJECTIVE PRECISION TASK 
With the first set of experiments we were interested in 
exploring how the visual presentation of a slider altered the 
responses in a judgement task – one where a wide range of 
values could be reasonably selected for a particular stimulus 
(Figure 3). In this second set of experiments, we want to see 
how the visual appearance of the slider influences results to 
an objective question – one where a participant is instructed 
to select a specific value along the scale with as much 
accuracy as possible. This simulates a scenario when a 
respondent has a desired value they wish to specify. This 
study will allow us to test the accuracy and efficiency of the 
previously tested conditions. 

Task – Percentage Finding 
We created a “percentage finding” task to test the precision 
of the sliders when attempting to select a known target. The 
task was set up in much the same way as the task from the 
first study, however instead of a slider ranging from “white” 
to “black” and presenting the participant with a shade of grey 
to rate, in this task the slider ranged from “0%” to “100%” 
and the participant was presented with a particular 
percentage (e.g., 32%) to locate and select on the scale. 

Experimental Design 
Participants were again recruited from Mechanical Turk 
using the same criteria as in the first set of experiments. The 
study was divided into two blocks, each randomly presenting 
each of the 101 whole number percentages between 0% and 
100%. The slider mechanics were the same as in the first 
study, with the side of the “start position” counterbalanced 
for each of the individual percentages over the two blocks. 
The 202 total trials took an average of 7 minutes to complete 
and participants were compensated $1 USD. Pilot tests 
suggested this task would have less individual variation 
between participants so 25 users were recruited for each 
condition. Individual trials more than 35 percentage points 
from the target were removed as outliers and anomalous 
participants were removed using Tukey’s outlier filter on 
magnitude of response error, leaving between 18 and 24 
participants for analysis in each condition. 

Conditions 
We selected a range of slider designs from the first study and 
expanded the set to include more conditions and variations 
on the number of labels being shown (Figure 29). 

 

Results 
For each trial the completion time and error were recorded, 
with completion time being the elapsed time from when the 
cursor left the “start position” to when the mouse button was 
clicked to register the response, and error being the 
difference between the registered and target value. We 
calculate the precision of a participant as the median absolute 
error, and the precision of a technique as the mean of the 
participant precisions. As before, the stimulus was hidden 
until the cursor entered the start position. 

Error/Precision 
For each slider condition we created an “error map” which 
includes one dot for each completed trial, with the x-position 
representing the target value for the trial, and the y-position 
showing the error between the target and registered response. 
Two representative error maps are shown in Figure 30. 

Looking at the error map for the 5 Labels condition we notice 
several interesting properties. Because the labels serve as 
references for specific values along the scale, we can see the 
distribution of errors “pinch in” at the label points showing 
that users are, unsurprisingly, more precise at selecting a 
value which is close to a value marked on the slider. The 
second, less expected property is the asymmetric shape of the 
error curve between adjacent labels. Values just to the right 
of a label (e.g., 54) tend to have positive errors and values 

Figure 29. Slider designs tested in the second set of 
objective precision experiments. 
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just to the left of a label (e.g., 69) tend to have negative 
errors. Put another way, the trend is to make the selection 
further away from the nearest label than it should be. Further, 
this asymmetric error distribution between demarcations 
appears to be consistent across the various conditions tested. 

 

Looking at the 11 Ticks error map we see that errors are 
generally closer to ‘0’, which we would expect since there 
are more landmarks on the slider to aid with positioning. 
However, it is interesting to note the clusters of errors at +10 
and -10. In this condition the ticks are not labelled with their 
value, and are 10 units apart from one another, so these errors 
appear to be the result of “mis-counting” the tick marks and 
placing the selection nearly exactly one-tick away from the 
proper location. These “off-by-one” errors do not appear in 
the 11 Ticks and Labels condition, since the labels eliminate 
the need for the user to “count” the tick marks themselves. 

Speed 
Besides precision of responses, we are also interested in the 
speed of responses. For pollsters, speed is an important factor 
to allow respondents to answer more questions in a shorter 
time. Unlike in the first study, the completion times for this 
study do appear to vary meaningfully among the conditions. 
In Figure 31 we plot the speed vs. precision for each of the 
conditions (with Average Completion Time calculated as the 
average of the median completion times per participant). 

For this task an optimal slider has a combination of fast speed 
(low on the chart) and high precision (left on the chart). 
Unsurprisingly, the Dynamic slider with a label showing the 
exact value has the greatest precision. However, this comes 
at the cost of speed, as it is also one of the slowest techniques. 

For pairs of designs which vary only in their inclusion of 
labels (for example, 11 Ticks and 11 Ticks and Labels) we 
would expect that since they demark the same positions on 
the line, they would enable similar levels of precision. 
Additionally, we would expect the variant without labels to 
be slower since the user needs to “count” the ticks to find the 
correct location. We see this trend very clearly with the 11 
Ticks and 11 Ticks and Labels conditions; they have similar 
levels of precision, but 11 Ticks and Labels is considerably 

faster (3.2s vs 2.5s). Further, we might expect conditions 
which vary only in their inclusion of ticks (for example, 11 
Labels and 11 Ticks and Labels) to have similar completion 
times, but the ‘ticks’ variant enabling more precision. We see 
this occurring with 11 Labels and 11 Ticks and Labels, and to 
a lesser extent in the 3 and 5 tick/label conditions as well.  

Another general, and logical, trend is for conditions which 
vary only in the number of marks (for example, 2/3/5/11 
Labels), precision decreases as the number of marks 
decreases. This can be seen most clearly in the “2/3/5/11 
Labels” and “3/5/11 Labels and Ticks” conditions.  

Finally, there is an interesting difference between the 11 Ticks 
condition and the Banded, 2 Labels condition. They each 
present the exact same information to the user: values at the 
end points and 9 unlabeled demarcation points in between. 
However, the 11 Ticks design produced results with more 
precision (and a longer time) than did Banded, 2 Labels. In 
the first set of experiments using the perceptual judgement 
task, users seemed to be less drawn to the division between 
bands than to the tick marks, and a similar effect is seen here. 

COMBINED RESULTS 
The previous two studies have looked at three main 
properties of Visual Analogue Scale performance: 

 Judgement Bias: How much the design of the scale pulls the 
responses away from the baseline response curve when 
answering a judgement question. (Study One) 

 Objective Precision: How accurately responses can be 
entered in relation to the desired value when answering an 
objective question. (Study Two) 

 Speed: How long it takes to enter a response. (Study One did 
not see meaningful differences in completion times between 
the conditions, but Study Two, did). 

Figure 30. “Error maps” for the 5 Labels and 11 Ticks 
conditions from the second set of experiments. 
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For most cases it will be desirable to choose a slider design 
which minimizes the amount of bias and maximizes the 
amount of precision. It may also be desirable to choose a 
design which minimizes the time required to enter each 
response. In order to explore the trade-offs between these 
three properties, we ran the “greyscale test” from Study One 
on the 6 conditions from Study Two which were not 
originally tested in Study One (3 Labels; 11 Labels; 3 Ticks 
and Labels; Banded, 3 Labels; Banded, 5 Labels; Banded, 
and 11 Labels). After running those remaining 7 slider 
designs through perceptual judgment greyscale task, we have 
a set of 15 slider designs for which we can compare their bias 
and precision. Figure 32 plots the relationship between bias 
and precision for these conditions, with the point size 
correlating to completion time in the “percentage” test. The 
desirable “high precision, low bias” designs are found in the 
lower-left quadrant of the plot.  

DESIGN GUIDELINES 
While the “optimal” scale design will be dependent on the 
type of question being asked, through these studies we have 
developed some general design guidelines for VASs:  

Avoid Tick Marks: Tick marks can have a positive impact on 
the precision of responses, but they introduce an undue amount 
of bias in the results towards their location. The Banded designs 
enable the precision of tick marks, without the bias. 

Use Dynamic Feedback for Precision: If high precision is a 
primary concern, use a slider which reports the slider’s current 
value. While it increases response time, it affords more 
precision than including many ticks or labels, while 
introducing less bias into the results.  

Use Banded, 2 Labels for Low Bias: The most commonly used 
VAS design is similar to 2 Labels, with the only decoration 
being labels at the end points. Banded, 2 Labels, produces 
similarly low levels of bias, but enables higher precision should 
the situation call for it. 

FUTURE WORK & DISCUSSION 
We reported on the results for 18 designs for the perceptual 
judgement task, and for 15 designs for the objective precision 
task. Given the promise of the banded design, exploring 
further variations such as altering the number of bands, using 
gradients, or varying the thickness of the bands would be 
worthwhile. Additionally, it would be valuable to look at 
combining the traits of some conditions with favourable 
properties; in particular looking at a banded design with 
dynamic feedback could be a promising direction to enable 
the low bias that both techniques independently promote, 
combined with the high precision of the dynamic feedback 
with the higher speed of the banded design.  

For our studies we choose two tasks; the subjective judgment 
task of rating the blackness of a greyscale shade for Study 
One, and the objective precision task of finding a particular 
percentage value for Study Two. For another project we ran 
a fairly large study (160 participants, 32,000 trials) on a 
completely subjective task (where participants were 
presented a social media profile picture and asked to “rate 
the suitability of this image for use as a headshot in a 
corporate environment”) and found that the level of bias 
closely matched what was found in the subjective judgement 
greyscale task used in the first study. In the future it would 
be interesting to explore and test the biases for differing VAS 
designs over an even wider range of question types. 

All of the scales we used in our studies were fixed at 600 
pixels wide, which results in different real-world lengths 
depending on the DPI of the monitor used. While fixed-pixel 
width sliders are the norm in digital VASs systems, it would 
be worth studying if the actual display length materially 
affects the results, and considering if the displayed length of 
the scale should be normalized between respondents. 
Additionally, our conditions used the standard VAS input 
paradigm (point, click) rather than the workflow for 
traditional UI sliders (point, click, drag, release). Initial 
testing suggests that the observed results from VASs apply to 
traditional UI sliders as well, but follow up studies could 
explore this. Finally, as mentioned in the related work, prior 
studies have shown that the orientation of paper-based VAS 
scales may influence a user’s responses. While such scales 
are predominately horizontal, it would be interesting to study 
what influence a vertical scale would have on our results. 

CONCLUSION 
We presented the results from two high-volume online 
experiments to explore and quantify the effects of visual 
analogue slider design on response bias, accuracy, and speed 
of use. Our results show the presence of certain decorations 
along the slider can considerably bias the distribution of 
responses received, however, a banded slider design was 
shown to outperform the traditional slider in terms of speed 
and accuracy, while maintaining a similar level of response 
bias. Given the current tends towards online surveys and 
web-based research methodologies, we believe our work 
serves as an important reference for online survey design. 

 
Figure 32. Bias vs. Precision results. Bias is measured using 
the perceptual judgement greyscale task, while precision 
(and speed) are measured using the objective percentage 
finding task. The best combination of properties is “High 
Precision” and “Low Bias”, in the lower left hand corner. 
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