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Abstract 

This research focuses on the use of hand drawn marks as a human-computer input 
technique.  Drawing a mark is an efficient command input technique in many 
situations.  However, marks are not intrinsically self-explanatory as are other 
interactive techniques such as buttons and menus.  This research develops and 
evaluates an interaction technique called marking menus which integrates menus 
and marks such that both self-explanation and efficient interaction can be provided. 

A marking menu allows a user to perform a menu selection by either popping up a 
radial menu and then selecting an item, or by drawing a straight mark in the 
direction of the desired menu item.  Drawing a mark avoids popping up the menu.  
Marking menus can also be hierarchic.  In this case, hierarchic radial menus and 
“zig-zag” marks are used.  Marking menus are based on three design principles: 
self-revelation, guidance and rehearsal.  Self-revelation means a marking menu 
reveals to a user what functions or items are available.  Guidance means a marking 
menu guides a user in selecting an item.  Rehearsal means that the guidance 
provided by the marking menu is a rehearsal of making the mark needed to select 
an item.  Self-revelation helps a novice determine what functions are available, while 
guidance and rehearsal train a novice to use the marks like an expert.  The intention 
is to allow a user to make a smooth and efficient transition from novice to expert 
behavior. 

This research evaluates marking menus through empirical experiments, a case 
study, and a design study.  Results shows that (1) 4, 8 and 12 item menus are 
advantageous when selecting using marks, (2) marks can be used to reliably select 
from four-item menus that are up to four levels deep or from eight-item menus that 
are up to two levels deep, (3) marks can be performed more accurately with a pen 
than a mouse, but the difference is not large, (4) in a practical application, users 
tended towards using the marks 100% of the time, (5) using a mark, in this 
application, was 3.5 times faster than selection using the menu, (6) the design 
principles of marking menus can be generalized to other types of marks. 
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Chapter 1: Introduction 

Research in the last forty years has brought great improvements in the quality of 
human-computer interactions.  In the past, human-computer dialogs were 
optimized for the computer; humans communicated with computers using protocols 
that were easy for the computer to understand but were hard for a human to 
understand and use, for example, machine languages.  Advances in human-
computer interaction have changed this situation.  Controlling a computer no longer 
requires memorizing obtuse, cryptic codes or an intimate understanding of the 
internal workings of the computer.  In well-designed systems, human-computer 
interactions are optimized for the human.  Interfaces now make use of sophisticated 
graphics, sound, and pointing devices to make the human's job easier.   

The major advances in human-computer interaction have been in making computers 
easier to use.  Specifically, research on methods to reduce the amount of training a 
person needs before being able to operate a computer has come a long way.  For 
example, the Apple Macintosh has set standards for the minimal amount of 
instruction that a person needs before operating a computer.  Because of these 
advances, the world of computers opened up for people who otherwise would not 
have invested the time in training to operate a computer system. 

Given these advances in human-computer interaction, we can think of the interface 
as currently being optimized for the human, specifically, the novice computer user.  
Clearly, this is of great value, but we can consider another important class of user—
the expert.  Human capacity for the development of skills is great.  Virtuoso pianists 
are proof of this.  Virtuosos invest a great deal of time in practicing their skills—
eight hours of practice a day is not uncommon.  Now consider expert computer 
users.  It is not uncommon for an expert computer user to spend eight hours a day 
working on the computer.  Therefore, there is untapped potential for human skill 
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development in human-computer interactions.  A good interface should take 
advantage of this potential and not limit the efficiency of a skilled user. 

In order for this skill potential to be tapped, an interface must have certain 
properties.  First, the interface must provide interaction methods that are suitable for 
an expert.  Experts require efficient interactions.  As a result, interactions may be 
terse and unprompted.  Second, and most critically, the interface must also provide 
support for a novice to become expert.  We look at the interface design not so much 
as making the interface easier to use but rather as accelerating the rate at which novices 
begin to perform like experts.  This goal demands three components: support for the 
novice, support for the expert, and an efficient mechanism to support the transition 
from novice to expert (see Figure 1.1).   

Novice component Transition component Expert component
(recognition) (recognition and recall) (recall)

• exploration

• explanation

• learning

• practice expert
behavior
• return to novice
behavior when needed
• seamlessly switch
between the two

• terse, unprompted
and efficient actions

Skill development  

Figure 1.1:  The components required to accelerate the rate at which users begin to 
perform like experts.  The novice component allows a user to issue commands by 
searching for them and recognizing them.  The expert component allows a user to 
efficiently issue commands by recalling the action associated with the command.  
The transition component allows a user to efficiently switch between these two 
methods to learn and practice command action associations. 

In this dissertation, we focus on an interaction technique that is intended to take 
advantage of this skill potential and support the development of skill.  We propose 
an interaction technique which has a two modes.  In the first mode, the style of 
interaction is intended to facilitate novice use.  In the second mode, the style of 
interaction is intended for skilled expert behavior.  The first mode is also designed to 
allow a novice to practice the skills required in the second mode.  A user can switch 
to the second mode by operating the technique quickly.  One can think of this in 
metaphorical terms.  When you are learning to drive a car, its suitable to have a car 
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that is designed for a student driver.  However, as your driving skills improve, the 
car incrementally transforms into a Ferrari. 

1.1. GENERAL AREA AND DEFINITIONS 

To support the expert component described in the previous section, we focus on a 
style of human computer interaction in which a user “writes” on the display surface.  
This style of interaction is similar to writing or drawing with a pen on ordinary 
paper.  Writing on a display, however, is accomplished with a special pen and the 
computer simulates the appearance of ink.1  

We define a mark  as the series of pixels that are changed to a special “ink” color 
when the pen is pressed and then moved across the display.  The pixels that are 
changed to an ink color are those which lay directly under the tip of the pen as it is 
moved across the display.  Free hand drawings, ranging from meaningless scribbles 
to meaningful line drawings and symbols, including handwriting, are examples of 
marks.  The act of drawing a mark is referred to as marking. 

Marks can be created not only with a pen but also with other types of input devices.  
For example, a mouse can leave a trail of ink (commonly referred to as an ink-trail) 
behind the tracking symbol when the mouse button is pressed and the mouse is 
dragged.  Some systems use a pen and tablet.  In this case, marks are made on the 
display by writing on the tablet instead of the display.   

From a user’s point of view, these interfaces allow one to make marks and then have 
the system interpret those marks. There are, however, systems in which marks can 
be made but not recognized by the system.  They are interpreted strictly as 
annotations, for example, Freestyle (Perkins, Blatt, Workman, & Ehrlich, 1989).  The 
focus of this dissertation, however, is on systems in which marks are interpreted as 
commands and parameters. 

Much of the literature refers to marks as gestures. However, the term gesture is 
inappropriate in this context.  Indeed creating a mark does involve a physical 

                                                 

1  The pen, in these types of systems, is sometimes referred to as a stylus. 
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gesture but the real object of interpretation is the mark itself.2  For example, the “X” 
mark requires a completely different physical gesture if performed with a pen 
instead of a mouse.  Gesture is an important aspect of mark because some marks 
may require awkward physical gestures with the input device.  However, the two 
terms should be distinguished.  The term gesture is more appropriate for systems in 
which the gestures leave no marks, for example, VideoPlace (Krueger, Giofriddo & 
Hinrichsen, 1985).  The term mark is more appropriate for pen-based computer 
systems or applications that emulate paper and pen. 

1.2. WHY USE MARKS? 

Current human-computer interfaces are asymmetric in terms of input and output 
capabilities.  There a number of computer output modes: visual, audio and tactile.  
Most computers extensively utilize the visual mode; high resolution images which 
use thousands of colors of can be displayed quickly and in meaningful ways to a 
user.  In contrast, a computer's ability to sense user input is limited.  Humans have a 
wide range of communication skills such as speech and touch, but most computers 
sense only a small subset of these.  For example, keyboards only sense finger presses 
(but not pressure) and mice only sense very simple arm or wrist movements.  
Therefore, we believe the advent of the pen as a computer input device provides the 
opportunity to increase input bandwidth through the use of marks.3  

There are two major motivations for using marks.  The first addresses the problem 
of efficiently accessing the increasing number of functions in applications.  The 
second motivation is that there are some intrinsic qualities that marks have which 
can provide a more “natural” way to articulate otherwise difficult or awkward 
concepts (such as spatial or temporal information). Both of these motivations will 
now be examined in more detail. 

                                                 

2  There are systems where interpretation depends not only on what is drawn but also how it is drawn. For 
example, an "X" drawn quickly may have a different interpretation from a "X" that is drawn slowly. By this 
dissertation's terminology, these systems would contain a combination of marking and gesture recognition.  

3  It is ironic that one of the first input devices for graphics was a light pen which wrote directly on the display 
surface (Sutherland, 1963). 
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1.2.1. Symbolic nature 

The inadequacy of  mouse and keyboard interfaces is exemplified by applications 
that are controlled through button presses and position information.4  Buttons must 
be accessible and thus require physical space.  Problems occur when an application 
has more functions than can be mapped to buttons or reasonably managed on the 
display.  Other problems also exist:  arbitrary mappings between functions and 
buttons can be confusing, and user management of the display and removal of 
graphical buttons can be tedious. 

Expert users of these types of systems find the interface inadequate because button 
interfaces are inefficient.  The existence of interaction techniques that override 
buttons for the sake of efficiency is evidence of this.  Experts, having great 
familiarity with the interface, are aware of the set of available commands.  Menus 
are no longer needed to remind them of available commands and invoking 
commands through menu display becomes very tedious.   

Designers have addressed this problem in several ways.  One solution is accelerators 
keys which allow experts direct access to commands.  An accelerator key is a key on 
the keyboard which, when pressed, immediately executes a function associated with 
a menu item or button.  The intention is that using an accelerator key saves the user 
the time required to display and select a menu item or button.  Many systems 
display the names of accelerator keys next to menu items or buttons to help users 
learn and recall the associations between accelerator keys and functions. 

Another way of supporting an expert is by supplying a command line interface in 
addition to a direct manipulation interface.  Commodore’s command line interface, 
CLI, and graphical user interface, Intuition, are an example of this approach. 

Both these approaches have their problems.  In the case of accelerator keys, arbitrary 
mappings between functions and keys can be hard to learn and remember.  
Sometimes mnemonics can be established between accelerator key and function 
(e.g., control-o for “open”), but mnemonics quickly run out as the number of 
accelerator keys increases.  Further confusion can be caused by different applications 

                                                 

4 The term buttons is used as a generic way of describing menus items, dialog box items, icons, keys on a 
keyboard, etc., which are typical of direct manipulation interfaces.  
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using a common key for different functions or by different applications using 
different keys for a common function.  Experts must then remember arbitrary or 
complex mappings between keys and functions depending on application.  
Command line interfaces are problematic because they are radically different from 
direct manipulation interfaces.  To become an expert, a novice must learn another 
entirely different interface.  

Marks, because of their symbolic nature, can make functions more immediately 
accessible.  Rather than triggering a function by a button press, a mark can signal a 
command.  For example, a symbolic mark can be associated with a function and a 
user can invoke the function by drawing the symbol.  In theory, because marks can 
be used to draw any symbol or series of symbols, marks can provide a quicker 
method of choosing a command than searching for a physical or graphical button 
and pressing it.  In practice, the number of marks is limited by the system's ability to 
recognize symbols and a human's ability to remember the set of symbols.  
Nevertheless, even if only a small set of marks are used, a user can invoke the 
associated functions immediately.  

Marks can also be used to hide functions because they are user generated symbols.  
For example, researchers at Xerox PARC made use of this property when faced with 
a dilemma during the design of a pen-based application.  This application runs on a 
wall sized display where a user can write on the display using an electric pen (Elrod 
et. al., 1992).  There were two major design requirements.  First, the designers 
wanted the application to look and operate like a whiteboard and maximize the size 
of the area where drawing could take place.  Second, they wanted to provide 
additional functions commonly found in computer drawing programs.  This second 
requirement meant that many graphical buttons would need to appear on the 
screen. This, however, violated the first design requirement because the numerous 
graphical buttons would consume too much of the drawing area and make the 
interface look complicated.    

The design solution was to assign many of the drawing functions to marks.  Marks 
provided a way to hide additional functionality from novices while expert users 
could use the marks to access additional functions.  This design also avoided using 
buttons for these functions and, in many cases, marks were a much more effective 
way of articulating a function.  
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1.2.2. Intrinsic advantages 

The advantages of pen input and marks have been expressed in the literature (Bush, 
1945; Licklider 1960; Ellis & Sibley, 1967; Hornbuckle, 1967; Coleman, 1969; Ward & 
Blesser, 1985; Rhyne & Wolf, 1986; Wolf, 1986; Buxton, 1986; Welbourn & Whitrow, 
1988; Wolf,  Rhyne, & Ellozy, 1989; Morrel-Samuels, 1990; Kurtenbach & Hulteen, 
1990).  Specifically, marks provide the ability to: 

• embed many command attributes into a single mark; 

• reduce learning time due to the mnemonic nature of marks and users' existing 
knowledge of pen and paper marks; 

• capture and recognize handwriting and drawing; 

• enter different types of data without switching input device.  For example, text, 
menu selections, button presses, and screen locations can be entered without 
changing input device;5  

• replace the computer keyboard, thus making computers smaller and more 
portable; 

• maintain a visible audit trail of operations; 

• maintain a clear figure/ground relationship (Hardock, 1991).  For example, marks 
written over formatted text can be distinguished from the text. 

1.3. SELF-REVELATION, GUIDANCE AND REHEARSAL 

Despite all of these advantages, pen input and marks have not been widely used.  
Pen-based interfaces have many difficult technological requirements.  Historically, 
hardware for pen-based systems was too expensive and recognition was not reliable 
(Sibert, Buffa, Crane, Doster, Rhyne, & Ward,  1987).  Given these limitations pen-
based applications presented no advantage (in reality, more of a disadvantage) over 
a mouse-based version of the application. 

                                                 

5  This eliminates homing time between physical input devices but it does not eliminate homing time between 
graphical devices such as graphical buttons, sliders, etc. 
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This situation is changing and this change is clearly evident in the marketplace 
(Normile & Johnson, 1990; Rebello, 1990).  Several companies such as Go, Grid, IBM, 
Apple, Microsoft, and NCR are introducing pen-based systems.  Hardware and 
recognition has improved to the point where pen-based systems are technically 
possible.  Applications such as portable notebook computers and large whiteboard 
size computer screens make the pen an attractive input device (Goldberg & 
Goodisman, 1991; Weiser, 1991). 

On the surface, it appears that once the recognition and hardware problems are 
solved, pen-based systems will be successful.  However, there is still a serious 
interface problem when using marks.  

1.3.1. The problem: learning and using marks 

An intrinsic problem with marks is that they are not self-revealing.  In contrast, 
menus and buttons are self-revealing; the set of available commands and how to 
invoke a command is readily visible as a byproduct of the way commands are 
invoked.  An interface which uses only marks as a means of command entry cannot 
support walk-up-and-use situations.  A first time user has no way of finding out 
interactively from the system what marks/commands are available.  This situation is 
reminiscent of command line interfaces such as the UNIX shell or MS-DOS where 
the only information presented by the system is a command line prompt.  Some 
source of information distinct from the process of making a mark must be consulted 
before commands can be generated.   

The problem is even more acute.  Not only do users need to know what marks can 
be made but also when or where these marks can be made.  In menu and button 
interfaces, one can find out when and where a command can be invoked by which 
buttons or menu items appear active when an interface object is selected.  Marks do 
not have this property. 

Is there a problem? Aren't the existing pen-driven systems easy to use and self-
revealing?  Hybrid interfaces which use both direct manipulation and marks (e.g., 
the PenPoint or Momenta interfaces (Go, 1991; Momenta, 1991)) may be somewhat 
capable of walk-up-and-use.  However, only the direct manipulation components of 
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the interface can be used without external instruction.6 Manuals must still be used to 
find out about marks.  Hence these system do not solve the self-revealing/marks 
problem. 

The motivation for creating walk-up-and-use interfaces is strong.  Successful 
computer interfaces such as the Macintosh are based on the notion that “nobody 
reads manuals”.  These types of interfaces are designed to help a user learn and 
remember how to operate the interface without explicit external help such as on-line 
help or manuals (Sellen, & Nicol, 1990).  This situation can be viewed practically:  a 
user wants to get a certain task done;  this task can be accomplished using a 
computer tool;  the shortest path between the user and task completion is using the 
tool;  a manual will be consulted only if the tool cannot be used directly.   

If we expect a worker in the information age to utilize many different applications, a 
huge amount of training for each application is an unrealistic demand.  Users expect 
interfaces that are consistent and permit transfer of skills from other applications.  
They also expect interfaces to be self-explanatory and to guide a user in the 
operation of the application.  Thus, the motivation for walk-up-and-use self-
revealing interfaces is paramount. 

An argument can be made that walk-up-and-use interfaces are not efficient, but this 
argument misses the point.  The reason to make marks self-revealing is so a user can 
graduate from using the walk-up-and-use techniques to the more efficient marks.  
Once this graduation has taken place, the user can benefit from the advantages of 
marks such as efficient articulation and conservation of screen space.  The key to the 
success of this scheme is in how easily a novice can acquire expert skills. 

It can be argued that if marks are mnemonic, then no self-revealing mechanism is 
needed.  However, this argument is analogous to using mnemonic names for 
commands in command line interfaces.  This technique relies on the user “being a 
good guesser” and it has been shown that they are not; command naming behavior 
of individuals is extremely variable (Furnas, et al., 1982; Carroll, 1985; Jorgensen et 
al. 1983; Wixon et al., 1983).  The more fail-safe approach is to provide an explicit 
mechanism which explains the command set (Barnard & Grudin, 1988).  On the 

                                                 

6 Of course, even some of the direct manipulation components may require instruction. 
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other hand, other researchers have shown or argued that users commonly agree on 
certain marks for certain operations (Wolf, 1986; Wolf & Morrel-Samuels; Gould, & 
Salaun, 1987; Buxton, 1990).  Nevertheless, if we wish to use marks for operations 
which do not have commonly agreed upon marks, a mechanism must be provided 
for learning about these marks. 

We define three design principles to support learning and using marks.  We do not 
claim that these principles are unique.  Other researchers have described similar 
general principles, and many systems have interactions which obey these general 
principles.  However, we define specific design principles for two reasons.  First, our 
application of the general design principles to marks is novel, and second, our own 
specific definitions help us to explain and discuss the details of the application.  

The three design principles to support learning and using marks are self-revelation, 
guidance, and rehearsal. 

Self-revelation 

The system should interactively provide information about what commands 
are available and how to invoke those commands. 

When an interface provides information to a user about what commands are 
available and how to invoke those commands, we refer to this as self-revelation or 
the system being self-revealing.  Menus and buttons, for example, are self-revealing. 
The available commands and how to invoke those commands can be inferred from 
the display of menus or buttons.  Marks, on the other hand, are not self-revealing 
because they must be generated by the user.  

To ensure that every aspect of a system is self-revealing is a difficult task.  For 
example, displaying menu items may help a user understand what functions are 
available but does not guarantee that the user will understand, from the display, the 
mechanics of selecting a menu item.  

A common approach to interface design, and the approach that we adopt in this 
dissertation, is to rely on a user receiving a small amount instruction before starting 
to use the system.  These instructions explain the basic mechanics and semantics of 
operating the interface. For example, pointing, dragging, double clicking, and the 
meaning of these actions may be explained.  The Macintosh computer uses this 
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technique.  The intention is that with this small set of skills a user can start 
interactively exploring and learning about the remainder of the system.  

The interaction technique developed in this dissertation uses this type of design.  A 
user must be informed, a priori, that in order to display a menu the pen must be 
pressed against the display and held still for a fraction of second.  We call this “press 
and wait for more information”.  Once users have this bit of information, however, 
they receive further instructions interactively from the system.  In our model of the 
interface, users can interactively learn about what functions can be applied to 
various displayed objects by “pressing and waiting” on the objects for menus. 

The principle of self-revelation is based on interface design principles and 
psychological mechanisms proposed by others.  Norman and Draper (1986) propose 
a design principle to “bridge the gulfs of execution and evaluation”.  Specifically, a 
designer should make interface objects visible so users can see what actions are 
possible, how actions can be done, and the effects of their actions.  Shneiderman 
(1987) proposes a similar principle: “offer informative feedback”.   The principle 
states that objects and actions of interest should be made visible to the user.  
Shneiderman claims that this design principle is the basis of direct manipulation 
interfaces.   

The principle of self-revelation is distinct from affordance theory (Gibson, 1979; 
Gibson 1982).  Self-revelation is concerned with absence/presence of information 
about what functions are available and how to invoke those functions.  Affordance 
theory, in human computer interaction, is concerned with an interface object’s 
appearance suggesting its function  (Gaver, 1991).  These two notions, however, are 
related.  For example, consider the display of a pop-up menu.  The principle of self-
revelation  dictates, first, that function names or icons must be displayed, and, 
second, that they are displayed in a menu so that a user knows by convention how 
to invoke them.  Affordance theory, on the other hand, dictates that the name or icon 
for an item accurately suggests its function, and that the appearance of the menu 
suggest items are selectable.  Correct use of affordances may help reduce the amount 
of a priori instruction a user requires.  For example, items in a menu may “look” 
selectable (they “afford” selection) and therefore the user does not have to be 
explicitly taught these mechanics. 

Guidance 
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The way in which self-revelation occurs should guide a user through invoking 
a command. 

If an interface actually assists a user in the articulation of commands we refer to this 
as guidance.  For example, in the editor emacs, by hitting a “command completion 
key” while typing a command, emacs will display all the command names that 
match the partially completed command.  In effect, emacs “guides” a user in 
completion of the command, as opposed to waiting for the command to be 
completely typed before examining its validity.  Another example is selection from a 
hierarchic menu.  In this case, selection of an item guides a user to the next menu. 

Guidance does not necessarily have to be triggered by the user.  Some on-line help 
systems prompt the user with information to guide them through a command.  The 
critical point is that in these systems getting or receiving helpful information on how 
to invoke a command (guidance) does not interrupt the articulation of a command.  
On the other hand, a system like the on-line manual pages in UNIX violates the 
principle of guidance.  In this case, in order to receive information about what 
commands are available and how to invoke those commands, a user must terminate 
or at least suspend the act of invoking a command.   

Rehearsal 

Guidance should be a physical rehearsal of the way an expert would issue the 
command. 

Rehearsal is the notion of designing interactions such that the physical actions made 
by a novice in articulating a command are a rehearsal of the actions an expert would 
make invoking the same command.  The goal of rehearsal is to develop skills in a 
novice that transfer to expert behavior.  It is hoped that this leads to an efficient 
transition from novice to expert. 

Many interaction techniques support rehearsal.  When the basic action of the novice 
and the expert are the same for a particular function we can say that rehearsal takes 
place.  For example, novices may draw lines, move icons, or select from menus using 
the same actions as an expert when there is one and only one way of issuing the 
command.   In many cases, the single way of issuing the command may be suitable 
for both the novice and expert.   
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There are also many situations, however, where a single method for invoking a 
command is not sufficient. The popularity of accelerator techniques is proof of this.  
Typically, good interfaces provide two modes of operation. The first mode, designed 
for novices, is self-revealing.  Conventional menu-driven interactions are an 
example of this.  The self-revealing component of this mode is emphasized over 
efficiency of interaction because novices are more concerned with how to do things 
rather than how quickly things can be done.  The second mode, designed for 
experts, typically allows terse, non-prompted  interactions.  Command line 
interfaces and accelerator keys are examples of this mode.  However, usually there is 
a dramatic difference between novice and expert behavior at the level of physical 
action.  For example, a novice uses the mouse to select from a menu whereas an 
expert presses an accelerator key. 

The intention of the three design principles is to reduce this discrepancy in action 
without reducing the efficiency of the expert and ease of learning for the novice.  
The basic actions of the novice and expert should be the same.  It is hoped that as 
novice performance develops the skills that lead to expert performance will develop 
in a smooth and direct manner. 

1.3.2. Unfolding interfaces 

The principles of self-revelation, guidance and rehearsal support the notion of an 
unfolding interface.  An unfolding interface works as follows.  Initially, a novice is 
provided with a small amount of information about how to get information on parts 
of the interface.  For example, double clicking on an object may open it up or 
“unfold” it to reveal additional functions.  Thus, given this key to unfolding objects, 
a user can explore the interface, learning and using new functions.  The intention is 
that, with experience, exploration and use leads to expert knowledge of the system.   

There are other schemes which control the number and types of functions available 
to a user, for example, Training Wheels (Carroll & Carrithers, 1984).  These types of 
systems provide explicit novice/expert modes in which the novice mode has fewer 
functions than the expert mode.  The intention is to avoid confusing a novice with a 
large set of complex functions.  Once the reduced set of functions is mastered, the 
novice can switch to the larger “expert” set of functions.  The major difference 
between this approach and the notion of an unfolding interface is that an unfolding 
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interface has no explicit novice and expert modes.  An unfolding interface allows 
users to incrementally add functions to their repertoire.  

Marks, self-revelation, guidance and rehearsal can play important roles in an 
unfolding interface.  Unfolding is essentially an inefficient operation.  As suggested 
earlier, by associating marks with “hidden” functions, unfolding can be avoided.  
For example, rather than double clicking on an object to unfold it and then clicking 
on a function button, a mark can be made on the object to invoke the function.  To 
help users learn the marks associated with functions, it would be beneficial if 
unfolding a function also revealed its mark.  This is an application of the principle of 
self-revelation.  Ideally, we want the principles of guidance and rehearsal to hold as 
well;  we want to design an interface such that exploration is equivalent to invoking 
commands, and exploration allows a novice to practice skills that lead to expert 
behavior.   

1.3.3. Solution: ways of learning and using marks 

The concerns of this research are interfaces that use marks but are also self-
revealing.  Therefore, solutions for making marks self-revealing can be classified by 
how tightly coupled the act of marking is with the act of getting information about 
command/mark associations. 

Interfaces that use marks and only supply information about those marks through 
off-line manuals are considered to be at one end of a self-revelation continuum.  
These interfaces are not interactively self-revealing.  Interfaces which supply 
information about marks as a command is actually being articulated can be 
considered the other end of the self-revelation continuum.  These would be 
considered interactively self-revealing interfaces. 

In the following sections we classify solutions based on this criterion.  Since 
interfaces that use marks are still in their infancy there are few pre-existing 
examples. 

Off-line documentation 

Off-line documentation consists of manuals which provide information about how 
marks are used in an interface.  Examples of the marks are displayed and text or 
graphics provides information on their usage.  Although this type of scheme is not 
self-revealing it is of interest because, first, it is the status quo for pen-based 
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products and, second, it demonstrates the type of information needed for a user to 
understand marks.  

Figure 1.2 shows a section from a pen-based system's manual.  Clearly this type of 
scheme is not interactively self-revealing.  However, if the mark set is small, the 
documentation could be placed directly on the computer in the form of a “cheat 
sheet”.  This scheme would be partially self-revealing. 

 

Figure 1.2:  Typical off-line documentation for mark commands (PenPoint system, 
Go, 1991) 

On-line documentation 

This class is essentially the “on-screen” version of off-line documentation.  A user 
can display manual pages on-screen while the application in question is running.  
Note that this does constrain the user into suspending the real task of issuing a 
command while obtaining command information.   

Sometimes command information can be found in the application used to train the 
software module that recognizes marks.  Figure 1.3 shows one such example.  
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Figure 1.3:  Gesture handler window allows inspection of marks associated with a 
view in Rubine's system.   This window is, however, intended for the system 
programmer.  The window shows ten classes of marks but does not shows the 
semantics associated with each mark.   (from Rubine, 1990). 

Unfortunately, training interfaces are not designed specifically to deliver this type of 
information, and the information can be very minimal and confusing to the user. 

Microsoft's Windows for Pen Computing uses on-line documentation.  A special 
application provides a tutorial which features animations demonstrating marks and 
editing operations.  A user can also practice using the marks on sample text.  While 
the tutorial is effective, a user still has to change context (i.e., switch from the 
working application to the tutorial application) in order to get information on 
marks. 

On-line interactive methods 

On-line interactive methods supply information about marks as one issues a 
command.  Figure 1.4 shows an example where sample marks are displayed beside 
menu items.  Windows for Pen Computing using this technique to a limited degree.  
This technique relies initially on another interaction method such as menus or 
buttons to invoke commands.  In Figure 1.4, the interaction technique initially relied 
on is a menu.  As the menu is used, it reveals the marks that can be used.  Once a 
user remembers the mark associated with a command, the revealing technique (the 
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menu) can be bypassed and a more efficient mark can be used.  Figure 1.5 shows a 
system called XButtons which also uses this method.  In contrast to on-line 
documentation, an on-line interactive method does not constrain the user into 
suspending the real task of issuing a command, while obtaining command 
information. 

This method is similar to accelerator keys.  Every time a user uses a menu item or 
button, the mark is seen.  Like accelerator keys, the mark can be memorized and 
used as a shortcut in calling the command. Note that “accelerator marks” are more 
powerful that accelerator keys because they are not limited to characters on the 
keyboard, they indicate the object of the requested action by the location of the 
mark, and they can contain command attributes, such as destinations or modifiers.  

 

Figure  1.4:  An example of “accelerator marks” which allow quick access to menu 
items similar to accelerator keys. 
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Figure 1.5:  XButtons provides a menu which shows what commands are available 
from a button and the associated marks.  A command can be invoked by either a 
menu selection or by making the mark on the button (Robertson, et al, 1991). 

On-line interactive rehearsal methods 

This category is similar to on-line interactive methods except invoking a command 
using the self-revealing technique (i.e., a menu) makes the user physically rehearse 
making the corresponding mark.  In contrast, when using on-line interactive 
methods, the user does not physically rehearse making the mark (e.g., selecting 
“copy” from the menu in Figure 1.4 requires a vertical movement, not a hand drawn 
“C” movement). 

Marking menus, the technique focused on in this dissertation, is an example of this 
class (Kurtenbach & Buxton, 1991).  The complete definition of this technique is 
given in Chapter 2.  Figure 1.6 illustrates this technique in the context of creating 
three simple objects.  An expert uses simple shorthand marks to create and place 
circles, square, or triangles. 
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If a user is unsure of what marks can be made, the user presses the pen against the 
display and waits for approximately 1/3 of a second.  This signals to the system that 
no mark is being made and it then prompts the user with a radial menu of the 
available commands, which appears directly under the cursor.  The user may then 
select a command from the radial menu by keeping the pen tip pressed and making 
a stroke towards the desired menu item.  This results in the item being highlighted 
(see Figure 1.7).  The selection is confirmed when the pen is lifted from the display. 

 

Figure 1.6: An example of the technique using three simple shorthand marks.  Three 
objects can be defined:  a circle, square and triangle. A mark which is a simple 
straight line (shown here with an arrowhead to indicate drawing direction) defines 
the type of object created, and its placement.  
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Figure 1.7:  A radial (or “pie”) menu can also be popped up if the user does not 
know what commands or marks are available.  Rather than drawing a mark as in 
Figure 1.6 a novice keeps the pen pressed and a menu appears. An object can then 
be selected from the menu.  

The important point is that the physical movement involved in selecting a command 
is identical to the physical movement required to make the mark corresponding to 
that command.  For example, a command that requires an up-and-to-the-right 
movement for selection from the pie menu, requires an up-and-to-the-right mark in 
order to invoke that command.  The intention is that selection from the menu is a 
rehearsal of making a mark. 

Other menu layouts can be used for interactive rehearsal methods besides radial 
menus. Another possibility is a “bull’s eye menu” which is a menu that is divided 
into concentric circles rather than sectors, where each concentric circle corresponds 
to a different command (Figure 1.8).7  The corresponding marks are therefore 
discriminated by length rather than angle.  Many more exotic schemes have been 
proposed and are as of yet unexplored.8  Chapter 2 presents the motivation for 
choosing radial menus, and describes in detail the design of marking menus. 

                                                 

7  We thank Professor John W. Senders for this suggestion originally called “donut menus”.  Professor William 
Buxton later took great exception to the use of the word “donut” and suggested the more dramatic name of 
“bull’s eye menu”. 

8   Dr. Tom Moran has proposed a combination of donut and pie menus.  Dr. Stuart Card has proposed a 
continuous version of hierarchical marking menus. 
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Figure 1.8 Examples of alternate menu styles in which selection will result in a 
unique marks.  a) is a  “bull’s eye” menu which discriminates by mark length rather 
than angle.  b) is a “dart board” menu which discriminates by length and angle. 

1.4. THESIS STATEMENT 

This dissertation is an in-depth investigation of marking menus.  We present the 
thesis that marking menus are a valuable interaction technique.  When used in the 
proper situation, marking menus are easy and efficient to use, can be used with 
different input devices, and integrate well with existing interface techniques.  
Furthermore, marking menus allow a user to take advantage of writing skills with a 
pen and attain levels of performance not possible with other interaction techniques.  
To support this thesis, we present a design for marking menus, evaluate marking 
menus by means of user behavior experiments, and provide a case study of marking 
menus in practice.  We conclude our investigation by showing how the design 
concepts of marking menus, self-revelation, guidance, and rehearsal, can be 
generalized to other situations. 

The intention of this investigation is to provide practical guidelines for interface 
designers interested in using marking menus.  With this in mind, we describe when 
and where marking menus would be an effective technique, and the limitations and 
properties that must be observed and maintained for marking menus to work well 
in an interface.  We also describe the design principles behind marking menus and 
give examples of how these principles can be applied to other contexts. 
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1.5 SUMMARY 

This chapter has provided motivation for marks as an interaction technique, 
described a basic interface problem with marks, set out design principles to solve 
this problem and introduced an approach, marking menus, which observes these 
design principles.  In Chapter 2 we expand on our motivation for using marking 
menus and explain in detail the design and design rationale behind marking menus.  
Chapter 3 reports on an empirical study of the non-hierarchic marking menus.  
Chapter 3 is a condensed version of a paper that appears in Human Computer 
Interaction (Kurtenbach, Sellen, & Buxton, 1993).  Chapter 4 is a case study which 
reports on how marking menus can be designed into an application and investigates 
user behavior with marking menus in an “everyday work” situation.  Chapter 5 
presents an empirical study on the limits of user performance with hierarchic 
marking menus.  Chapter 5 is an expanded version of a paper published in The 
Proceedings of InterCHI ‘93 (Kurtenbach & Buxton, 1993).  Chapter 6 describes how 
we integrated marking menus into a pen-based application and applied the notions 
of self-revelation, guidance and rehearsal to this application.  Chapter 7 summarizes 
this dissertation and its contributions, and proposes future research. 
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Chapter 2: Marking menus 

In this chapter we expand on our description of marking menus.  First, we present a 
definition of marking menus and the motives for investigation.  Next, we describe 
previous research that is related to marking menus and we identify open research 
questions and the issues pursued in this dissertation.  Finally, we complete our 
description of marking menus by providing the complete rationale behind our 
design. 

2.1. DEFINITION 

A marking menu is an interaction technique that allows a user to select from a menu 
of items.  There are two basic ways (or modes) in which a selection can be 
performed: 

menu mode  In this mode a user makes a selection by displaying a menu.  A user 
enters this mode by pressing the pen against the display and waiting for 
approximately 1/3 of a second.  We refer to this action as press-and-wait.  A radial 
menu of items is then displayed centered around the pen tip.  A radial menu is a 
menu where the menu items are positioned in a circle surrounding the cursor and 
each item is associated with a certain sector of the circle. A user can select a menu 
item by moving the pen tip into the sector of the desired item.  The selected item is 
highlighted and the selection is confirmed when the pen is lifted from the display.  
(See Figure 2.1) 

mark mode  In this mode, a user makes a selection by drawing a mark.  A user enters 
this mode by pressing the pen against the display and immediately moving in the 
direction of the desired menu item.  Rather than displaying a menu, the system 
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draws an ink-trail following the pen tip.  When the pen is lifted, the item that 
corresponds to the direction of movement is selected.  (See Figure 2.1) 

selection using
menu mode

selection using
mark mode  

Figure 2.1:  The two basic ways of selecting from a marking menu. 

The key concept of marking menus is that the physical movement involved in 
selecting an item in menu mode mimics the physical movement required to select an 
item using a mark.   

Marking menus may also be hierarchic.  In menu mode, if a menu item has a 
subitem associated with it, rather than lifting the pen to select the item, the user 
waits with the pen pressed to trigger the display of the submenu.  The submenu is 
also a radial menu.  The user can then select an item from the submenu in the 
manner previously described.  In mark mode, a user makes a selection by drawing a 
mark where changes in direction correspond to selections from submenus.  Figure 
2.1 show an example of selecting from hierarchic menus using menu mode and 
mark mode. 

Using radial menus in this way produces a set of mark which consist of a series of 
line segments at various angles (“zig-zag” marks).  Marking menus which have no 
hierarchic items produce strictly straight line segments.  Figure 2.2 shows an 
example of a menu hierarchy and the associated marks. 
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Figure 2.2:  An example of a radial menu hierarchy and the marks that select from 
it.  Each item in the numeric menu has a submenu consisting of the items a, b, c and 
d.   A mark's label indicates the menu items it selects.  A dot indicates the starting 
point of a mark.  

It is also possible to verify the items associated with a mark or a portion of a mark.  
We refer to this as mark confirmation.  In this case a user draws a mark but presses-
and-waits at the end of drawing the mark.  The system then displays radial menus 
along the mark “as if” the selection were being performed in menu mode.  Figure 2.3 
shows an example of this. 

Other types of behavior can occur when selecting from a marking menu such as  
backing-up in a menu hierarchy or reselecting an item in menu mode.  Details of the 
behavior are discussed in Section 2.5.  
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Figure 2.3:  An example of mark-confirmation in a menu with three levels of 
hierarchy.  In (1), the user draws the first part of the mark then waits with the pen 
pressed for the system to recognize the selection so far.  In (2), the system then 
displays its interpretation of the mark and goes into menu mode for completion of the 
selection. 

2.2. MOTIVATION FOR STUDY 

We have many motives for studying marking menus;   they have advantages over 
traditional menus;  they use marks that are easy to draw and that are easy for 
computer to recognize;  they can be used for functions that have no intuitive mark;  
they are compatible with different interface styles;  and they exploit human motor 
skills.   In this section, we expand on these motivations. 

2.2.1. Advantages over traditional menus 

One motivation for studying marking menus is that they have many differences and 
potential advantages over the traditional menus used in current practice.  Examples 
of the current practice in menu design are the pop-up menus or pull-down menus 
on the Macintosh.  With these types of menus, selection is performed by popping up 
the menu and selecting items by pointing with the mouse.  Menu items can also be 
selected by pressing an accelerator key associated with a menu item.  There are 
several specific advantages marking menus have over these traditional menus:  

Keyboardless acceleration 

Marking menus allow menu selection acceleration without a keyboard.  With 
traditional linear menus, keypresses must be used to accelerate selection.  Marking 
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menus provide a method of accelerating menu selections when no keyboard is 
available. This is extremely important for portable, keyboardless, pen-based 
computers. 

Acceleration on all items 

Marking menus, if configured accordingly, can permit acceleration on all menu 
items.  With traditional menus, it is common for the application developer to assign 
accelerator keys to the most frequently used menu items.  This assumes that the 
application designer is able to predict the most frequently used menu items.  In 
many cases, however, it is not possible to accurately predict which menu items will 
be frequently used, if there is a large variance in the way an application may be 
used.  In contrast, with marking menus, the selection of all items can be accelerated 
by the user making a mark.  The designer does not have to predict, a priori, which 
items will be the most frequently used.   

Menu selection mimics acceleration 

Marking menus minimize the difference between the menu selection and accelerated 
selection.  Selecting a menu item from a marking menu physically mimics the act of 
making the accelerating mark.  The design intention is to help users become skilled 
at the movements required for accelerated menu selection.  This is dramatically 
different from traditional menus and accelerator keys where menu selection is 
performed with the mouse and accelerated selection is performed with the 
keyboard.  In this case selection from the menu in no way physically mimics 
selection using an accelerator key. 

Combining pointing and selecting 

Marking menus permit pointing and menu selection acceleration with the same 
input device.    This is an intrinsic property of marks and has been utilized by other 
researchers (e.g., Coleman, 1969; Rhyne 1987; Wolf & Morrel-Samuels, 1987).  In 
mouse-based direct manipulation interfaces it is very common to point to an object 
and then select a menu item.  If accelerator keys are used, this operation requires 
coordinating pointing with the mouse and pressing on the keyboard.  With a 
marking menu, not requiring a hand to be on the keyboard frees the hand to control 
other input devices or perform auxiliary tasks such as controlling a VCR transport or 
turning the pages of a book. 
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Spatial mnemonics 

Marking menus use a spatial method for learning and remembering the association 
between menu items and marks.  In contrast, traditional menus and accelerator keys, 
rely on symbolic mnemonics to help users remember the associations between menu 
items and keys.  Due the limited number of symbols on a keyboard, mnemonics 
often cannot be established between all menu items and their accelerators keys.  This 
results in menu item/key associations that may be arbitrary or inconsistent.  
Marking menus avoid this problem by relying on a consistent method to establish 
mnemonics: the shape of a mark corresponds to the spatial layout of a menu item in 
the menu hierarchy.   

2.2.2. Ease of drawing and recognition 

Marking menus use a very simple set of marks consisting of straight and zig-zag 
marks.  This simple set of marks has three advantages.  First, these types of marks 
are easy and fast to draw and are therefore suitable for accelerated performance.  
Ease of drawing is especially important when drawing precision is hampered by 
imperfect pen/display technology.  Second, computer recognition of these types of 
marks can be reliable, fast and user independent.  The recognizer requires little 
processing power and no training.  Third, any interface designer, by using marking 
menus, can make use of some of the advantages of marks without having to design 
their own mark symbols.  Of course, it is still necessary to design the layout of the 
menus. 

The single contiguous marks in marking menus have several advantages.  Other 
types of marks which require multiple non-contiguous pen strokes create many 
problems.  Recognizer design is more complicated when groups of strokes must be 
recognized. This is referred to as the segmentation problem.  Sometimes groups of 
strokes are distinguished by constraining the user to put all the strokes associated 
with a mark in a certain region.  Alternatively, strokes may be grouped by time.  
This constrains the user to momentarily pause between making different marks.  
With a marking menu mark, a user is not constrained by timing, size of mark, or 
location.  Recognition takes places the moment the pen is lifted. 

The marking menu mark set does have disadvantages.  First, a designer has no 
choice in the shape of the marks (besides what can be controlled through the layout 
of the menus).  Fortunately, marking menus do not prohibit the use of other mark 
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sets and mark recognition techniques (see Chapter 6 for a detailed discussion of this 
issue).  Second, the size of the mark set is limited by a user’s accuracy at drawing 
lines at various angles.  Third, the mark set is not particularly expressive.  The angle 
at which the stroke is drawn is used to define the type of mark.  The line must also 
be somewhat straight. This leaves starting point, ending point and temporal 
information about how the line was drawn to be used as additional information 
encoding parameters.  In contrast, other mark vocabularies permit many more 
parameters to be controlled by the shape of the mark (Makuni, 1986).  Nevertheless, 
we have discovered that the limited set of parameters of a marking menu mark can 
be quite useful (see Chapter 4). 

2.2.3. Marks when no obvious marks exists 

Researchers have shown or argued that users commonly agree on certain marks for 
certain functions (Wolf, 1986; Gould, & Salaun, 1987; Morrel-Samuels, 1990; Buxton, 
1990).  However, we believe that there are many situations where invoking a 
function with a mark could be beneficial but no commonly agreed upon mark exists 
for the function.  This is similar to icon design where some functions have no 
intuitive icon.  For example, there is no “natural mark” for “change pen width to 
thin”.  Marking menus might work well in these types of situations because the 
menu can provide textual or pictorial explanations of functions while the mark for 
the menu item provides a quick way to invoke the function.   

2.2.4. Compatibility with unfolding interfaces 

Marking menus are compatible with unfolding interfaces (described in Section 
1.3.2).  The intention is that menus pop up to self-reveal or unfold functions and the 
marks provide way to efficiently invoke the functionality.  Guidance and rehearsal 
are intended to help a novice learn the efficient way of invoking a function.    

2.2.5. Compatibility with existing interfaces 

Marking menus are compatible with popular input devices and interface paradigms.  
First, the type of marks used can be reasonably drawn with a mouse (Chapters 3 and 
5 explore this issue in detail).  Second, since traditional menus are created by the 
application calling library routines, by replacing the library routines, marking 
menus could be used in place of pop-up menus without changing a single line of 
application code or changing application functionality.  Finally, marking menus can 
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extend existing dialogue styles without major changes to an interface paradigm.  An 
example of this is HyperMarks, developed by the author (Kurtenbach & Baudel, 
1992), which is a Hypercard xcommand that supports marking menus in Hypercard 
(Apple Computer, 1992).  When a marking menu is used from a Hypercard button, 
the Hypercard button still retains its single function when pressed.  However, if the 
button is kept pressed, a marking menu pops up with more commands.  A user can 
select from the marking menu using menu mode or marks.  In this way, the function 
of a button can be extended. 

Marking menus can be effective because they are a pop-up interaction technique.  
When displays become small or very large, marking menus can be effective.  On 
large displays, a mark or a menu selection can be made at a user's current location 
without a long trip to a menu bar or tool pallet.  On small screens, since both the 
menu and mark “go-away” once performed,  no valuable screen space is consumed. 

2.2.6. Novices, experts, and rehearsal 

Marking menus are intended to support both the novice and expert user.  The 
intention is that a novice uses menu mode and an expert uses the marks.  Menu 
mode can provide the self-revelation and guidance needed for a novice to invoke a 
command.  The marks can provide efficient interactions for experts.   

Marking menus are also intended to support the transition between novice and 
expert.  Selection in menu mode provides the user with rehearsal for making a mark.  
In essence, using the menu trains a novice to use marks.  We believe that rehearsal 
helps in learning the association between mark and command. 

There are other menuing schemes which support the novice and expert and the 
transition between the two.  For example, the Macintosh supports novices by 
providing menus and supports experts by providing menu accelerator keys.  The 
transition between novice and user is supported by the user being reminded of the 
keystrokes associated with particular menu items every time a menu is displayed. 
This is done by having the names of the accelerator keys appear next to menu items 
in the menu.  However, actually using an accelerator key is avoidable. The user can 
always just select from the menu.  Furthermore, this is easiest because the user is 
already displaying the menu. The end result is that accelerator keys are sometimes 
not used even after extensive exposure to the menu.  With marking menus the user 
is not only reminded, but rehearses the physical movement involved in making the 
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mark every time a selection from the menu is made.  What makes marking menus 
unique from the accelerator key scheme  is that rehearsal is unavoidable.  We believe 
this helps in learning the association between mark and command. 

2.2.7. Utilizing motor skills 

 The idea of using physical rehearsal to train novices to become experts is a unique 
concept and is worth investigating for pedagogical reasons.  Marking menus 
purport to reduce the cognitive load of memorizing mark/command association by 
relying on muscle memory (since each mark/command is a distinct physical 
movement).  This technique is similar to the approach used in the Information 
Visualizer Project (Card et al, 1991).  The Information Visualizer relies on low level 
sensory input processing such as depth or motion perception to reduce the burden 
on higher cognitive processes in visualizing information.  Marking menus can be 
thought of in a similar manner.  It is believed that low level sensory output 
processes (muscle memory) are used to reduce the load on higher level cognitive 
processes.  We explore this issue in this dissertation.  

2.2.8. “Eyes-free” selection 

Selection by a distinct physical movement with a marking menu lends itself to 
“eyes-free” selection.  For example, most of us can draw the eight directions of a 
compass without looking.  Eyes-free selection is useful in situations where a user’s 
visual attention must be on something other than the selection process, for example, 
selecting commands while watching a video tape.  An eyes-free selection technique 
is also extremely valuable to the visually impaired. 

2.3. RELATED WORK AND OPEN PROBLEMS 

This dissertation develops and explores the use of marking menus. There is no 
previous research on this technique, per se, however, marking menus are based on 
radial menus (see Section 2.1 for the definition of radial menus). Therefore, research 
on radial menus is relevant. The most widely used instance of a radial menu is the 
pie menu (Hopkins, 1991).  A pie menu is a radial menu where the visual 
representation of the menu resembles a sliced pie.  Other types of visual 
representations are possible, for example, we have developed an alternative 
representation for a radial menu which does not look like a pie (see Figure 2.12). 
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Two instances of radial menus are pie menus and command compasses.  We now 
describe these two techniques, contrast them with marking menus, and report on the 
current state of research on their design and usage. 

2.3.1. Pie menus 

To date, there is little research on pie menus.  The origin of pie menus can be traced 
back to radial menus proposed by Wiseman, Lemke, & Hiles (1969).  Since then, 
research on pie menus has mainly been concerned with menu layout and suitable 
applications (Hopkins, 1991; Hopkins, 1987).  The only empirical study of pie menus 
investigated menu item selection time and error rates for 8-item menus but 
concentrated on comparing them to linear menus (Callahan, Hopkins, Weiser, & 
Shneiderman, 1988).  It was found that selection from pie menus was significantly 
faster (15%) and produced marginally significant fewer errors (42%) than linear 
menus.  The experiment also investigated the effect of using menu items with a 
natural linear ordering (i.e., “First”, “Second”, “Third”, etc.), with a natural radial 
ordering (i.e., “North”, “North-east”, “East”, etc.), and with an unclassifiable 
ordering (i.e., “Center”, “Bold”, “Italic”, etc.).  Callahan et al. hypothesized that 
certain types of menus (pie or linear) would perform better with items that have a 
certain type of natural ordering (radial, linear, or unclassified).  A marginally 
significant correlation was found between menu types and types of orderings.  The 
weak correlation occurred because selection time means for the pie menus were 
lower even on items with natural linear orderings.  Results also showed that 
unclassified menu items produced significantly slower selections than ordered 
menu items regardless of menu type.   

What has not been extensively studied is the claim that muscle memory for different 
gestures plays a helpful role in menu selection.  Anecdotal evidence from designers 
of pie menu systems suggest that item selection from a menu hierarchy is possible 
without displaying the menus after practice (Hopkins, 1987).  Not only was 
unprompted selection possible but it was also desirable for efficiency reasons. 

Unprompted selection is supported in pie menus by a technique called mousing-
ahead.  Mousing-ahead means the user does not have to wait for the system to 
display the menu before moving the cursor to make a selection.  As the user moves 
the cursor, the input system buffers cursor location data.  When the menu is finally 
displayed, the system reads the buffered data and analyzes it as if it were generated 

 32



 

with the menu displayed.  The system then immediately selects a menu item and 
removes the menu.  In this way a user can make a selection without waiting for the 
menu to display (in effect, the mouse is being operated “ahead” of the display, 
hence the term mousing-ahead).  Hopkins' implementation is slightly more 
sophisticated than just described.  Menu display is suppressed until the user stops 
moving the cursor.  

On the surface, it appears as if a marking menu is a pie menu with an ink-trail 
added to cursor.  However, there is a major difference in the way the two techniques 
behave.  Marking menus, depending on the context, may use sophisticated 
recognition.  Marking menus analyze the path of a cursor as a mark, looking for 
certain features.  If the interface recognizes other types of marks, a mark has to “look 
like” a marking menu mark before it can select from the menu.  For example, 
suppose an interface recognizes a “C” mark (e.g., “C” triggers the copy command) 
and also marking menu marks (i.e., zig-zag marks).  If mousing-ahead was used, the 
“C” would select the bottom item of a menu (assuming the user started drawing 
from the top of the “C”).  With marking menus, the recognizer identifies the mark as 
a “C” and not as a zig-zag mark.  Chapter 6 discusses in more detail, issues of 
integrating marking menu marks with other types of marks. 

As a consequence of mark recognition, marking menu marks can be performed more 
casually than mousing-ahead movements with pie menus, especially with hierarchic 
menus.  Mousing-ahead on pie menus must be an exact imitation of cursor 
movement used when selecting with the menu displayed.  Marking menus, on the 
other hand, recognize the shape of the mark, independent of size and therefore the 
user can be more casual when drawing marks as opposed to mousing-ahead.  There 
are designs where mousing-ahead can be made independent of movement size but, 
in general, this is not possible.  See Section 2.5.6 for a detailed discussion of these 
issues. 

The visual difference between marking and mousing-ahead is that marking leaves 
an ink-trail after the cursor, whereas mousing-ahead does not. We believe that, 
without an ink-trail during selection, a user must visualize selection from the menu.  
With an ink-trail, the user does not have to visualize selection, but rather remember 
the mark associated with a menu item and then correctly draw the mark. We believe 
the ink trial provides feedback which helps the user to correctly draw the mark. 

 33



 

2.3.2. Command compass 

An interface mechanism very similar to a marking menu is the command compass 
used in the Momenta pen-based computer.  Figure 2.3 shows how the command 
compass is used to move text.   

 

Figure 2.3:  The Momenta Command Compass (Momenta, 1991). 

There are several differences between the command compass and marking menus.  
First, the command compass does not permit reselection.  Once the pen is moved in 
the direction of a command, that command is immediately selected.  Second, an 
explicit unprompted selection mode is not provided.  No ink-trail is provided and 
unprompted selection relies on mousing-ahead (or “penning-ahead”, since 
Momenta is a pen-based computer).  While the Momenta interface uses marks, the 
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command compass does not utilize marks.  Finally, only one type and size of 
command compass is used.  No hierarchic command compasses are supported. 

The subtle difference in the way selection is done with a command compass versus 
selection with a marking menu affects the type of interactions each technique can 
support. With marking menus command selection occurs after a sector has been 
moved into and the pen lifted. With the command compass, command selection is 
done the moment a sector is moved into.  Thus when selection occurs, the user is 
still in a physical mode (keeping the pen pressed).   This physical mode can be used 
to express more parameters for the command, hence, physically pairing a command 
verb and its parameters.  This is, of course, at the expense of not permitting 
reselection.   

2.4. RESEARCH ISSUES 

The ultimate goal of this research is to create a useful interaction technique.  To 
attain this goal, several things must be accomplished.  First, we must create a design 
for marking menus.  Next, this design must be evaluated to determine its limitations 
and possible applications.  From these evaluations, we can refine our design and 
develop recommendations for interface designers about when, where, and how 
marking menus can be beneficial.  Given these goals, research issues surround the 
following question:  what characteristics of marking menus do we need to 
understand to effectively incorporate this mechanism into the interface? 

The most immediate question about marking menus is: how many items can be 
placed in the menus before it becomes too difficult to make selections using marks?  
Common sense tell us that parameters governing this aspect are articulation 
accuracy (i.e., how precisely can a human draw directional strokes), and human 
memory limitations (i.e., how quickly can a human learn and remember associations 
between menu items and marks).  Other issues concern how hierarchic structure 
affects selection performance, how command parameters can be attached to marks, 
and how the design can be varied to accommodate the constraints of an interface.  
The following sections expand on these issues. 

 35



 

2.4.1. Articulation 

Accuracy in selecting menu items and in marking is limited by the human motor 
system and the input device being used.  This constrains the number of items that 
can be placed in a marking menu.  Articulation refers to the motor system activities 
associated with selecting from a menu or making a mark, not memory activities like 
recalling the mark associated with a menu item.  For example, suppose a user 
remembers the mark for a desired menu item.  Can the user draw the mark 
accurately enough to select the menu item?  In other words, can the user successfully 
articulate the mark once it is remembered?  

Many factors may affect the success of articulation: 

The type and characteristics of the input device.  While the pen appears to be a 
natural input device for marks, operating marking menus with other types of input 
devices is also desirable.  Thus, it is of interest to study users' performance not only 
with a pen but also with other popular types of input devices. 

The number of items in a menu.  As the number of items in a menu increases, the 
size of the menu items decreases and therefore pointing to them will become more 
error-prone and slower.  Using a mark for selection should behave in a similar 
fashion.  Precision of marking must increase as the number of items increases. 

The type of articulation feedback provided.  Feedback helps a user verify that a 
selection is being successfully articulated.  For example, highlighting a menu item 
provides feedback.  Supplying an ink-trail is another form of feedback, but is 
perhaps less salient.  Finally no ink-trail (i.e., just the pen's or cursor's movement) 
provides even less feedback. 

Chapters 3 and 5 investigate the effect of these factors through empirical 
experiments which measure speed and accuracy of selection when using marking 
menus.  The results from these experiments are then interpreted to produce design 
guidelines. 

2.4.2. Memory 

Another aspect of marking menus concerns human memory.  Using a mark to select 
from a marking menu involves, first, learning the association between menu item 
and mark, and then, recalling the association from memory before articulating the 

 36



 

mark.  There are several ways in which learning and recall can occur.  For example, 
a user can memorize the association by rote memory (“this mark invokes this 
command”), or a user can reconstruct a mental image of the spatial layout of the 
menu or process of selection.   

There are other factors affecting learning and recall.  Differences in the angles 
between items must be memorable enough so the angle can be reproduced in 
drawing the mark.  For example, a user may remember an item was the third from 
the top in a very densely packed menu, but the angular difference between items 
may be so small that it cannot be remembered precisely enough. 

Whatever technique is used to remember the mark/item association, the exact 
limitations of marking menus relative to the limitations of human memory is a very 
complex question.  Human memory in some situations can be considered almost 
infinite.  For example, humans are capable of memorizing many complex symbol 
systems such as languages.  With enough practice, the paths through extremely 
complex hierarchies of menus could be memorized and recalled.  The question of 
how quickly one “learns the marks” depends on many variables: frequency of use, 
presence or absence of mnemonics or metaphors, menu layout, intelligence, 
motivation, application, etc.   

Determining hard figures for “learning time” or “maximum number of items” 
relative to human memory is not possible.  These measures depend largely on the 
user and the application.  The intent of this research is to come up with guidelines 
that help designers exploit aspects such as frequency of use, metaphors, and menu 
layout to help make marking menus easier to learn. 

In the case of marking menus note that training time is not as critical as with other 
interface techniques because a user “trains on the job”.  A user of marking menus 
does not have to spend time training before the selections can be performed.  A 
novice can use the menus while a forgetful expert may occasionally have to use the 
menu.  In either case, the user will still be performing “training on the job”. 

Do users learn and use marking menus the way the design suggests?  The three 
modes of interacting with a marking menu (menu, mark-confirmation and mark 
modes) are intended to support the transition from problem solving to skilled 
behavior in a user.  Card, Moran and Newell (1983) suggest that novices exhibit 
problem solving behavior (“how do I do this?”) and experts exhibit skilled behavior 
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(an expert knows how to solve the problem and does it efficiently).  Rasmussen 
(1984) further refines this notion to include a middle step called rule-based behavior.  
Informally, rule-based behavior can be thought of as the user explicitly thinking “in 
order to do this I must do this”.  As Figure 2.3 shows, these stages of behavior can be 
mapped to the three modes of marking menus. The intention is that these modes are 
designed such that use of one mode builds the skills for the next mode and this 
assists in making the transition between modes.  Do users actually behave this way 
with marking menus?  If not, what sort of behavior is occurring and why?  

We examine these issues of learning and remembering through empirical 
experiments (Chapter 3 and 5), and user behavior case studies (Chapter 4).  The 
empirical experiments reveal learning curves and insights into the sort of menu 
structures that assist in learning and remembering menu layout and marks.  A case 
study of user behavior using marking menus in a real application investigates 
learning and behavior patterns when marking menus are used in “everyday work” 
situations.   

Novice

Problem solving Rule based Skilled

Expertise

Intermediate Expert

Menu mode Mark confirmation Mark mode

Type of
user

Stage of
behavior

Behavior
with marking

menus

 

Figure 2.3:  The relationship between stages of behavior, type of user, a user's 
behavior with a marking menu and expertise. 
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2.4.3. Hierarchic structuring 

Another question concerns the effect that the structure of the menu hierarchy has on 
user performance.  Specifically, how is user performance affected when breadth or 
depth is increased?  (Depth is the number of levels in a hierarchy of menus;  breadth 
is the number of items in a menu.)  

Most of the research on hierarchic structuring of traditional menu systems focuses 
on depth versus breadth.  This research can be divided into two types of studies: (1) 
theoretical models describing menu structure and user performance, and  (2) 
empirical studies of menu usage.  The theoretical studies concern models that 
describe menu search performance based on structure.  From these models, 
structures that optimize search-time can be produced.  The empirical studies 
attempt to verify the theoretical models, and estimate search time and error rates.  
These research efforts have addressed some basic issues concerning depth versus 
breadth. 

The navigation problem (getting lost or using an inefficient path to find a menu item) 
becomes more likely as depth increases.  Snowberry, Parkinson and Sission (1983) 
showed that error rates increased from 4% to 34% as menu depth increases from one 
to six levels. 

Despite the problem of errors, there are several reasons to increase menu depth: 
crowding, insulation and funneling.  Crowding refers to the problem of not having 
enough space on the screen to simultaneously display all the menu items.  Insulation 
refers to the hiding information in deeper menus to protect a user from information 
overload.  Funneling refers to the structuring of menus such that the hierarchy helps 
a user “narrow down” the choice and access items more quickly than using a flat 
menu structure.   

Lee and MacGregor (1985) examine the tradeoff between funneling and response-
execution time.  Assuming all items were viewed before a selection is made, they 
found that optimal breadth was between 3 to 8 items per menu level depending on 
user response time and computer processing response time.  Depth was effective 
when user response times were fast and computer processing time per option was 
slow.  If it is assumed that the search terminates on average halfway through the 
items, then the optimal breadth is between 3 to 13 items at each level.  These results 
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should be tempered by the fact that they are based on a theoretical model and not on 
empirical user tests. 

If meaningful groupings of items are used, Paap and Roske-Hofstrand (1988) show 
that optimal breadth at any level tends to be in the range of 16 to 36 and sometimes 
as high as 78 for traditional menu systems depending on human and computer 
response time.  In terms of marking menus, these ranges are well outside the 
maximum number of items that can be selected with a mark.  This raises the issue 
that reduction of breadth in a marking menu may increase the performance of 
marking but degrade the efficiency of menu selection in the menu mode.  

Menu search time increases monotonically with depth (Landauer & Nachbar, 1985).  
This produces a log-linear relationship between search time and number of menu 
items.  Kiger (1984) also found that performance (time and accuracy) decreased as 
depth increased further confirming that depth presents navigation problems to 
users.   

Kiger also included error recovery in his analysis.  This increased the variance in 
search time from 6 seconds to 20 seconds.  Since error recovery occurs in the real 
world, this study more realistically characterizes the costs associated with 
hierarchical structuring.  Kiger tested five types of hierarchical structures varying 
the depth from two to six levels and the breadth from two to eight items.  

Performance can vary at different levels of the hierarchy.  Snowberry, Parkinson and 
Sission (1983)  report on error rate versus hierarchy level in a six level hierarchy.  A 
higher proportion of errors occurred at the top two levels of the hierarchy than at 
the bottom two despite the fact that every level was a binary choice.  The 
explanation for this is that higher level items are more abstract and therefore more 
subject to misinterpretation.  Kiger also found that search times gradually become 
faster as a user came closer to the goal item.  Other studies have revealed opposite 
results—better performance occurred at top levels (Allen, 1983).  The explanation 
offered for the differences is that users were much more familiar with the top level 
items than the lower level items.  This lends support to the notion that performance, 
structure, and item semantics in menus are intimately related. 

Paap and Roske-Hofstrand (1986) point out that users restrict navigation because the 
menu structure has semantics or because they have experience with the menu.  Both 
Card (1982), and McDonald, Stone, & Liebelt (1983)  report that effects of 
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organization disappear with practice.  In other words, with practice, users navigate 
directly to the desired menu item.  With experience, users move from a state of great 
uncertainty to one of total certainty.  This lends support to the hypothesis that 
marking menu users will use marks with practice. 

The previous research on depth versus breadth in menus indicates two important 
points relative to marking menus.  First, users need to explore to make selections 
from menus with which they are not familiar, and the semantics associated with the 
structure has an effect on human performance.  Marking menus behave somewhat 
like traditional menu systems when used in the menu mode (i.e., users can see item 
names and navigate through the hierarchy).  Therefore, we can assume that the 
research findings mentioned above are applicable in menu mode.  Second, once 
familiar with the menu structure, users of traditional menu systems want to directly 
select an item.  In other words, users no longer require a menu.  This behavior bodes 
well with using a mark to select from a marking menu.   

Since the previous research in this area is somewhat applicable to the menuing 
mode of marking menus, the open research issues concern using mark mode to 
access hierarchic marking menus.  The main issue is the effect of breadth and depth 
on user performance when using marks.  Specifically, how deep and how wide can 
menus be made before marking becomes too slow or error prone? What sort of 
structuring makes mark articulation easier?  For example, selection using marks 
from a menu with 16 items seems difficult.  Selection from a menu with two levels of 
four item menus (16 items in total) seems more reasonable.  In Chapter 5, we 
examine the effect of breadth and depth on marking by means of an empirical 
experiment on human performance using marks to select items from hierarchic 
marking menus. 

2.4.4. Command parameters and design rationale 

Besides the angle of a mark specifying the command verb, other aspects of a mark 
can express command parameters. For example, a mark’s starting point, ending 
point and size can all contribute to command semantics.  The question is how can 
these aspects of a mark be exploited in an interface?  Issues of this type are examined 
in a case study which involved implementing marking menus in a real application 
(Chapter 4). 
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Subtle differences in design may have a profound effect on the way in which 
marking menus can be used.  For example, a design that uses selection upon sector 
entry (e.g., the Momenta command compass) must be used differently than a design 
that uses selection on pen release (e.g., marking menus).  These small design details 
can have a large impact on a design's ability to support hierarchic menus, 
command/parameter pairing, and reselection.  In section 2.5, we describe this 
design space and present a design rationale for marking menus. 

2.4.5. Generalizing self-revelation, guidance and rehearsal 

Marking menus provide self-revelation, guidance, and rehearsal for the particular 
class of mark.  Specifically, this is the type of mark that is created as a byproduct in 
selecting from directional menus.  We referred to this class of marks as “zig-zag” 
marks.  A pen-based application may also use other types of marks (e.g., editing 
symbols).  There are two issues concerning the relationship of marking menus and 
other types of marks. First, can marking menu marks be integrated with other types 
of marks?  Second, can a mechanism be developed to provide self-revelation, 
guidance and rehearsal for  other types of marks?   

A major advantage of marks is the ability to use features of a mark as additional 
command parameters.  For example, a copy mark not only specifies that a copy 
command should be executed but also specifies what should be copied and to where 
it should be copied.  How self-revelation, guidance and rehearsal can be provided 
for this type of information is an open question.  Chapter 6 addresses this question. 

2.5. DESIGN RATIONALE 

This section presents the design rationale behind marking menus.  First, the 
fundamental goals and the space of the design are defined. Next, an explanation and 
taxonomy of design options is presented.  Finally, the rationale for choosing a 
particular set of options for the design of marking menus is given. 

2.5.1. Fundamental design goals 

The fundamental design goals of marking menus are:  
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• in the mark mode, speed of selection is emphasized over the self-revealing 
features. 

• in the menu mode, self-revelation and guidance are emphasized over speed of 
selection 

• in menu mode movement must be as close as possible to a rehearsal of marking.  
Ultimately, using the menu must facilitate learning the marks. 

The last goal dictates that marking must mimic selecting in menu mode.  
Furthermore, marks must be distinguishable from one another. This provides a 
further goal for the design: 

• selection in menu mode must create a unique path which can be reliably 
recognized by a computer.  

We next examine the types of designs that address these goals. 

2.5.2. The design space 

In the most general sense, the design space can be described as: “discriminating 
selections from menus by cursor movements”.    Linear menus, array menus, and 
radial menus all fall into this design space.  Linear menus are menus where the 
items are laid out in sequential linear fashion (top to bottom, or left to right). Array 
menus are menus where the items are laid out in both a top to bottom and left to 
right fashion.  Radial menus are menus where the items are laid out in a circle.  In 
these types of menus, the position of the cursor ultimately determines the item 
selected.  A design that does not fit in this class would be menu selection based on 
time.  In this case, the computer cyclically displays each menu item and the user 
presses a button when the desired item appears.  This type of menu selection is often 
used in interfaces for handicapped users. 

In this space, selection is performed relative to a starting point and the amount and 
direction of movement determines the selection being made. For example, in a linear 
menu, when the cursor is initially placed on the first item in the list, selection is 
determined by how far the cursor is moved down the menu. 

Within this design space we are only considering designs in which menu selection is 
a physical rehearsal of marking.  We want each movement path traced by a menu 
selection to be unique relative to the other movement paths involved in selecting 
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from the menu.  This will result in an unambiguous language of movements (or 
marks when the cursor leaves an ink-trail). 

Within this design space we can identify several important design issues. These 
issues are discrimination, control, selection, display, backing up, and aborting. 

2.5.3. Discrimination method 

Discrimination method is defined as the type of movement used to discriminate 
selections.  This can be either angle, length, or a combination of the two.  Figure 1.8 
shows a menu that uses length, and another menu that uses the combination of 
length and angle.  Whether humans are better at discrimination by length or by 
angle is an open question.9  In our context, discrimination by angle is preferable to 
discrimination by length for two reasons: efficiency, and scaling and rotation issues.   

Under certain conditions, discrimination by angle (radial menus and angular marks) 
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discrimination by angle discrimination by length(a) (b)  

Figure 2.4: An example where discrimination by angle makes selection faster than 
discrimination by length.  The lines with arrow heads show the movement needed to 
select an item.  In the discrimination by angle case, selection of any item requires a 
movement of distance d.  In the discrimination by length case, assuming all items are 
accessed with the same frequency and distance is equivalent to movement time, the 
average selection time will be 2L, where L is the height of a menu item.  Assuming d 
is 0.5L, selection is four times faster with discrimination by angle. 
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allow faster selection than discrimination by length (linear menus and linear marks).  
First, because all the menu items are equidistant from the center of the menu in a 
radial menu, selection time is approximately the same for any item in the menu.  In 
contrast, with linear menus, the first item can be selected more quickly than the last 
item in the menu.  Figure 2.4 shows an example which compares a four-item radial 
menu and a four item linear menu.  As described in Section 2.3.1, Callahan, 
Hopkins, Wieser, & Shneiderman (1988) have empirical evidence that eight-item 
radial menus are 15% faster and produce 42% fewer errors than eight-item linear 
menus.  Treating selection from a radial menus as a one dimensional pointing task, 
and assuming that the amount of area used by a radial menu and a linear menu are 
the same, it can be shown that target size in a radial menu will always be larger than 
target size in a linear menu.  For example, in Figure 2.4, the target size in the radial 
menu is the diagonal of an item.  In contrast, target size in the linear menu is the 
height of an item.  However, as the number of items increase in a radial menu, 
pointing to the narrow slices will become more difficult.  To compensate for this, 
users will have to move farther away from the center, thus slowing their selection 
time.  Determining the point where performance with a radial menu will degrade to 
the performance level of a linear menu is an open problem.  Current research on two 
dimensional pointing (Mackenzie & Buxton, 1992) only deals with rectangular 
targets and therefore cannot be directly applied to radial menu slices.   

There are also issues related to mark-based interfaces that make discrimination by 
angle preferable.  Angular marks are preferred over linear marks because an angular 
mark can be scaled without changing its meaning (or, rather, changing the item the 
mark selects).  In terms of a mark-based interface this means that a user is not 
restricted to draw the marks at a prescribed size.  For example, a small “L” shaped 
mark would have the same meaning as a large “L” shaped mark.  This is not the case 
with marks that are discriminated by length.   

However, the meaning of angular marks changes if the mark is rotated.  Rotating a 
horizontal to the right mark 45 degrees will cause it to be interpreted as a down to-

                                                                                                                                                       

9  It should be noted that discrimination can be performed at the reading or at the writing level (i.e., perception 
versus production of marks).  These are significantly different problems.  This dissertation examines production 
of angular marks.  See Westheimer & McKee (1977) for a discussion of the perception of angle and length. 
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the-right mark by the system.  In contrast, linear marks are not affected by rotation 
(i.e., a bull’s eye menu.  See Figure 1.8).   

Discrimination by angle better reflects the way marks are interpreted in everyday 
life.  Marks are generally insensitive to scaling but sensitive to rotation.  For 
example, a small “l” has the same meaning as a large “l” but if it is rotated 90 
degrees it perhaps takes on the meaning of “dash”.  

There is also the issue of C:D ratio.  C:D ratio is defined as the ratio between the 
amount of movement of the input device (Control) and the amount of movement 
this imparts to the cursor (Display).  On a pen-based system, the C:D ratio is 
constant and one to one because the cursor follows directly under the pen tip.  For 
example, a one inch movement of the pen corresponds to a 1 inch mark.  Therefore, 
with pen-based systems, C:D ratio is not an issue.  However, with input devices that 
do not write directly on the display, (i.e., the mouse), C:D ratio is an issue.  A one 
inch movement of the mouse may result in different lengths of marks on different 
computers if they have different C:D ratios.  C:D ratios that vary depending on the 
speed of the movement (referred to as cursor acceleration) complicate this situation 
even further.  A one inch movement made quickly can generate a much longer mark 
than the same movement made slowly, for example.  Therefore, under these 
conditions, discrimination by length may be unreliable.  However, discrimination by 
angle is not affected by varying C:D ratios.  For example, a 45 degree mark is a 45 
degree mark whether or not it is one or two inches long.  Since it is desirable that our 
technique be usable with other input devices besides the pen, discrimination by 
angle is a better choice.  

2.5.4. Control methods 

Selection from a menu with a pointing device is generally accomplished by dragging, 
by tapping, or a combination of the two. We refer to these as the control methods.  
When dragging is the control method, pressing the pen down on the screen (“pen-
down”) displays the menu; moving the pen while it pressed against the screen 
(“dragging”) selects different items; lifting the pen from the screen (“pen-up”) 
confirms the selection.  When menus are hierarchic, dragging into certain areas may 
cause submenus to be displayed for selection.  When tapping is the control method, 
a pen-down followed quickly by a pen-up (a “tap”) causes the menu to be 
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displayed;  a “tap” over an item confirms its selection.  If the menu is hierarchic, the 
selection will result in another menu being displayed.   

Dragging is preferred because selection in menu mode must be a rehearsal of the 
movement needed to make the mark.  Marks are created by dragging the pen across 
the display surface and therefore dragging is a more accurate rehearsal of marking 
than tapping. 

Marking menus use an action called press-and-wait to allow the user to switch into 
menu mode.  We elected to use this action for several reasons.  First, it deviates very 
slightly from the act of marking (the wait is only 1/3 of second).  Thus the principle 
of rehearsal is not dramatically violated.  For example, an action such as holding 
down a special key or making a special movement to invoke the menu would be a 
much more dramatic violation of rehearsal.  Second, when a user wants to avoid 
menu mode, it usually means one wants to articulate the command quickly.  Press-
and-wait is easily avoided by quick articulation and avoiding it also makes selection 
faster.  Third, according to our design goals, we assume that novices are not 
concerned with fast selection and therefore a slight delay in selection is a minor 
inconvenience.   However, as users become more experienced with the menus and 
desires faster selection, the delay may also provide incentive to use marks.  

There are other reasons why delaying the pop-up of the menu is valuable:  it can be 
distracting;  it can obliterate part of the screen; and it takes time.  For a novice user 
these may not be problem since displaying the menu is desirable.  For expert users, 
however, a delayed menu pop-up allows the creation of marks and avoids the 
negative side effects of the menu's display.  

2.5.5. Selection events: preview, confirm and terminate 

There are several events that occur when making a selection.  Selection from a menu 
generally involves some sort of feedback indicating which item is about to be 
selected, for example, an item highlights. We refer to this capability as selection 
preview.  Selection also involves an action which indicates to the system that it 
should actually carry out the selection. We refer to this as selection confirmation. 

In the non-hierarchic case, selection confirmation results in the termination of the 
entire selection process.  In the hierarchic case, selection confirmation will not 
necessarily terminate the selection process if the item selected has a sub-menu.  We 
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use the term selection termination to indicate the action that ends the entire menu 
selection process.  In non-hierarchic case, selection confirmation and selection 
termination are combined in the same action.   

There are many different types of input events that could be used to signal selection 
confirmation:   

• Pen-up/pen-down 

• Item entry:  Item entry means selection confirmation occurs the moment the pen 
enters an item.   

• Boundary crossing:  Boundary crossing means that selection confirmation occurs 
when the pen crosses the outside border of a menu item.   

• Dwelling:  Dwelling is the act of keeping the pen pressed and not moving for a 
fraction of a second.  A user can avoid issuing dwelling events by keeping the pen 
moving.  Press-and-wait is an example of a dwelling event.  However, we 
distinguish between these two events because press-and-wait signals the entry into 
menu mode while dwelling signals selection confirmation. 

• Events distinct from pen movement:  This includes things like a button press  or an 
increase in pressure with a pressure sensing pen.  

The type of selection confirmation event used affects other design features: 

• mimicking drawing a mark:  Since selection from a hierarchy of menu items involves 
a series of selection confirmations and we wish to mimic that act of making a mark, 
an event for selection confirmation that does not interrupt dragging must be used. 

• reselection:  In some cases, a user may desire to change the previewed selection.  
For example, a user may accidentally move into the wrong item then want to move 
to the correct item.  We refer to this process as reselection.  Most menu systems 
support reselection. 

• pairing command and parameters:  The command compass allows dragging to 
continue after the final selection confirmation.  Dragging is then used to indicate 
additional parameters to the menu command just selected.   
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Figure 2.5 shows which selection confirmation methods support these features.  Item 
entry is not feasible because it does not allow reselection.  Boundary crossing, 
dwelling and events distinct from pen movements support both reselection and 
pairing.  We discount “events distinct from pen movement” because it requires 
additional input sensors like pen buttons or a pressure sensing pen. 

Figure 2.5 indicates that boundary crossing and dwelling are the only applicable 
choices.  Boundary crossing is preferable because a visible boundary (i.e., the edge of 
a menu) gives precise information as to when selection will occur.  This information 
is not visible if dwelling is used.  Furthermore, waiting for a dwelling to occur slows 
interaction.  It is also possible to use pen release as a confirmation method if pairing 
is not required and the item being selected is the last in a series of selections. 

We implemented boundary crossing by having selection confirmation occur when 
the user crossed over the outer edge of a menu item.  Specifically, selection 
previewing occurred as long as the user stayed within the circle of the menu.  
Selection confirmation occurred when the user moved outside the circle.  We 
discovered, in practice, that boundary crossing created a problem.  As a user moves 
away from the center of the menu to confirm an item, the item’s sub-menu pops up 
when the outer boundary is crossed.  Unless a user moves very slowly, one is still 
moving when the sub-menu appears. This results in one of the items in the sub-
menu being selected immediately.  If the user is moving fast, the boundary point for 
the sub-menu may have already been crossed and this results in an erroneous 
selection confirmation.  Even if the boundary point was not crossed, this 
overshooting in the sub-menu causes reselection to be the first action to occur each 
time a sub-menu is popped up.  This means that users are not rehearsing the 
movement of drawing a mark, but are rather making a movement which involves 
reselection.  This approach was therefore unacceptable. 
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To solve this problem, we used a hybrid approach which combines boundary 
crossing and dwelling.  The approach works as follows.  As long as the pointer is 
within some distance from the center of menu, a dwelling event is ignored.  
Selection preview and reselection are therefore possible without the threat of an 
accidental dwelling occurring.  Once the boundary is crossed, selection preview and 
reselection are still possible but, if the user dwells, the selected item is confirmed 
and its sub-menu appears.  This allowed users to use coarser movements to make 
selections without fear of overshooting and selecting from sub-menus.   

Dwelling is also consistent with press-and-wait.  In both these activities, keeping the 
pen pressed against the display and holding it triggers the display of a menu.  

A selection can also be confirmed without dwelling by releasing the pen at any point 
in the hierarchy of a menu.  This allows any item in the hierarchy to be selected and 
also signals selection termination. 

2.5.6. Mark ambiguities 

The current design presents a dilemma if we consider using marks to make 
selections from hierarchies of menus.  The idea behind using marks for selection is 

Selection confirmation event allows 

mimicking 

marking? 

allows 

reselection? 

allows 

pairing? 

pen release no* yes no 

item entry yes no yes 

boundary crossing yes yes yes 

dwelling yes yes  yes 

events distinct from pen 

movement 

yes yes yes 

(* yes in the non-hierarchic case) 

(  as long as the pointer is kept moving) 

Figure 2.5: Different selection confirmation methods characteristics.  
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that selection will be fast and fluid.  This implies that we do not desire or expect a 
user to “include” dwellings when making selections using marks. This would be 
unnatural and slow the marking process. 

A problem can occur if dwellings are not included when making marks.  Consider a 
selection from a hierarchy that is two levels deep.  Suppose the user makes a straight 
line mark.  Does the mark correspond to a selection from the parent menu or the 
child menu?  Figure 2.6 shows the problem.  If dwellings no longer occur we cannot 
disambiguate the selection.  If we base the interpretation on boundary crossing, then 
the mark is unambiguous. Unfortunately, this makes the size of a mark affect its 
interpretation (i.e., the marks cannot be scaled). 

One solution to this problem is called no category selections.   It is based on the 
observation that items which have subitems are generally categories of commands, 
not commands themselves, and selecting a category is not a meaningful operation.  
For example, when using linear hierarchic menus on the Macintosh, selecting the 
“font” category leads to a menu of commands that change the font.  Selecting “font” 
by itself (i.e., releasing the mouse button when “font” is selected) performs no 
operation.  Therefore we assume that there is no need to select a category.  Thus, we 
can consider any straight line to be a selection into a submenu (case (b) in Figure 
2.6).  Note that this permits selection of certain menu items that are embedded in 
submenus by drawing a short straight mark.  We recommend designers put the 
most popular item in a category in this position to promote efficiency. 
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Figure 2.6:  Ambiguity in selecting from a hierarchy of menu items two levels deep 
using a mark. Overlaid grayed menu show possible interpretations.  In (a), the 
interpretation is the selection of item 1.  However, (b) is another interpretation 
according to boundary crossing rules (the selection of item 1.1).  Interpretation by 
boundary crossing is sensitive to the size of marks. 

No category selections breaks down when the depth of the hierarchy is greater than 
two.  Suppose a user makes a “^” mark as shown in Figure 2.7 (a).  The start of the 
mark and the change in direction within the mark indicate two points of menu 
selection.  However, what indicates selection from the third level of menu?  Figure 
2.7 shows this problem.  Once again, boundary crossing can be applied to derive an 
unambiguous set of menu selections but this results in unscalable marks.   

There are several solutions to this problem which preserve scaling.  The first 
solution, referred to as the no-oping (from the phrase “no operation”),  is to simply 
not permit a series of menu selections that result in a straight line.  One way of 
doing this involves making the item in the child menu that “lines up” with the 
selection angle of the parent a null operation.  This ensures that the beginning of a 
selection of a non-null item from a child menu is indicated by a change in angle.  
Unfortunately, this “wastes” a useful sector in a menu. 
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a

a.b

a.b.b
a

a.a

a.a.b

(a) (b)  

Figure 2.7:  Possible interpretations of mark when selecting from hierarchies greater 
that two levels deep.  The straight line sections of the mark have no artifacts to indicate 
whether the selection at that point is being made from the parent or from the child.   

A second solution is axis-shifting.  This involves rotating child menus such that no 
item appears at the same angle as an item in the parent menu.  Figure 2.8 shows an 
example of this technique.  Axis-shifting involves aligning the boundary between 
two items in the child menu with the selection angle of the parent item.  This ensures 
that the beginning of a selection from child menu is indicated by a change in angle.  
Axis-shifting avoids the wasted sectors that occur with no-oping.  

This discussion has presented four solutions to hierarchic menu design which are 
intended to produce an unambiguous vocabulary of marks.  The four solutions are: 
boundary crossing, no category selections, no-oping, and axis-shifting.  The aspects 
of the design that are affected by these solutions are: the ability to select any item 
within the hierarchy, the ability to have mark interpretation independent of the size 
of a mark, the ability to select leaf items with a single straight line, and the ability to 
have all items in a menu active.  These aspects may also vary relative to the depth of 
the menu. Figure 2.9 summarizes this design space.   

A solution can be chosen based on the demands of the menu.  If menus are only one 
or two levels deep and menu categories do not need to be selected, then no category 
selections will work.  Boundary crossing and axis-shifting are suitable when 
hierarchies are more than two levels deep and category menu items need to be 
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selected.  Boundary crossing is also an acceptable solution if category items need to 
be selected and mark scaling is not an issue.  

 

Figure 2.8: Axis shifting rotates a child menu such that child menu items do not appear 
on the same angle as the parent menu item.  This results in a mark language where 
selection confirmations are indicated by changes in angle.  With this scheme marks can 
be drawn at any size. 
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Policy no depth 

limit? 

select any 

item? 

marks 

scalable? 

allows 

“straight 

lining” 

all items 

active? 

boundary crossing Yes Yes No Yes Yes 

no-oping Yes Yes Yes No No 

no category 

selections 

No (2) No (except 

in 1 deep 

case) 

Yes Yes Yes 

axis-shifting Yes Yes Yes No Yes 

Figure 2.9:  Policies that avoid ambiguous interpretation of marking menu marks.   

2.5.7. Display methods 

There are several design options which concern how menus are displayed:  

• Menu trail  refers to leaving parent menus displayed as a user descends a hierarchy 
of menu items.   

• Menu overlap  refers to displaying child menus over the top of parent menus. 

These methods become important when backing up in a hierarchy of menus. 

2.5.8. Backing-up the hierarchy 

The ability to back-up in a hierarchy of menus is useful for browsing menu items 
and correcting mistakes.  Backing-up can be one of three types: back-up only to the 
parent menu, back-up to any ancestor menu, back-up to any ancestor menu item. 
Backing-up can be accomplished in several ways.  Pointing to an item can trigger a 
back-up to the item, or an explicit action can trigger a back-up (i.e., tapping the pen 
triggers a back-up to the parent menu).  A combination of these two methods can be 
used (i.e., tapping on an item to back-up to it).  Lifting the pen is already used to 
indicate selection termination, so the back-up technique is restricted to pointing 
while the pen is being dragged.   
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Backing-up brings the roles of menu trail and menu overlap into play.  Pointing to 
the item in order to back-up to it requires that item be displayed on the screen. 
Therefore a menu trail must be provided.  However, child menu items may cover up 
parent items making it impossible to point to “covered” items. The design must 
ensure that parent items are not covered up. 

Design requirements dictate that backing-up in marking menus operates like 
backing-up in traditional drag-through hierarchical menus: to back-up to a parent 
menu item, a user points to it; the system then closes the currently displayed child 
menu and displays the child menu of the parent item.  We can adopt this scheme for 
marking menus but it reduces the advantage of radial menu selection.  Figure 2.10 
shows the problem that occurs.  A selection from a child menu may result in 
pointing to a parent menu item and this causes an unintended back-up.  A prototype 
implementation of marking menus revealed this to be a real problem.  The problem 
could be avoided if a user is “careful”, but this tends to slow users down. 

a

b

c

 

Figure 2.10:  A problem with the backing up by pointing to a parent item.  Is the user 
selecting item a.c or backing up to item b?   

To solve this problem, we could restrict marking menus to operate like linear menus 
where selection occurs only if the user is pointing inside a menu item.  This has two 
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major disadvantages.  First, it selection sensitive to the length of strokes, and second, 
it massively reduces item size from a sector of the entire screen to the small sector of 
the menu.  

The solution is to reduce the size of the back-up targets.  This is done by restricting 
the back-up targets to the center hole of the parent menus.  This drastically reduces 
the probability of accidentally pointing to a back-up target.  Furthermore, we 
constrain the user to dwell on a center before back-up takes place.  This allows the 
user to “pass through” centers without backup occurring.  Figure 2.11 shows this 
back-up scheme. 

This approach has the restriction of only allowing back-up to parent menus.  
Backing up to a parent menu and displaying another one of the child menus cannot 
be combined in the same operation. Some hierarchic linear menus allow this.  
However, this restriction permits fast and unconstrained selection when moving 
forward in the hierarchy, while still allowing back-up.   

This back-up scheme has several more advantages.  First, one can back-up to any 
parent menu, grandparent menu, etc.  Second, menu overlap can occur just as long 
as menu centers do not get covered.  Finally, because backing-up actually returns 
the cursor to parent menus, rather than redisplaying parent menu at the cursor 
location, this reduces the chances of menus “walking off” the screen (this problem is 
further discussed in Section 6.2.3).   
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b

a

b

c

(1) (2)

 

Figure 2.11:  Backing-up in hierarchic marking menus.  In (1) the user moves into 
the center of a parent menu and dwells momentarily.  In (2) the system senses the 
dwelling and backs-up to the parent menu by removing the child of item a.  Selection 
may then continue from the parent. 

2.5.9. Aborting selection 

Most menu systems have a way of specifying a null selection.  Generally this is 
accomplished by selecting outside a menu item.  As explained previously, marking 
menus allow selection to occur outside the item to make selection easier.  To 
circumvent this problem, the center hole of a menu is used to indicate no selection.  
Lifting the pen within the center hole results in the menu selection being aborted.  

A mark may be also be aborted. This involves either lifting the pen before the mark 
is complete or turning the mark into an uninterpretable scrawl while drawing it. 

2.5.10. Graphic designs and layout 

During everyday use of marking menus we observed some problems with a  “pie” 
graphical representation.  First, as the number of items in the menu increases and 
the length of labels increases, the size of the pie grows rapidly.  This creates several 
problems.  First, having large areas of the screen display and undisplay is visually 
annoying.  Second, a large menu occludes too much of the screen.  In many 
situations, a menu associated with a graphical object must be popped up over the 
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object.  The problem is that displaying the menu completely hides the object.  This 
results in the context of the selection being lost.  Third, large menus take time to 
display and undisplay.  In most systems, the image “underneath “ a menu is saved 
before a menu is displayed, and restored when a menu is undisplayed.  When a 
menu is very large, these operations take considerable amounts of time because 
large sections of memory are being copied to and from the display.  Also, algorithms 
for sizing and laying out labels within the pie of the menu can be quite complex.  
This makes the implementation of menu layout procedures complex. Complex 
computations may also delay the display of menus. 

To solve these problems we designed an alternate graphic layout for marking menus 
called “label”10.  Figure 2.12 shows an example.  This alternate design has several 
advantages over a pie representation.  First, it reduces the amount of screen that 
changes when a marking menu is displayed and undisplayed, and therefore, it 
reduces visual annoyance.  Second, it occludes less of the screen than a pie 
representation because only the menu center and labels are opaque.  Thus more of 
the context underneath a menu can be seen.  This design also reduces the amount of 
memory that must be copied to and from the display, and hence it reduces the 
amount of time needed to display a menu. 

Another issue of graphical layout is the problem of displaying menus near an edge 
or corner of the screen.  Pie menu systems deal with this issue by using a technique 
called “cursor warping”.  Unfortunately, cursor warping is not suitable for pen-
based systems.  In Chapter 6, we further discuss this issue and describe an 
alternative to cursor warping. 

Although not shown in Figure 2.12, marking menus have many standard features 
found in traditional menus.  For example, marking menus allow grayed-out and 
checked items.  Also, if an item has a submenu, a small circle appears to the right of 
the label.  The intention is that this circle represents the center hole of the submenu.  
We also found it valuable to hide the labels of parent menus, thus reducing screen 
clutter.  The only portion of a parent menu that is displayed is the center hole (so a 
user can point to it to back-up).  We have also experimented with transparent menus 

                                                 

10 We acknowledge Mark Tapia for his assistance in designing and implementing the alternate graphical layout 
for marking menus 
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(a) (b)  

Figure 2.12:  An alternate graphic representation for a radial menu “label”.  Rather 
than displaying “pie” shapes (a), only the labels and center are displayed (b).  The 
menu then occludes less of display and can be displayed faster. 

and graying out parent menus but a full discussion of these experiments is beyond 
the scope of this dissertation. 

2.5.11. Summary of design 

The previous sections described and discussed various design features and options 
of marking menus.  We now summarize the features and indicate which design 
options we elected to use. 

Marking menus use discrimination by angle.  Selection previewing in menu mode is 
supported by dragging the pen into an item, and the item being highlighted.  
Selection confirmation is indicated by a combination of boundary crossing and 
dwelling.  Selection termination is indicated by pen up.   

To avoid mark ambiguities, we recommend three possible strategies: no-oping, no 
category selections and axis-shifting.  If menus require only a few items, no-oping 
may be a suitable solution.  If menus are only two levels deep and category selection 
is not required, no category selection is a suitable solution.  If menus require many 

 60



 

menu items, and are more than two levels deep, axis-shifting must be used.  In 
practice, we used no category selection in many situations.   

Making a selection in menu mode leaves a menu trail but only the center of parent 
menu is displayed.  We found in practice this reduces the visual clutter the would be 
caused by the display of inactive parent menu items.  Menus are allowed to overlap, 
but because only the center of parent menu is displayed, this generally does not 
cause visual confusion.   

In menu mode, selection can be aborted by terminating the selection while pointing 
to the center hole of a menu.  In mark mode, selection can be aborted by turning the 
mark into a “scribble”. 

If a user dwells while drawing a mark, the system indicates the menu items that 
would be selected by the mark by displaying the menus “along” the mark.  The 
system then goes into menu mode.  This process, called mark confirmation, can be 
used to verify the items that are about to be selected by a mark or a portion of a 
mark. 

Marking menus can be displayed in either a “pie” representation or a “label” 
representation.  A “label” representation is suitable when there is a need to 
minimize the amount of screen occluded by the display of the menu. 

2.6. SUMMARY 

The success of an  interaction technique depends not only on its acceptance by users 
but also on its acceptance by interface designers and implementors. An “industrial 
strength” interaction technique must not only be effective for a user,  but also have 
the ability to co-exist with other interaction techniques, other paradigms, and 
differing features of the software and hardware.  Because of these demands, as in 
many other interaction techniques, our motivation and design behind marking 
menus is complex.  What appears on the surface as a simple interaction technique is 
actually based on many different motivations and has many design subtleties and 
details.  

In this chapter we defined marking menus and described the various motivations 
for developing and evaluating them.  These included providing marks for functions 
which have no intuitive mark, supporting unfolding interface paradigms, 
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simplifying mark recognition, maintaining compatibility with existing interfaces, 
and supporting both novice and expert users.  We are also motivated to study 
marking menus as a way to evaluate the design principles they are based on.   

We then outlined the issues involved in evaluating marking menus and proposed an 
initial design.  The major parameters to be evaluated concern the question of how 
much functionality can be loaded on a marking menu.  Essentially our research 
focus is on establishing the limitations of marking menus so interface designers who 
are utilizing marking menus can design accordingly.  The remaining chapters 
explore the limitations and characteristics of the design.  
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Chapter 3: An empirical evaluation of 
non-hierarchic marking menus 

This chapter addresses basic questions about marking menu design variables:  how 
many items can marking menus contain;  what kinds of input devices can be used in 
conjunction with marking menus; how quickly can users learn the associations 
between items and marks;  how much is performance degraded by not using the 
menu;  and whether there is any advantage in using an ink-trail.  This chapter 
describes an experiment which addresses these questions.  The approach is to pose 
specific hypotheses about the relationship between important design variables and 
performance, and then to test these hypotheses in the context of a controlled 
experiment.  The results of the experiment are then interpreted to provide answers 
to the basic questions posed above.   

In this experiment we limit our investigation to non-hierarchic marking menus.  We 
do this for several reasons.  First, this experiment serves as a feasibility test of non-
hierarchic marking menus.  If non-hierarchic marking menus prove feasible, then an 
investigation of hierarchic marking menus is warranted.  Second, we feel that the 
characteristics of non-hierarchic marking menus must be understood before we can 
begin to investigate hierarchic marking menus.  Our findings on non-hierarchic 
marking menus can then be used to refine our design and evaluation of hierarchic 
marking menus.  Third, this experiment addresses many factors.  To include the 
additional factor of hierarchic structuring would make the experiment too large and 
impractical.  

To date there is little research applicable to our investigation.  Callahan, Hopkins, 
Weiser, and Shneiderman (1988) investigated target seek time and error rates for 8-
item pie menus, but concentrated on comparing them to linear menus.  In particular 
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they were interested in what kind of information is best represented in pie menu 
format.  Section  2.3.1 described their results. 

Our experiment focuses on selecting from marking menus using marks.  To address 
the questions posed at the start of this chapter, the experiment examines the effect 
that the number of items in a menu, choice of input device, amount of practice, and 
presence or absence of an ink-trail or menu, has on response time and error rate. 

3.1. THE EXPERIMENT 

3.1.1. Design 

In this experiment, we varied the number of items per menu and input device for 
three groups of subjects and asked them to select target items as quickly as possible 
from a series of simple pie menus.  One group selected target items from fully 
visible or “exposed” menus (Exposed group).  Since there is little cognitive load 
involved in finding the target item from menus which are always present, we felt 
that this group would reveal differences in articulation performance due to input 
device and number of items in a menu. 

Two other groups selected items from menus which were not visible (“hidden” 
menus).  In one group, the cursor left an ink-trail during selection (Marking group), 
and in the other, it did not (Hidden group).  The two hidden menu groups were 
intended to uncover cognitive aspects of performance.  Hiding the menus would 
require the added cognitive load of either remembering the location of the target 
item by remembering or mentally constructing the menu, or by remembering the 
association between marks and the commands they invoke through repeated 
practice.  Comparing use of an ink-trail with no ink-trail was intended to reveal the 
extent to which supporting the metaphor of marking and providing additional 
visual feedback affects performance.  The Exposed group provided a baseline to 
measure the amount that performance degraded when selecting from hidden 
menus. 

3.1.2. Hypotheses 

We formed the following specific hypotheses to address the questions posed at the 
start of this chapter:  
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How much is performance degraded by not using the menu? 

Hypothesis 1.  Exposed menus will yield faster response times and lower error rates 
than the two hidden menu groups.  However, performance for the two hidden 
groups will be similar to the Exposed group when the number of items per menu is 
small.  When the number of items is large, there will be greater differences in 
performance for hidden versus exposed menus.  This prediction is based on the 
assumption that the association between marks and items is acquired quickly when 
there are very few items.  As the number of menu items increases, the association 
between marks and items takes longer to acquire, and mentally reconstructing 
menus in order to infer the correct mark becomes more difficult.   

How many items can marking menus contain? 

Hypothesis 2.  For exposed menus, response time and number of errors will 
monotonically increase as the number of items per menu increases.  This is because 
we assume that performance on exposed menus is mainly limited by the ease of 
articulation of menu selection, as opposed to ease of remembering or inferring the 
menu layout.  We know that performance time and errors monotonically increase as 
target size decreases, all else being equal (Fitts, 1954).  

Hypothesis 3.  For hidden menus (Marking and Hidden groups), response time will 
not solely be a function of number of items per menu.  Instead, menu layouts that 
are easily inferred or that are familiar will tend to facilitate the cognitive processes 
involved.  We predict that menus containing eight items can be more easily mentally 
represented than those containing seven items, for example.  Similarly, a menu 
containing twelve items is familiar since it is similar to a clock face, and thus we 
predict it is more easily mentally represented than a menu containing eleven items.   

What kinds of input devices can be used in conjunction with marking menus? 

Hypothesis 4.  The stylus will outperform the mouse both in terms of response time 
and errors.  The mouse will outperform the trackball.  This prediction is based on 
previous work (Mackenzie, Sellen, & Buxton, 1991) comparing these devices in a 
Fitts' law task (i.e., a task involving fast, repeated movement between two targets in 
one dimension). 

Hypothesis 5.  Device differences will not interact with hidden or exposed menus, 
or the presence or absence of marks.  Differences in performance due to device will 
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not depend on whether the menus are hidden or exposed, or whether or not marks 
are used.  The rationale for this is that we assume performance differences stemming 
from different devices are mostly a function of articulation rather than cognition.  
We also assume that the articulatory requirements of the task are relatively constant 
across groups. 

Is there any advantage in using an ink-trail? 

Hypothesis 6.  Users will make straighter strokes in the Marking group.  We based 
this prediction on the assumption that visual feedback is provided in the Marking 
group and also that hidden menus support the “marking” metaphor as opposed to 
the “menu selection” metaphor.   

How quickly can users learn the associations between items and marks? 

Hypothesis 7.  Performance on hidden menus (Marking and Hidden groups) will 
improve steadily across trials.  Performance with exposed menus will remain fairly 
constant across trials.  This prediction is based on belief that articulation of selection 
(or simply executing the response) will not dramatically increase with practice since 
it is a very simple action.  Performance on hidden menus, however, involves the 
additional cognitive process of recalling the location of menu items. We believe this 
process will be subject to more dramatic learning effects over time. 

3.1.3. Method 

Subjects.  Thirty-six right-handed subjects were randomly assigned to one of three 
groups (Exposed, Hidden, and Marking groups).  All but one had considerable 
experience using a mouse.  Only one subject had experience using a trackball.  None 
of the subjects had experience with a stylus. 

Equipment.  The task was performed on a Macintosh IIX computer.  The standard 
Macintosh mouse was used and set to the smallest C:D ratio.  The trackball used was 
a Kensington TurboMouse, also set to the smallest C:D ratio. The stylus was a Wacom 
tablet and pressure-sensitive stylus (an absolute device).  The C:D ratio used was 
approximately one-to-one.  

Task.  Subjects used each of three input devices to select target “slices” from a series 
of pie menus as quickly and as accurately as possible.  The pies contained either 4, 5, 
7, 8, 11, or 12 slices.  All pie menus contained numbered segments, always beginning 
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with a “1” immediately adjacent and to the right of the top segment.  The other slices 
were labeled in clockwise order with the maximum number at the top (see Figure 
3.1 (a)).  The diameter of all pie menus was 6.5 cm., and Geneva 14 point bold font 
was used to label the slices. 

(a) (b) (c)

 

Figure 3.1: Selecting item 5 from an eight-item pie menu (a) in the Exposed group,  
(b) in the Hidden  group, and (c) in the Marking group. 

In designing this experiment, a great deal of time was spent discussing what kind of 
items should be displayed in the pie menus.  Menus in real computer applications 
usually contain meaningful items, but the order in which they appear is not easily 
inferred.  The numbered menus we used, on the other hand, used ordered, 
meaningless labels.  We wanted to approximate the case of an expert user who is 
familiar with the menu layout.  We decided to reduce as much as possible the 
learning time associated with memorizing the items. Our focus was on the 
articulation of actions, and the cognitive processes involved in mentally 
representing or mentally constructing menu layout.  Since Callahan et al. (1988) have 
shown that performance varies depending on the kinds of items represented, using 
the same kind of items for all menus (numbered items) was an attempt to eliminate 
this effect.  Thus our comparisons between menus with different numbers of items 
would be more accurate.  We acknowledge that both the choice of menu items and 
their mapping within a menu may have a significant effect on performance.  These 
factors are outside the scope of this investigation. 
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In the Exposed menu group, the entire menu was presented on each trial (Figure 3.1 
(a)).  The target number corresponding to the slice to be selected was presented 
when the subject located the cursor within the center circle of the pie menu and 
either pressed down and held the mouse or trackball button, or pressed down and 
maintained pressure on the stylus.  The subject's task was then to maintain pressure 
and move in the direction of the target slice.  Menu slices would highlight as the 
cursor moved over them, indicating to the subject a potential selection.  A slice 
would remain highlighted even if the cursor went outside the outer perimeter of the 
pie.  Releasing the button, or pressure, signaled to the system that the highlighted 
slice was selected.  After the selection was made, the menu would “gray out” 
displaying the menu with the slice selected for a period of 1 second.  If an incorrect 
slice was selected, the Macintosh would beep on release.  This marked the end of a 
trial. 

In the Hidden menu group, the task was essentially the same, except that during 
selection, only the central circle of the pie menu would be visible (Figure 3.1 (b)).  
After confirming the selection, subjects would receive the same grayed-out feedback 
as in the Exposed group, indicating which response had been made, and whether or 
not it had been correct.  The Marking group was almost identical to the Hidden 
group, except that the movement of the cursor with the button depressed left an ink-
trail (Figure 3.1 (c)) . 

After each trial, subjects received a running score, presented in the lower right-hand 
corner of the screen.  A minimum of 10 points could be obtained for each correct 
response, with more points scored as response time became shorter.  However, 
subjects were penalized 20 points for errors.11  At the end of each block of trials, each 
subject's current performance was shown in relation to the best score obtained by 
other subjects in the same conditions.  The scoring criterion was the same for all 
groups. 

Design and Procedure. One third (twelve) of the subjects were randomly assigned to 
the Exposed group, one third to the Hidden group, and one third to the Marking 

                                                 

11  This scoring scheme was arrived at by experimenting with different scoring schemes on pilot subjects.  We 
found that the choosen scheme emphasized both accuracy and speed.  On average, subject scores were positive 
and they found this encouraging and fair. 
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group.  Every subject used each of the three input devices (mouse, trackball and 
stylus).  Trials were blocked by device and order of device was counterbalanced.  

For each device, all groups began by practicing on exposed menus for a total of six 
trials for each of six different menus, containing either 4, 5, 7, 8, 11 or 12 items.  
During practice, number of items per menu was blocked and presented in random 
order.  This practice period was intended to acquaint subjects with the feel of the 
particular input device they were about to use.  It also provided an opportunity for 
subjects to familiarize themselves with the layout of the menus before beginning the 
timed trials.   

Subjects in the Exposed group then moved on to the timed trials, while subjects in 
the Hidden and Marking groups received a further set of practice trials designed to 
acquaint them with the “feel” of hidden menus.  For this practice session, menus 
containing both three and six items were used (six trials each) since 3-item or 6-item 
menus were never used in the actual timed trials.  This was a deliberate attempt to 
equalize exposure to the menus of interest in the three groups. 

For the timed portion of the experiment, trials were again blocked by number of 
items (4, 5, 7, 8, 11, or 12).  The order in which the number of items appeared was 
randomly permuted for each subject.  Each subject began a particular block by first 
studying the menu layout for 6 seconds.  They then received a total of 40 trials for 
each different menu with a short break at intervals of ten trials.  Targets were drawn 
randomly from a uniform distribution with replacement, with the added constraint 
that no target could be repeated on consecutive trials.  

In summary, each subject performed 40 trials on each of the six menus (menus 
consisting of 4, 5, 7, 8, 11, and 12 items) and using all three devices, resulting in a 
total of 720 scores per subject.  Each group consisted of twelve subjects which 
resulted in 8640 scores per group.  The three different groups provided a total of 
25920 scores for the experiment. 

3.2. RESULTS AND DISCUSSION 

The main dependent variables of interest were response time and number of errors.  
Response time was defined as the total time from presentation of the target number 
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to confirmation of the selection for error-free trials.  An error was defined as an 
incorrect selection.  The means for each group are shown in Figure 3.2. 

3.2.1. Effects due to number of items per menu 

As expected, increasing the number of items per menu significantly increased both 
response time (F(5,55) = 388.4, p < .001) and errors (F(5,55) = 382.8, p < .001).12 There 
were overall performance differences among the groups in terms of errors (F(2,22) = 
21.97, p < .001) but not in terms of response time.  However, these main effects are 
not particularly meaningful because differences among groups depend on the 
number of items per menu (see Figure 3.3).  That is, there was a significant 
interaction between group and number of items per menu both in terms of response 
time (F(10,110) = 3.5, p < .001) and errors (F(10,110) = 64.7, p < .001).  

These results address the first three hypotheses: 

(1)  As predicted by Hypothesis 1, mean response time was consistently lower in the 
Exposed group versus the Hidden and Marking groups as the number of items 
increased.  This is supported by the significant interaction between group and 
number of items per menu (reported above), and by specific comparison tests.  No 
difference was found between the two hidden groups and the Exposed group for 
menus containing four items.  However, for menus containing five items, response 
times were significantly slower for hidden menus compared to Exposed (F(1,110) = 
6.5, p < .001).  The two hidden groups were no different from each other in terms of 
errors (post hoc comparison of error means, Tukey HSD, α = .05), but both produced 
significantly more errors than the Exposed menu group. 

(2)  Our second hypothesis predicted that in the Exposed group, response time and 
errors would monotonically increase as a function of number of items per menu.  In 
the case of errors, this relationship seems to hold.  However, this must be qualified 
by the fact that errors were infrequent and thus floor effects may obscure the true 
shape of the function.   

                                                 

12  Throughout this disseration we use the F-statistic to evaluate the equality of population means.  See 
Appendix A for an explanation. 
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Group Mean RT in sec. (SD) Mean Number of 

Errors in 40 Trials 

(SD) 

Mean Percentage 

Errors  

Exposed 0.98  (0.23) 0.64  (1.00) 1.6% 

Hidden 1.10  (0.31) 3.27  (3.57) 8.2% 

Marking 1.10  (0.31) 3.76  (3.67) 9.4% 

 

Figure 3.2: Mean response time and number of errors for each experimental group. 

Response time also increased monotonically except for menus containing twelve 
items.  Specific comparisons at the .05 level confirm significant increases in response 
time from four to five items per menu (F(1,55) = 16.8, p < .001), and from seven to 
eight items per menu (F(1,55) = 7.4, p < .01), but no differences between eleven and 
twelve items per menu.  One possibility is that familiarity with the “clock face” 
layout may have reduced the time for visual search, thereby reducing overall 
response time.  Another possibility is that this could be a case of diminishing effects.  
Adding an extra item to a menu containing four items represents a 20% increase in 
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Figure 3.3: Response time and average number of errors (of a total of 40 trials) as a 
function of number of items per menu and group.   



 

the number of items, whereas, adding an extra menu item to one which contains 
eleven represents only an 8% increase in number of items.  

(3)  The pattern of results predicted by Hypothesis 3 is also supported:  when menus 
were hidden, some kinds of menus were easier to evoke or reconstruct from 
memory than others.  This was not purely a function of number of items per menu.  
The characteristic curve that emerges (Figure 3.3) shows that performance in general 
does tend to degrade as the number of items per menu increases, but that certain 
numbers of items do not follow this pattern (i.e., eight and twelve items).   

This hypothesis is also confirmed by a series of specific comparisons showing no 
differences in either hidden menu group for seven versus eight items per menu.  
Further, performance on menus of twelve items was faster than on menus of eleven 
items for the Hidden group (F(1,55) = 11.25, p < .001) and was more accurate than on 
menus of eleven items in both groups (Hidden, F(1,55) = 50.96, p < .001; Marking 
F(1,55) = 13.51, p < .001).  By contrast, for both groups, tests show menus of four 
items yielded faster response times than menus of five items (Hidden, F(1,55) = 4.05, 
p < .05; Marking F(1,55) = 9.00, p < .05).   

The results show that menus containing twelve items in particular may have 
facilitated performance.  Many subjects mentioned that the metaphor of a clock face 
helped them to select the target item because it could be brought readily to mind.  
Thus it seems reasonable to suggest that it is the cognitive bottleneck, or the 
difficulty of evoking the mapping between target and action, that limits 
performance. 

3.2.2. Device effects 

As predicted by Hypothesis 4, subjects performed better with a stylus and a mouse 
than they did with a trackball.  Response time (F(2,22) = 9.64, p < .001) and errors 
(F(2,22) = 11.29, p < .001) were both affected by the type of input device subjects 
used.  Pairwise comparisons (Tukey HSD test, α = .05) showed the trackball was 
both significantly slower and gave rise to more errors than the stylus or mouse.  
However, contrary to our expectations, there was no difference in mean response 
time or errors between the stylus and mouse. 

Initial analyses supported Hypothesis 5 where we predicted that the effect of input 
device would not depend on whether or not the menus were exposed, or whether or 
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not there was an ink-trail.  Input device did not interact with group, either in terms 
of response time or errors.13  However, on closer examination, a more interesting 
result emerged.   

We discovered that in the Marking group, the stylus was significantly faster than 
both the trackball and mouse with no difference between the trackball and mouse 
(Figure 3.4).  In the Exposed group, the mouse and stylus were faster than the 
trackball, with no difference between the mouse and stylus.  These discoveries were 
based on separate analyses of variance for each of the three groups on the response 
time data.  There were significant differences among devices in the Exposed (F(2,22) 
= 10.44, p < .001) and Marking groups (F(2,22) = 8.32, p < .002), but not in the 
Hidden group.  Tukey tests revealed the superiority of the stylus in the Marking 
group and the inferiority of the trackball in the Exposed group.  No significant 
interactions between device and number of items were found in any of the three 
groups.  Given these results we cautiously reject Hypothesis 5.   
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Figure 3.4:  Response time and average number of errors (of a total of 40 trials) as a 
function of device and group.   

There may be two reasons for the superiority of the stylus when marks are added to 
selection from hidden menus.  First, it is often difficult to perceive when enough 

                                                 

13  There were also no significant interactions between number of items per menu and device, nor significant 
three-way interactions (group by number of items by device). 
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pressure is being applied to the stylus to make a selection.  Thus, providing visual 
feedback when this state is maintained may be important to realize the full potential 
of this device.  Second, providing an ink-trail is consistent with the metaphor of 
marking with a pen, which may improve performance.  Alternatively, failing to 
support the pen metaphor by not providing the ink trial (Hidden group) may violate 
users’ expectations and thus negatively affect performance. 

Separate analyses of the error data within each group further supported the 
inferiority of the trackball.  The trackball was found to be the source of significant 
device differences in the Exposed (F(2,22) = 9.92, p < .001)14 and Marking groups 
(F(2,22) = 9.92, p < .001).  Pairwise comparisons in the Exposed and Marking groups 
showed differences between the trackball and the other two devices, and no 
difference between mouse and stylus.   

The finding that the trackball was no more slower or error prone than the mouse 
and stylus in the Hidden group may be due to the fact that in both the Exposed and 
Marking groups, visual feedback emphasized the difficulty of articulating the 
actions of the trackball thereby causing performance to be worse.  In the Exposed 
case, sectors were highlighted as they were selected and it is possible that the 
trackball caused a great deal of reselection.  In the Marking case, users reported that 
the ink-trail was disturbing in conjunction with the trackball because the paths 
looked erratic and inaccurate. 

3.2.3. Mark analysis 

We were interested in seeing if subjects used straight marks when making 
selections.  This was important to discover because, if menu selection tended to be 
done in some manner other than a straight mark, we could not claim that users 
rehearse this physical movement when selecting from menus. Thus we would not 
expect as much transfer of skill between making menu selections and making marks.  
Another reason we were interested in seeing if subjects used straight marks was 
related to using marking menus in applications that recognize other marks beside 
those used in menu selection.  Unlike conventional menu selection which is based 
                                                 

14 Both a significant device by menu size interaction (F(10,110) = 2.47, p < .011) and floor effects should make us 
cautious in interpreting the main effect of device in the Exposed group.  However, the fact that the trackball 
produces consistently more errors on average across menu size,  supports the claim that the trackball is 
outperformed by stylus and mouse. 

 74



 

only on the last location of the cursor, mark recognition systems take the entire 
shape of the stroke into account.  For example, suppose the system also recognizes 
the symbol “C”.  A very crooked mark intended to make a selection from a hidden 
menu might be interpreted as an “C”.  The success of recognition depends to some 
extent on knowing the shapes of the strokes that users tend to create.  To address 
these issues we recorded and displayed the path data for users' individual marks.  
Figure 3.5 shows a typical example. 

 

Figure 3.5:  The marks a subject used in selecting from a hidden twelve-item menu. 

Subjects made approximately straight marks.  No alternate strategies such as 
starting at the top item and then moving to the correct item were observed.  
However, there was evidence of reselection from time to time, where subjects would 
begin a straight mark and then change direction in order to select something 
different.   

Surprisingly, we observed reselection even in the Hidden and Marking groups.  This 
was especially unexpected in the Marking group since we felt the idea of drawing a 
mark does not naturally suggest the possibility of reselection.  Hence, we reject 
Hypothesis 6.  It was clear though, that training the subjects in the hidden groups on 
exposed menus first made this option apparent.  Clearly many of the subjects in the 
Marking group were not thinking of the task as making marks per se, but of making 
selections from menus that they had to imagine.  This brings into question our a 
priori assumption that the Marking group was using a marking metaphor, while the 
Hidden group was using a menu selection metaphor.  It may explain why very few 
behavioral differences were found between the two groups.  
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Reselection in the hidden groups most likely occurred when subjects began a 
selection in error but detected and corrected the error before confirming the 
selection.  This was even observed in the “easy” four-slice menu, which supports the 
assumption that many of these reselections are due to detected mental slips as 
opposed to problems in articulation.  There was also evidence of “fine tuning” in the 
hidden cases, where subjects first moved directly to an approximate area of the 
screen, and then appeared to adjust between two adjacent sectors. 

Strokes produced with the trackball appeared more jagged and less controlled than 
those made with the mouse or stylus. This is consistent with the statistical results 
showing that the trackball tends to be slower and less accurate than the stylus or 
mouse. For four-item menus, most subjects made straighter marks with the stylus 
than the mouse. The presence or absence of an ink-trail did not appear to make any 
discernible difference to stroke shape.  

3.2.4. Learning effects 

The forty trials for each different menu were divided into eight consecutive blocks.  
Response time and mean errors were calculated for each five-trial block in order to 
look more closely at learning effects.  Overall, there was a small but steady decrease 
in response time over trials which was statistically significant (F(7,77) = 5.79, p < 
.001).  Error rate also showed signs of improving with number of trials (F(7,77) = 
10.52, p < .001). 

We have claimed that the major factor limiting performance on exposed menus is 
the physical accuracy required for the action of selection.  The results support this 
claim.  In the case of hidden menus, results support the claim that the factor limiting 
performance is cognitive.  In other words, the time it takes to remember or infer the 
correct mental representation becomes the overriding factor determining 
performance.  Thus, performance in the Exposed group can serve as a baseline 
measure that users should approach as they become expert.   

Hypothesis 7 states that the cognitive component is the component most affected by 
learning, as opposed to the articulatory component.  Thus, we expect a steady 
improvement in performance in the two hidden groups, as opposed to fairly 
constant performance in the Exposed group over time.   
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Figure 3.6:  Group effects in terms of response time and number of errors in five 
trial intervals. 

As is shown in Figure 3.6, response time in the hidden groups appears to improve 
across trials while the curve for the Exposed group is fairly flat.  Errors also remain 
relatively constant for the Exposed group over trials, while decreasing on average 
for the two hidden groups.  Support for Hypothesis 7 is found in a significant group 
by trial interaction for response time (F(14,154) = 2.90, p < .001) and errors (F(14,154) 
= 3.15, p < .001).  

As a final point, it follows from the above reasoning that we would expect no 
significant interaction of input device by trial, since type of input device would 
presumably have the greatest impact on the articulation as opposed to the cognitive 
component of performance.  The fact that no significant interaction of device by trial 
was found is consistent with expectation. 

3.3.  CONCLUSIONS 

Relative to our seven hypotheses, the results and their implications for design can be 
summarized as follows: 

Hypothesis 1.  As predicted, when menus have many items, hiding menus from 
users both slows their performance and increases their error rate.  As number of 
items per menu increases, added to the problems of articulation is the difficulty of 
successfully mentally reconstructing the menu layout or remembering the necessary 
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strokes to make menu selections.  However, when the number of items is small (only 
four), there is little or no performance difference, even early in practice. 

Design Implications.  For ordered sets of commands, users should be as fast and 
error-free in making marks as in selecting from a visible pie menu of up to four 
slices.  If the commands are not ordered, then it may take more time to acquire the 
skill.  However, command semantics can be exploited.  For example, “Open” and 
“Close” can be positioned opposite to each other, as can “Cut” and Paste”.  This may 
speed the learning process and allow users to mark ahead faster.  In addition, the 
most frequently used commands form a very small set, and thus we can be 
optimistic that these can be invoked successfully with marking menus. 

Hypothesis 2 and 3.  For exposed menus, the results showed performance declines 
steadily as the number of items increases.  This is probably due to two factors:  (1) 
the increasing reaction time to visually search and choose among alternatives, and 
(2), the increasing difficulty of articulating the action as targets become smaller.   

These results agree with other results concerning the effect of the number of items 
on performance.  Perlman conducted an experiment in which subjects made 
selections from exposed linear menus (Perlman, 1984).  Menus containing 5, 10, 15 
and 20 items were used. The menus contained ordered numbers from 1 to 20.  
Beside each item was a randomly chosen left or right arrow character.  The task was 
to find a target item in the menu and indicate it by pressing the corresponding left or 
right arrow-key.  It was found that the number of items in a menu had a linear effect 
on the time it takes to find an item.  These results agree with our results for exposed 
menus. 

Performance on hidden menus in this experiment was different, however.  Instead 
of a result showing monotonically increasing response times and error rates as a 
function of number of items, even numbers of items (four, eight, or twelve) 
appeared to facilitate performance.  Not surprisingly perhaps, four-item menus 
yielded significantly faster and more accurate performance than five-item menus.  
However, performance on eight-item menus was no worse than performance on 
menus with one less item.  Subjects also reported that the eight-item menu was easy 
to learn because they could easily mentally subdivide the pie and infer the position 
of the target slice.  Most dramatic was the finding that a twelve-item menu actually 
yielded faster and more accurate performance than a menu containing only eleven 
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items.  We speculate that this difference may be enhanced by familiarity with circles 
subdivided into twelve sectors, such as in clock faces. 

Design Implications.  When menus are hidden, overcoming the difficulty of learning 
and using mental representations of menus can be facilitated by using layouts which 
exploit known metaphors, or which are easily subdivided.  Using an even number of 
items or laying out items at the points of a compass or hour positions of clock can be 
used to counteract the increased difficulty of having many items in a menu.  The 
ease with which subjects learned and performed with the twelve-item menu is 
testimony to the strength of a good metaphor.  One could imagine a user 
remembering a command location or mark by mapping it to an hour/hand position: 
“undo is at three o’clock”. 

Hypothesis 4 and 5.  The stylus and mouse outperformed the trackball both in terms 
of response time and errors.  Analysis of the paths showed that paths made with the 
trackball were more jagged and less controlled than those made with the mouse or 
stylus.  The stylus and mouse yielded similar performance, with the exception that 
the stylus was significantly faster than the mouse when an ink-trail was present.   

Design Implications.  The results speak strongly against using a trackball for 
marking menus.  Further, subjects’ comments suggest that the combination of 
trackball and ink trial was especially bad.  One subject complained of being 
disturbed by the messy ink-trail left when using a trackball.  It seems that the visual 
feedback provided by the ink-trail only served to emphasize the inadequacy of the 
paths made by this device. 

The performance similarity of the mouse and stylus suggests that either may be 
appropriate devices for this kind of mechanism.  Two cautionary notes should be 
made, however.  First, it is likely that the ink-trail added important feedback to tell 
the user when the appropriate amount of pressure was being applied to the stylus.  
This suggests that another kind of stylus  (i.e. one with audio or tactile feedback to 
indicate a “button-click”) might have fared better against the mouse in all groups.  It 
also reveals a design deficiency of the stylus that could easily be overcome.  Second, 
while the mouse and stylus yielded similar performance, observation of people 
using the mouse to make marks other than straight strokes suggests that the mouse 
may be inferior to the stylus in other situations.    
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Hypothesis 6.  Subjects made essentially straight strokes.  However, there was 
evidence of reselection (where subjects would begin a straight stroke and then 
change stroke direction in order to select something different) even in the hidden 
groups.  This casts doubt on our initial assumption that subjects in the Marking 
group would begin to think of the task as making marks, instead of making menu 
selections.  Instead, it suggests that they thought of the task in terms of making 
selections from the exposed menus they were trained on, which now happened to be 
hidden.  Marks themselves do not afford reselection, whereas pie menus do.   

The fact that the marking metaphor was not supported as strongly as we 
hypothesized may account for the fact that no major differences were found between 
the Hidden and Marking groups.  For example, the presence or absence of an ink-
trail did not appear to make any discernible difference to stroke shape.  

Design Implications.  Since users tended to make straight strokes we are optimistic 
that users are rehearsing the physical movement required to make marks as they 
perform menu selection.  This bodes well for learning.  There was some evidence of 
non-straight strokes which appeared to be reselection in the Marking group but it 
was not overwhelming. Perhaps in the context of a mark recognition system a user 
will learn that  reselection results in a mark that cannot be recognized and that 
reselection is not possible when using a mark. 

Hypothesis 7.  Performance across trials was uniform for exposed menus but 
underwent steady and significant improvement across trials for hidden menus (both 
groups).  We argue that the performance limiting factor for exposed menus is the 
difficulty of articulating selection actions, whereas in the hidden groups the limiting 
factor is the time it takes to evoke or construct the correct mental representation.  
Articulation skills were acquired fairly rapidly and reached stable performance.  
Thus performance in the Exposed group provides a baseline measure that users of 
hidden menus approach. 

Design Implications.  The substantial improvement for hidden menus over only 40 
trials suggests that if the menus contain meaningful and frequently used commands, 
users will acquire the necessary skills quickly and easily.  Both response time and 
error rates can be expected to rapidly improve with time.  The question of how much 
practice is necessary for hidden menu performance to equal exposed menu 
performance, and how that varies with number of items per menu is an issue for 
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further research and analysis. Meanwhile, we can be confident that small numbers 
of items will enable users to quickly begin marking ahead.  

3.4. SUMMARY 

This chapter investigated basic questions concerning design variables of marking 
menus:  how many items can marking menus contain;  what kinds of input devices 
can be used in conjunction with marking menus;  how quickly do users learn the 
associations between items and marks;  how much is performance degraded by not 
using the menu;  is there any advantage in using an ink-trail.  An experiment 
addressed these questions by varying the number of items per menu and input 
device for three groups of subjects, and asking them to select target items as quickly 
as possible from a series of simple pie menus.  One group selected from menus that 
were visible at all times, another group selected from menus that were hidden, and 
the final group selected from menus that were also hidden, but had the additional 
visual feedback of a cursor ink-trail.  The differences in group conditions were 
intended to separate articulation and cognitive aspects.  The experiment compared 
selection times and error rates.  In addition, learning effects were analyzed.   

The results of the experiment indicate that non-hierarchic marking menus, or 
specifically the action of using a mark to select from a menu, is a useful idea.  Our 
results indicate that: (1) four, eight and twelve items menus are suitable for marks; 
(2) if that number of items is kept low (e.g., four, eight and twelve), users will be 
able to use marks very early in practice; (3) higher numbers of items are possible but 
require more practice; (4)  for non-hierarchic menus, users will perform as well with 
the mouse as they would with the stylus/tablet.  Using a trackball, however, will be 
slower and more error-prone than using a mouse or stylus/tablet.  

In terms of using marking menus in an application, the results indicate that a 
designer should attempt to use four, eight or twelve item menus.  For example, if 
seven commands are to be placed in a menu, the designer should use an eight-item 
menu and leave one item blank or duplicate one of the more popular commands in 
the extra item.  Although this experiment did not address this issue, it may also be 
also be advantageous to maintain consistent subdivisions for menu items.  For 
example, use four and eight item menus (items on 45 angles) but not twelve item 
menus (items on 30 angles).   
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The results are encouraging because there are many applications where menus 
which have a small number of items could be effective.  For example, Microsoft Word 
has seven groups of function icons that appear in the “ribbon” and “ruler” display 
area.  These icons could be grouped into seven marking menus containing four or 
less items.  Each group of icons could be replaced by a single icon which when 
pressed displays a four-item marking menu.  The elimination of icons would allow 
space to display more text, or other or larger function icons (larger icons make 
pointing to them easier).  The graphics editor in Microsoft Word already has tool 
pallet icons that work this way but uses pop-up linear menus.  The popular 
Macintosh drawing program called Canvas also uses a similar scheme.  Many of the 
menus that pop up from tool pallets icons in Canvas have twelve or fewer items.   

While there are many situations where menus with twelve items or less may be 
sufficient, there are also many situations where menus contain more that twelve 
items.  For example, font menus, large color pallets and paragraph style menus 
commonly contain more than twelve items.  Chapter 5 shows that hierarchic 
marking menus make it possible to use a mark to select from a large number of 
items. 

Given the results of this experiment, we can now apply them to the design of 
hierarchic marking menus.  We recommend that hierarchic marks contain only 
menus with even numbers of items and the number of items be less than twelve.  
Because the poor performance of the trackball in this experiment, it would not be 
suitable for hierarchic marking menus.  Also it would be worthwhile to see if the 
mouse performs as well as the stylus on “zig-zag” marks.  Chapter 5 applies these 
design recommendations and evaluates hierarchic marking menus. 

Despite the value of such controlled studies, there are a number of questions which 
can only be answered by careful design and implementation of marking menus in 
real applications.  How long will it take for users to start using marks?  How 
intensely will users use marks?  What are the issues involved in integrating such a 
mechanism into a larger, more complex interface?  Chapter 4 addresses these types 
of questions by means of a case study of user behavior using a marking menu for a 
real task. 
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Chapter 4: A case study of 
marking menus 

The previous chapter has developed an empirical understanding of non-hierarchic 
marking menus.  From this understanding, guidelines for designing marking menus 
and interfaces that use marking were generated.  In this chapter we report on a 
study which applies those guidelines to the design of marking menus in an 
application and we evaluate user behavior while operating this application.  The 
application was designed to solve a real world task and was used in accomplishing 
real work for a project not related to this thesis.  The intention was to gain insight on 
integrating marking menus with other interface components and to find out how 
well marking menus perform in everyday practical work situations. 

4.1. DESCRIPTION OF THE TEST APPLICATION 

A conversation analysis/editor program, named ConEd, developed at University of 
Toronto, was used as a test application for marking menus (Sellen, 1992).  By 
digitizing audio from a conversation among four people, data were collected 
concerning who is speaking and when.  The conversation analysis/editor program 
is then used to display this data in a “piano roll” like representation.  The program 
runs on a Macintosh computer.  Figure 4.1 shows a typical display of the data 
window.  The y-axis represents the four participants in the conversation, and the x-
axis represents time. A black rectangle indicates that a particular person is speaking 
for a duration of time (this is referred to as an event).  The window can be scrolled to 
reveal different moments in the conversation.  Besides displaying the data, the 
application can be synchronized to a video recording of the conversation. As the 
video plays, the application moves a horizontal bar across the window to indicate 
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the current location in the conversation.  If the bar moves past the right side of the 
display, the application automatically scrolls to the next section of conversation. 

 

Figure  4.1:  The “piano roll” representation of speaker versus time in ConEd. 

Data can be edited as well as viewed with this application.  Such things as coughs 
and extraneous noises need to be deleted.  Other pieces of conversation, such as 
laughter, must be tagged for later analysis.  Very often events must be added or 
extended because the automated speaker tracking system was not accurate  enough.   

Typically, a user sits in front of the Macintosh and video monitor, watching the 
video and editing events in real-time.  Most of the time, a user operated the video 
transport with the left hand and the mouse with the right hand. 

A marking menu triggers the six most frequently used commands, which consisted 
of commands that coded and edited the blocks of speech.  The amount of coding and 
editing required was extremely high. Over 18 hours of operation, the two users 
performed 5,237 selections. 

4.2. HOW MARKING MENUS WERE USED 

4.2.1. The design 
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Figure 4.2 shows the marking menu used in ConEd.  This menu can be popped up 
by pressing-and-waiting with the mouse in the “piano roll” window.  Alternatively, 
a mark can be made to select the command.  A user can issue six commands using 
this menu: laugh, delete, add, fill-in, ignore, and extend. 

 

Figure 4.2:  The six most frequently used editing commands are placed in a marking 
menu in ConEd. 

Delete:  The “delete” command deletes events. If the starting point of the delete 
selection/mark is made over an event, then that event is deleted. If the starting point 
is not over an event, then the events lying between the starting and ending points of 
the selection/mark are deleted.  See Figure 4.3. 
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Figure 4.3:  Events can be deleted one at time, by pointing to the event, or in a series 
by drawing over a series events.  

Add:  “Add” allows new events to be added. The starting point of the add 
selection/mark defines the beginning of a new event.  The starting point of the 
following add selection/mark defines the end point of the new event and causes it 
to be displayed.  If add is performed over an existing event, it is disregarded.  See 
Figure 4.4. 

(1) (2)

(3)

Adding an event

 

Figure 4.4:  Events are added by specifying a starting point followed by and 
endpoint. 

Extend:  “Extend” elongates an event.  The starting point of the extend 
selection/mark defines the length of the elongation.  Either the start or the end of an 
event can be extended.  If the selection/mark is made between two events, the event 
whose starting or ending point is closest to the starting point of the selection/mark 
is elongated.  If extend is started over an event, it is ignored.  See Figure 4.5. 

 86



 

(1) (2)

Extending an event

 

Figure 4.5:  Events can be extended by pointing to the location of the extension. 

Fill-in:  “Fill-in” allows a gap of silence between two events to be filled.  The two 
events are replaced by one long event. The starting point of the selection/mark 
indicates the gap to be filled.  If Fill-in is ignored if started over an event.  See Figure 
4.6. 

(1) (2)

Filling in a gap

 

Figure 4.6:  Gaps between events can be filled in by pointing to the gaps. 

Ignore and Laugh: “Ignore” and “Laugh” allow events to be coded as special types.  
For example, speaking events generated by laughter must be tagged so they can be 
excluded from analysis of the conversation.  Back-channel events (i.e., someone 
saying “uh huh” or “yes” but not trying to interrupt while another person is talking) 
must also be tagged.  The starting point of the ignore or laugh selection/mark 
defines the event being coded. Either command is disregarded if not started over an 
event.  See Figure 4.7 and 4.8. 
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Figure 4.7:  An event can be marked to be ignored by pointing to it. 

(1) (2)

Marking an event as laughter

 

Figure 4.8:  An event can be marked as laughter by pointing to it. 

4.2.2. Discussion of design 

Menu item choice 

ConEd has more commands than the six contained in the marking menu.  There are 
several reasons for placing this particular set of commands in a marking menu.  
First, the experiment in Chapter 3 showed that even numbers of items, up to twelve, 
enhance marking performance.  Hence, six is within this range.  Second, a 
requirements analysis told us that these six commands are the most frequently used.  
This implied several things.  First, it would be advantageous if these commands 
could be invoked quickly.  Therefore, marks would be suitable for these commands 
since marks can be issued very quickly.  Second, these commands would be good 
candidates for marking menus because using the commands frequently would help 
a user memorize the associations between marks and commands.  This, in turn, 
would lead to users using the marks. 

Spatial aspects 

Use of end points:  While the marks used in marking menus are very simple, other 
features of a mark besides its angle can be used.  The starting and ending points of a 
mark are obvious candidates.  Features of a mark have been used in a similar 
manner by previous researchers (Coleman, 1969; Rhyne, 1987). 
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A requirements analysis revealed that the most frequent operations would involve 
selecting an event and applying an operation to it.  Thus, marking menus were used 
in an object oriented manner—the starting point of the selection/mark indicates the 
object of the command.  Note that this is not always the case.  For example, the 
extend command does not point to an event to be extended but to the location of the 
extension.  The particular event to be extended is inferred by the system.  However, 
we found that this inconsistency caused no problems for the user.   

The combination of pointing and marking produces the feeling of directness one 
gets when pointing and moving in objects in direct manipulation interfaces.  When 
using marks in ConEd, there is no sensation of explicitly making a selection before 
applying an operation. 

Use of horizontal/vertical dimension:  Spatial commonalties between the 
representation being edited and the direction of menu items can be used to 
determine the assignment of directions to commands.  For example, horizontal and 
vertical aspects of the marks can be exploited.  Specifically, the direction of a mark 
means the objects along that direction can be selected using the mark.  The delete 
command is an example of this.  Preliminary design testing indicated that deleting a 
series of horizontal events was a very frequent operation.  This meant putting the 
delete command at a horizontal menu position would allow deletion of several 
events in a row.  This “trick” was found to be very useful. 

Spatial commonalties can also be used to provide mnemonics to help recall the mark 
associated with a command.  The add and extend commands are examples of this.  
Both these commands require a vertical time location value.  A common way to 
indicate location along the horizontal is by a vertical “tick”.  This serves as a 
mnemonic for the marks associated with these commands. 

Temporal aspects 

Time versus space pointing:  There are many temporal aspects of a mark that can be 
used.  For example, the speed of drawing (i.e., fast or slow, fast at the start then slow 
at the end) or the time when a drawing occurred can be used.  The aspect we 
exploited is time-based drawing.  Specifically, the add command has two modes of 
operation.  The first mode has been described already—the starting location of the 
mark is used to define the start or end of the event being added.  However, if ConEd 
is synchronized to the playback of a video tape of the conversation, the start or end 
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point of an event is defined by the current playback location of the video, not by the 
spatial position of the mark.  This is analogous to indicating a point in time by 
saying “... now” instead of pointing “here”.  However, users did find that adding 
events while the tape was playing was difficult. 

Inverting semantics of menu items 

ConEd’s marking menu permits a unique method for undoing.  Commands can be 
undone in ConEd in the standard Macintosh manner (i.e., by pressing the “undo” 
key or selecting “undo” from the Edit menu).  The limitation of this approach is that 
only the most recent edit can be undone.  However, the laugh and ignore commands 
can also be undone by repeating the laugh or ignore command on the same event.  
The first laugh mark turns an event into a laugh event.  A second laugh mark 
toggles the event back to a normal event.  Therefore, even if these types of edits are 
not the most recent, they still can be undone. 

Toggling the way the laugh and ignore commands work is an example of inverting a 
menu item semantics.  In this case, once a function in a menu is invoked, it is 
replaced by the corresponding inverse function.  Hence, the semantics are 
“inverted”.  For example, selecting “open” will invoke the open function and replace 
the “open” menu item with “close”.  There are several reasons why inverting 
semantics are important to marking menus.  First, inverting semantics allows extra 
functions to be associated with a menu without increasing the number of items in a 
menu.  This helps keep the number of items in a marking menu small, which in turn 
makes marking easier.  Second, inverting semantics provides a mnemonic to help 
recall the association between mark and function.  For example, if one remembers 
the mark associated with “open” then one can recall the mark associated with 
“close”, because the two functions are the inverse of each other. 

The role of command feedback 

There are several ways that a user receives command feedback using marking 
menus in ConEd.  When using the menu, the user knows which command is about 
to be executed because the name of the command appears highlighted in the menu.  
When marking, a user can either recall the mark/command correspondence or 
watch the results of drawing the mark.  We have observed that, as users gain more 
experience with marking menus, they graduate from watching the menus and 
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marks, to watching the results of their actions to determine if they have selected the 
correct command. 

Context also plays an important role in determining the command a mark triggers 
when semantic inversion is being used.  For example, events that were marked as 
“laugh” events appeared in a gray color.  This feedback provides essential 
information to the user that a “laugh” mark on this event was not actually a laugh 
command but a command to “unlaugh” the event.   

In ConEd, a marking menu interaction combines object selection and command 
application.  Typically, in mouse-based direct manipulation systems, these two 
actions are distinct.  For example, a user selects an object by pointing to it; the object 
then appears “selected”; next, a command is applied to the object by selecting from a 
menu.   When using the marking menu in ConEd objects never appear “selected”.  It 
is interesting to note that none of the users ever reported missing it.  We can 
speculate the reason for this is that the combination of selection and marking is 
intuitive (i.e., emulates our experiences with pen and paper), and the result of a 
command appeared quickly enough that the starting point of the mark was still in 
visual image storage. 

4.3. ANALYSIS OF USE 

The behavior of two users using ConEd over an extended period of time was 
studied.  Both users were employed to edit conversation data.  The edited data was 
used in a research project which was independent of this research thesis. Therefore, 
a user's main motivation was not to use marking menus, but to complete the task of 
editing and coding the data.  The amount of data to be edited was extremely large 
and therefore the users were mainly interested in performing the edits as quickly as 
possible. 

The first user (user A) was an experienced Macintosh user and was also familiar 
with video technology.  User A was also familiar with the intentions of the 
conversation analysis experiment.  Given this profile, user A could be considered an 
expert, although unfamiliar at the start of the study with marking menus.  The 
second user (user B) could be considered a novice.  While user B did have some 
computer experience, it was mainly with the MS-DOS environment, not the 
Macintosh.  Therefore, user B not only had to learn how marking menus worked, 
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she also had to learn the many details of the Macintosh interface, and the correct 
way to edit the conversation data.   

It was explained to both users how the conversation data was to be edited.  The goal 
of editing was to ensure that the data matched the conversation patterns on the 
video tape.  Users edited the conversation patterns using ConEd and then checked 
their work by playing back the video tape and comparing the audio of the 
conversation with the data in ConEd.  This process was very interactive.  The user 
played the video and watched the conversation data “playback” on ConEd.  When 
the user saw a piece of data that did not match the audio on the video tape, the user 
edited the data, then rewound and replayed the video tape and data to ensure the 
edit was correct.   

Each user had the interface to ConEd explained to them and some example edits 
were performed for their benefit.  In particular, the commands in the marking menu 
were carefully explained and demonstrated.  The menu and mark mode was 
explained and demonstrated, as well as the ability to reselect menu items or confirm 
a mark.  We then verified that the user understood the marking menu by having 
them perform a few edits using the menu and marks. 

Data on user behavior was gathered by recording information about a marking 
menu selection every time a selection was performed.  The information included the 
time the selection was made, the user’s name, the item selected, the mode used to 
select the item (menu or mark), the length of time the selection took, and the path of 
the mark or the series of reselections from the menu.  A user only needed to register 
his or her name at the start of an editing session.  The rest of the trace data was 
accumulated transparently. 

User A edited for a total of 8.55 hours over approximately six days.  User B edited 
for 10.1 hours over a 29 day period.  Most editing sessions lasted one to two hours.   

After completing the task, the users were asked to fill out a questionnaire on their 
experiences using marking menus.  The intention of the survey was to reveal users’ 
perception of marking menus and gauge their level of satisfaction. 

4.3.1. Issues of use and hypotheses 

The main goal for tracing menu usage was to understand how users behave when 
using marking menus.  Specifically, we wanted to find out whether or not in a real 
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work situation users would evolve from using the menus to using marks and the 
characteristics of this evolution.  In Chapter 2, we described the design of marking 
menus and how it embodied several assumptions concerning user behavior.  The 
assumptions are that, first, a user will begin by using the menu but with experience 
the user will evolve to using marks, and second, as part of this evolution, users will 
make use of intermediate modes of selection (i.e., mark-confirmation and 
reselection).  We wanted to discover whether or not user behavior reflected this in 
order to prove our assumptions about the novice to expert transition, and to verify 
that these intermediate modes are actually needed in the marking menu design. 

With these goals in mind, we formed the following hypotheses about user behavior 
with the marking menu in ConEd: 

(1)  Menu mode will dominate a user’s behavior at first.  However, with experience, 
mark mode will dominate.   

(2) The more frequently a command is executed the more likely it is to be invoked by 
a mark. 

(3)  Users will make use of mark-confirmation and reselection but with experience 
this behavior will disappear. 

The following hypotheses test our assumptions concerning the differences between 
novice and expert behavior.  Specifically, expert behavior will demonstrate faster 
selection times and more efficient movement than novice behavior. 

(4)  Time to select from the menu, even with the wait delay subtracted, will be 
greater than time to make a mark. 

(5)  With experience, the average length of a mark and time required to make a mark 
will become smaller. 

4.3.2. Results 

We analyzed the data from the two users separately for several reasons.  First, we 
were concerned with individual differences.  Combining the data would have 
masked these differences.  Second, this study was not a controlled experiment.  The 
data being edited varied, as did the amount of time and number of sessions the 
users worked.  Thus, there was no logical way to merge the users’ trace data.  
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Finally, our two users were very different in attitude and expertise, and therefore 
combining the trace data would have been inappropriate. 

Menu versus mark usage 

Hypothesis (1) was shown to be true.  Figure 4.9 shows the percentage of times a 
mark was used to make a selection (as opposed to using the menu to make a 
selection) versus the total number of selections performed.  Over time, marking 
dominated as the preferred mode of selection.  For user A, out of a total of 3,013 
selections 6.6% used the menu.  For user B, out of a total of 1,945 selections, 45% 
used the menu. 

There are several interesting observations concerning the usage of marks over time.  
First, when users returned to using ConEd after a lay-off period, the percentage of 
marking dropped.  Figure 4.10 shows that several long lay-offs from ConEd 
occurred during the study.  Note the correspondence between periods of inactivity 
and dips in mark usage.  This indicates that mark/command associations were 
forgotten when not practiced.  However, the amount of fading reduced with the 
amount of experience (i.e., the dips in Figure 4.9 become less pronounced with 
experience).  Second, note how user B’s mark usage rises dramatically at 
approximately 650 selections.  We believe the reason this happened was because 
user B was a very cautious and inexperienced user.  For user B, every command was 
a new experience.  For example, user B needed help opening, saving, and closing 
files.  User B commented that it took her several hours to get comfortable with the 
video machine and the Macintosh interface before she could begin to think about 
using marks.   

Hypothesis (2) claims that the more frequently a command is used, the more likely it 
will be invoked by marking.  This is based on the assumption that frequent use 
demands fast interaction and this motivates a user to learn the association between 
mark and command.  Some commands were used more frequently than others.  The 
horizontal axes in the graphs in Figure 4.11 shows this.  Hypothesis (2) is shown to 
be true by a strong correlation between the frequency at which a command was 
used, and the frequency at which that command was invoked by a mark.  Figure 
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4.11 shows a linear relationship between frequency of command and frequency of 
marking (for user A, r2 = 0.81, p<.05; for user B, r2 = 0.88, p<.05)15. 

                                                 

15  Note that the add command was not used in this analysis because it appeared to be an outlier point.  Its 
frequency of marking was much lower than the rest of the commands.  Our users reported that the add 
command didn’t work correctly all the time.  Therefore we assume that users were not as confident about using 
a marking for the add command as they were for the other commands and hence the outlying mark frequency.   
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Figure 4.9:  With experience, marking becomes the dominate method for selecting a 
command.  Each data point is the percentage of times a mark was used in 50 
selections. 

0
20
40
60
80

100
120
140
160

0 500 1000 1500 2000 2500 3000 3500

0
100
200
300
400
500
600
700

0 500 1000 1500 2000

User A

User B

time
(hours)

time
(hours)

number of selections performed

number of selections performed  

 96



 

Figure 4.10: Usage of ConEd spanned many days with “lay-offs” between sessions.  
Steps in the graph represent layoff periods.  Dips in the graphs in Figure 4.9 
correspond to lay-offs.  After a layoff, a user had to resort to the menu to reacquaint 
oneself with the marks (especially user B). 
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Figure 4.11:  The more frequently a command is invoked the more likely it is to be 
invoked by a mark.  The vertical axes show the percentage of times a mark was used 
to invoke a particular command.  The horizontal axes show the percentage of times a 
particular command was invoked using either a mark or the menu. 
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Mark confirmation and reselection 

As predicted by hypothesis (3), users did make use of the ability to confirm a mark 
and reselect from a menu but with experience this behavior disappeared.  We draw 
evidence for this from Figure 4.12 as follows.  Figure 4.12 (a) plots three types of 
behavior when using the marking menu: 

• mark:  a selection is made by making a mark; 

• mark-confirm:  a selection is made by making a mark but waiting at the end of the 
mark, thus popping up the menu to confirm the mark selects the correct item; 

• mark-corrected: a selection is made in the same manner as “mark-confirm” but after 
popping up the menu another item is reselected. 

We conjecture that these three behaviors are indicative of a user’s skill in making 
accurate marks.  Mark is the most skilled behavior.  In this case, a user is so skilled at 
making a mark that no feedback is needed before confirming the selection.  Mark-
confirm is the next level of skilled behavior.  In this case, a user has enough skill to 
make the correct mark but not the confidence to invoke it without checking it 
against the menu.  Mark-corrected is a third level of skilled behavior.  In this case, a 
user has made a mark, checked it against the menu and has corrected the mark 
using reselection. 

Figure 4.12 shows several things.  First, mark-confirm and mark-corrected behavior 
did occur and therefore this functionality is used and needed.  Second, this behavior 
occurs during the transition from using the menu to drawing marks.  Third, when 
used, this type of behavior occurred less than ten percent of the time. 
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Figure 4.12:  Users made use of the ability to confirm the selection a mark would 
make before committing to it.  However, with experience this behavior disappears.  
Measures were averaged every 200 selections. 

Reselection 

Another topic of interest was whether or not users reselected when using menu 
mode.  Figure 4.13 shows that reselection occurred less than ten percent of the time.  
User A demonstrated that with experience reselection disappears. However, user B 
did not exhibit this behavior.  This is evidence that the reselection function in a 
radial menu is needed.   
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Figure 4.13:  Both users utilized reselection in menu mode.  While user A’s use of 
reselection diminished with time, user B utilized reselection even after substantial 
experience. Measures were averaged every 200 selections. 

Selection time and length of mark 

Selection time is defined as the time elapsed from the moment the mouse button is 
pressed down to invoke a marking menu, to the moment the button is released, 
completing the selection from the menu.  This measurement applies to either a menu 
or mark mode.  The selection time, for both users, was substantially faster in mark 
mode than in menu mode.  Figure 4.14 shows these differences.  For user A, a mark 
was seven times faster than using the menu.  For user B, a mark was four times 
faster.   

Even though menu and mark mode require the same type of movement, using the 
menu is slower than making the mark.  There are several reasons why.  First, a user 
must press-and-wait to pop up the menu.  This delay was set to 0.33 seconds.  
However, as the fourth column in Figure 4.14 shows, even with this delay subtracted 
from the menu selection time, a mark is still much faster (i.e., user A is 4.2 times 
faster, user B is 3.0 times faster).  The user most likely waits for the menu to appear 
on the screen.  Displaying the menu takes the system about 0.15 seconds.  The user 
must then react to the display of the menu (simple reactions of this type take no 
more than 0.4 seconds, according to Card, Moran, & Newell, 1983).  However, when 
making a mark, the user does not have to wait for a menu to display and react to its 
display.  Thus, a mark will always be faster than menu selection, even if press-and-
wait was not required to trigger the menu.  Figure 4.15 graphically shows this.  The 
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 average time to perform a selection (seconds) 

 mark menu menu - delay  

User A 0.18 ± 0.004 1.097 ± 0.042 0.763 

User B 0.404 ± 0.01 1.543 ± 0.052 1.209 

Figure 4.14:  On average, marks were much faster than using the menu.  For user A, a 
mark was seven times faster than using the menu.  For user B, a mark was four times 
faster.  Confidence intervals are at 95%. 
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Figure 4.15:  Why a mark is faster than using a menu.  The typical durations of 
various events that take place when making a selection are depicted.  Even if press-
and-wait was eliminated from menu selection it would still take longer than making 
a mark because of the additional events. 

fourth column of Figure 4.14 provides evidence of this.  This supports hypothesis 
(4). 

Selection time, using a mark, decreased with practice, however the decrease was 
very small.  In view of the very fast times for marking performance, this is good 
news, since this means that, even early in practice, novice performance was very 
similar to expert performance.  The decrease in selection time was less than 0.1 
seconds.  For this analysis we used the Power Law of Practice (performance time 
declines linearly with practice if plotted in log-log coordinates (Snoddy, 1926)).  
Linear relationships were found for both users (an analysis of variance of linear 
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regression used; for user A, F(1, 1654) = 166.5, p<0.0001; for user B, F(1, 541) = 23.03, 
p <0.0001).16

The average length of a mark decreased slightly with practice for user B, but not for 
user A (an analysis of variance of linear regression used; F(1, 2813) = 10.82, p<0.01).  
The average length of a mark was approximately one inch.  The delete mark was 
excluded from this analysis because its length was used to indicate a range of events. 

Given these results for mark time and length we accept hypothesis (5)–mark time 
decreases with practice, but only in the case of user B is there support for the 
hypothesis that mark length also decreases with practice. 

Users' perceptions 

Both users were given a questionnaire after performing the editing task.  The 
intention of the questionnaire was to discover if a user’s perception of marking 
menus matched their behavior and also to allow us to obtain information not 
captured in the trace data.   

An important parameter not captured in the trace data was selection errors.  The 
reason for this is that prior to a selection we did not know what item a user intended 
to select.  Therefore, when a selection was made, we could not tell whether or not 
the user had successfully invoked the desired selection.  Since users should be the 
judges of what acceptable error rates are, we simply asked them how many errors 
they made with the marking menu: no errors, few but acceptable, or too many?  
Both users reported “few errors but acceptable”.   

Users perceived marking menus as a tool that helped them get the task completed 
quickly.  Both users reported that their performance with the marking menu was 
“fast”.  User B, the less confident user, however, reported she didn’t have enough 
regular experience with the marking menu to be completely comfortable drawing 
marks.   

                                                 

16   Linear relationships were determined by estimating a regression line using an analysis of variance approach 
(see Appendix A further explanation). 
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Both users confirmed the differences we found in performance between menu and 
mark mode.  The trace data indicates that using a mark was substantially faster than 
using the menu. Both users reported a mark was “much faster” than using a menu. 

We were also interested in how users recalled the relationship between command 
and mark.  We suggested to both users three methods they could have used to recall 
mark/command associations.  The first is by recollecting the spatial layout of the 
menu.  The second is by rote–”this mark produces this command”.  The third 
method is the situation where one is so skilled at performing the mark/command 
that one is not aware of performing an explicit association—one just “does” the 
correct mark.17  User A reported using the second technique, except in the case of 
“delete” for which he used the third method.  User B reported using the first 
technique.  If we assume that the three methods represent various stages of 
increasing practice, we can conjecture that user A was farther along in expertise and 
practice than user B.  Our data shows this to be true (i.e., user A performed 1,068 
more selections than user B). 

Marking menus versus linear menus 

The results from this study allow us to build on the comparison between marking 
menus and linear menus discussed in Chapter 2.  When a user is familiar with the 
layout of a menu, selection from a radial menu will be faster than selection from a 
linear menu.  Callahan et. al., (1989) provide empirical evidence of this for eight-item 
menus.  It is possible that a linear menu may be more suitable when there an natural 
linear ordering to the menu items and a user must search the menu for an item 
before making a selection.  Alternatively, a radial menu may be more suitable when 
there is a natural radial ordering of menu items.  However, as shown by both Card 
(1982), and McDonald, Stone, & Liebelt (1983), the effects of organization disappear 
with practice.  Callahan et. al., (1989) provide evidence that, for eight-item menus, 
even when menu items have a natural linear ordering, selection using a radial menu 
is still faster and less error-prone than selection using a linear menu. 

Drawing from data in an experiment by Nilsen (1991), we can directly compare six-
item marks and six-item pop-up linear menus.  In Nilsen's experiment, a selection 

                                                 

17  Recall may also be by rote in this case, but, since recall is so quick, users may perceive it differently. 
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from a six-item linear menu required on average 0.79 seconds.  In our study, user A 
and user B required, on average, 0.18 and 0.40 seconds respectively to perform a 
selection using marks.  Furthermore, in Nilsen's experiment the subjects' only task 
was to select from a linear menu.  Therefore, one would expect selection speed to be 
artificially fast.  In our study, in contrast, the users were performing selections in the 
context of other real world tasks.  

The fact that radial menus are faster to select from than linear menus is not the 
complete story.  Selection using a mark is faster than selection via a radial menu.  
This case study has shown marks to be substantially faster than selection from a 
radial menu, even if press-and-wait time is factored out.  The reason for this is, when 
selecting using a menu, a user must react to the display of the menu before selecting.  
However, making a mark involves no reaction time. Hence selection with the mark 
is faster by design.  Obviously faster selection with a mark comes at the price of 
higher error rates, especially when menus become dense.  But the results from this 
chapter, Chapter 3, and Chapter 5 indicate that menus of breadths four, six and eight 
have acceptable error rates. 

Thus, we can conclude that if menus contain an even numbers of items and less than 
ten of them, and users frequently use the menus, marking menus will have a distinct 
advantage over linear menus.  Data from this chapter tells us that using the marks 
will be approximately 3.5 times faster than selecting from a radial menu.  We 
conjecture this speed-up figure would be greater if compared to linear menus.   

As a practical example of the impact of this speed-up, we can consider the 
performance of another real user using ConEd.18  This user performed 16,026 
selections during 36 hours of work.  Her average time to select using a mark was 
0.23 seconds.  Her average time to select using the menu was 1.48 seconds.  If the 
task had been done exclusively with a radial menu that did not use a press-and-wait 
delay of 0.33 seconds, the average time to select from a menu would have been 1.07 
seconds, and 16,026 selections would have required 17,099 seconds in total.  
However, when using the marking menu, the menu was used for 185 selections and 
marks were used for 15,841 selections.  Thus, menu selections required 185 × 1.48 = 

                                                 

18  A third user used ConEd extensively over a long period of time but she was not included in this study 
because she assisted in the design of the marking menu used in ConEd and ConEd itself.  Therefore, we felt she 
would not be an unbiased user of marking menus. 
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274 seconds.  Selections made with a mark required 15,841 × 0.23 = 3627 seconds.  
This results in the 16,026 selections requiring 3901 seconds in total.  Thus using a 
marking menu, as opposed to a radial menu that popped up immediately, saved the 
user 17,099 - 3,901 = 13,198 seconds or 3.66 hours.   

4.4. SUMMARY 

This chapter has described a case study which served two purposes.  First, the case 
study involved designing an application that used a marking menu.  From this 
exercise we gained insights on design.  Second, data on two users' behaviors using 
this application to perform a real task was collected and analyzed.  Information was 
collected on a user's performance using a marking menu every time a selection was 
performed.  This information consisted of selection time, selection method, item 
selected, time of selection, and cursor movement.  Analysis of this information 
allowed us to verify whether or not our assumptions about user behavior, which are 
embodied in the design of marking menus, are true. 

This study demonstrated several things: 

•  A marking menu was a very effective interaction technique in this setting. Its 
effectiveness was contingent on applying the technique to an appropriate setting— 
specifically, using a marking menu to invoke a few commands that are used 
frequently, and require a screen location as a command parameter.  Also, despite the 
simplicity of the mark, features of the mark, such as the start and end points, and the 
orientation of the mark, can be used to make interactions more efficient and easier to 
learn. 

•  A user's skill with marking menus definitely increases with use.  A user begins by 
using the menu, but, with practice, graduates to making marks. Users reported that 
marking was relatively error free and empirical data showed marking was 
substantially faster than using the menu. 

•  The various modes of a marking menu (menu, mark, mark-confirmation, and 
reselection) are utilized by users and reflect levels of skills.  In addition, when a 
user's skill depreciates during a long lay-off period, the user utilizes these modes to 
reacquire skills.  We conclude that these features are a necessary part of the design, 
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and furthermore, interfaces which supply mutually exclusive novice and expert 
modes are inappropriate when a user’s level of skill depreciates. 

•  In this setting a mark is a very fast way to invoke a command, and users, very 
early in practice, become skilled at making marks.  Evidence of this is that selection 
time was much faster in mark mode than in menu mode, and did not decrease 
substantially with practice.  This same data indicates that even if the delay time is 
removed from a menu selection time, menu selection is still slower than marking.  
This may be due to a user simply moving slower when using the menu.  In theory, 
however, even if there was not press-and-wait delay, and the user moved as quickly 
in menu mode as they do in mark mode, the user would still be delayed by, first, 
having to wait for the system to display the menu, and, second, by their own 
reaction time to its display.  Hence, within the limitations on the number of items in 
a menu described in Chapter 3, we conclude that a mark will always be faster than a 
menu that immediately pops up.  This, of course, is dependent on the user recalling 
the menu layout. 

We can expect hierarchic marking menus to exhibit the same performance properties 
as non-hierarchic marking menus, since selection from a hierarchic marking menu 
consists of a series of selections from non-hierarchic menus.  Chapter 5 establishes 
the breadths and depths of hierarchy at which we can expect these properties to 
hold true.  
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Chapter 5: An empirical evaluation of 
hierarchic marking menus 

This chapter reports on an experiment to investigate the characteristics of human 
performance with hierarchic marking menus.  Performance using a hierarchic 
marking menu is affected by the number of items in each level of the hierarchy and 
the depth of hierarchy.  This chapter reports on an experiment which systematically 
varied these parameters to determine the conditions under which using a mark to 
select an item becomes too slow or prone to errors.  Increasing depth and breadth 
tends to degrade performance.  Thus the intention of this experiment was to find an 
practical upper bound for these parameters.  Understanding of the role of depth and 
breadth helps us address the types of questions one asks when designing hierarchic 
marking menus for an interface: 

Q1: Can users use hierarchic marks? Chapters 3 and 4 have shown non-hierarchic 
marking menus to be useful.  (Hopkins,  1991) describes how hierarchic pie-menus 
can be useful.  Thus we can expect hierarchic marking menus, even without using 
marks, to also be useful.  However, the question remains:  Is it possible to use a mark 
to quickly and reliably select from a hierarchic radial menu? 

Q2:  How deep can one go using a mark?  Just how “expert” can users become?  Can 
an experienced user use a mark to select from a menu which has three levels of 
hierarchy and twelve items at each level?  By discovering the limitations of the 
technique we are able to predict which menu configurations, with enough practice, 
will lead to reliable selections using marks, and which menu configurations, 
regardless of the amount of practice, will never permit reliable selections using 
marks.  Also, will some items be easier to select regardless of depth?  For example, it 
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seems easier to select items that are on the up, down, left and right axes even if the 
menus are cluttered and deep. 

Q3:  Is breadth better than depth?  Will wide and shallow menu structures be easier 
to access with marks than thin and deep ones?  Traditional menu designs have 
breadth/depth tradeoffs (Kiger, 1984).  What sort of tradeoff exists for marking 
menus? 

Q4:  Will mixing menu breadths result in poorer performance?  The experiment on 
non-hierarchic marking menus described in Chapter 3 has shown that the number of 
items in a menu and the layout of those items in the menu affects subjects' 
performance when using marks.  Specifically, menus with 2, 4, 6, 8 and 12 items 
work well for marks.  What will be the effect of selecting from menu configurations 
where number of items in a menu varies from sub-menu to sub-menu? 

Q5:  Will the pen be better than the mouse for hierarchic marking menu marks? The 
experiment in Chapter 3 compared making selections from non-hierarchic marking 
menus using a stylus/tablet, a trackball and a mouse.  Subjects' performance was 
poorest with the trackball while performance with the stylus/tablet and mouse was 
approximately equal.  However, hierarchic marking menus require more complex 
marks.  Will the mouse prove inadequate? 

We are also concerned with some pedagogical issues which help us design human-
computer interactions.  Buxton has described the notion of chunking in human-
computer dialogs (Buxton, 1986).  For example, when using a mark to specify a 
“move” command, one can issue the command verb, source and destination all in 
one mark or “chunk”.  This notion is related to the concept of a “motor program” in 
motor control studies.  A motor program is “a set of muscle movements structured 
before a movement begins, which allows the entire sequence to be carried out 
uninfluenced by peripheral feedback” (Keele, 1968).   

Some systems or interaction techniques allow chunking to take place while others 
don't.  In some systems a user can articulate a series of operations  without having to 
wait for the system to finish each operation.  This allows these commands to be 
chunked.  For example, a user quickly clicks on three graphical buttons without 
having to wait for each button to complete its operation.  In this case, the user may 
perceive the three clicks as a chunk.  If the user was restricted to wait for each button 
to complete its operation before clicking on the next button, the user may not 
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perceive the three operations as chunk.  Hence, this indicates that something as low-
level as input event handling policies can affect user perception and behavior. 

Relative to marking menus, the phenomenon of chunking occurs when a user, rather 
than articulating a selection from a hierarchic menu as a series of directional strokes 
separated by pauses in movement, performs the entire series of selections in one 
fluid movement or “chunk”.  We speculate that chunking is related to expertise.  The 
more expert a user becomes with an interface the more the user chunks.  This 
experiment provides the opportunity to investigate this phenomenon. 

5.1. THE EXPERIMENT 

5.1.1. Design 

In order to determine the limits of performance, we needed to simulate expert 
behavior. We defined expert behavior as the situation where the user is completely 
familiar with the contents and layout of the menu and can easily recall the mark 
needed to select a menu item.  To make subjects “completely familiar” with the 
menu layouts we chose menu items whose layout could be easy memorized.  We 
tested menus with four, eight and twelve items.  For menus of four items, the labels 
were laid out like the four points of a compass: “N”, “E”, “S” and “W”. This type of 
menu we referred to as a “compass4”.  Similarly, a “compass8” menu had these four 
directions plus “NE”, “SE”, “SW” and  “NW”.  Menus with twelve items, referred to 
as a “clock” menus, were labeled like the hours on a clock. 

Will users of real applications ever be as familiar with menus as they are with a 
clock or compass?  We believe the answer is yes, and base this on three pieces of 
evidence.  First, our own behavioral study of users using a marking menu in a real 
application (Chapter 4) shows, with practice, they used marks without the aid of 
menus over ninety percent of the time.  Other researchers have reported this type of 
familiarity with pie menus (Hopkins, 1991).  Second, Card (1982), and McDonald, 
Stone, & Liebelt (1983) report that effects of menu organization disappear with 
practice.  In other words, with practice, users memorize menu layouts and navigate 
directly to the desired menu item.  Finally, it must be remembered that a user does 
not have to memorize the layout of an entire menu.  For example, a hierarchic 
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marking menu could contain 64 items but the user might only memorize the marks 
needed to select the two most frequently used menu items. 

The design of a trial in our experiment was as follows.  A subject was completely 
familiar with the menu layout and the marks needed to select an item.  The system 
would ask the subject to select a certain item using a mark (the menu could not be 
popped up by the subject). The subject would input the mark and the system would 
then record the time taken to draw the mark and whether or not the mark 
successfully selected the requested item.  After a series of trials, we would then vary 
the menu configuration and input device in order to see what effect these variables 
had on selection performance.   

The rationale for choosing menus of four, eight and twelve items was based on the 
results from the experiment in Chapter 3.  This experiment showed that menus with 
even numbers of items and less that twelve items were suitable for marking.  Using 
four, eight and twelve item menus is a deliberate attempt to explore a reasonable 
range of menu breadth.  We would expect that performance on a menu of four items 
to be quite acceptable even at extreme depths.  Whereas selection from a menu 
structure consisting of twelve-item menus which are two levels deep, seems quite 
treacherous.   

Using a similar rationale, we chose to evaluate menu depths from one to four.  A 
depth of one is a non-hierarchic menu which we know from the experiment in 
Chapter 3 produces acceptable performance.  A maximum depth of four was chosen 
since it is in the range where we believe performance will become unacceptable. 

For the sake of brevity we adopt a simple notation in the experiment.  A menu 
structure can be described by a tuple B,D.  B is the breadth of each menu in the 
structure and D is depth of menu structure.  For example, 8,2 menu is a menu 
hierarchy where every menu contain eight items and the hierarchy is two level deep.  
An 8,2 menu contain 64 leaf menu items.  When menu structures consist of different 
breadth at different levels we use the notation B:B:B, where B is the breadth of a 
menu at a certain depth.  For example, a 12:8:12 menu is menu structure consisting 
of a top level menu of twelve items, second level menus of eight items and a third 
level menus of twelve items.  A 8,2 menu is represented in this notation as 8:8. 

In menu structures of even moderate depth and breadth the number of selectable 
items becomes very large.  For example, in an 8,2 menu there are 64 selectable items.  
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As stated earlier, we wanted to simulate the case where the user was familiar with 
the marks being drawn.  Given the practical time constrains of the experiment we 
could not expect subjects to become familiar all marks.  Instead we decided to use 
only three target selections for each menu structure.  A subject could then quickly 
become familiar with the mark needed to make the target selection with a 
reasonable amount of practice.  In this way, the experiment addressed the question: 
given that the user knows the mark and is practiced at making it, will selection be 
quick and reliable? 

The next issue concerning targets was “which three targets”?  For menus of small 
breadth and depth this was not a major issue as one type of selection is 
approximately as easy to draw as another.  However, in the case of menus which 
consist of combinations of larger breadths and depths, some selections are definitely 
harder that others.  For example, we observed that making the selection “12-6-3-9” 
from a 12,4 menu was much easier that “10-11-10-11”.   

Our approach was to pick three targets for each menu configuration such that one 
was easy, one was moderately difficult, and one was difficult.  Easy targets were 
those that had items along the vertical and horizontal axes (on-axis items).  Difficult 
targets were those with items not on the vertical and horizontal axes (off-axis items), 
and little angle change between items.  Finally, targets of moderate difficulty were 
those with a 50%  mix of on-axis and off-axis items, and a 50% mix of little and large 
angle changes between items.  It was hoped this mixture of targets would result in 
behavior that would be representative of an “average selection”. 

In the case of menus that contain only on-axis items and large angle changes, we 
observed, prior to the experiment, that up and to the left selections seemed to be 
hardest, and down to the right selections seemed to be easiest.  Thus we chose hard 
targets and easy targets accordingly.  For moderately hard targets we chose either 
down-and-to-the-left, or up-and-to-the-right targets. 

We also had subjects perform selections from a 12:8:12 menu.  This was done so we 
could observe the effects of combining menus of different breadths in a menu 
configuration. 

5.1.2. Hypotheses 

Nine hypotheses are proposed: 
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(1) Pen outperforms mouse: The subjects will perform better with the pen than with 
the mouse in terms of response time and errors.  Once again, the experiment in 
Chapter 3 showed that subjects performed marginally better with the stylus/tablet 
than with the mouse on non-hierarchic marking menus.  However as depth 
increases, marks become more complex to draw and therefore the pen should be a 
more suitable device. 

(2) Increasing breadth increases response time and errors:  As breadth increases, 
response time and error rate will increase.  The experiment in Chapter 3 
demonstrates this effect for non-hierarchic marking menus. Therefore, we believe 
this effect will apply to hierarchic marking menus as well. 

(3) Increasing depth linearly increases response time:  As depth increases response 
time will increase.  We base this on the belief that marks to access deep menu 
configurations will require more time to draw because they will be longer. 

A study by Fischman is the most relevant work to this hypothesis (Fischman, 1984).  
In the study, subjects used a stylus to tap on a series of metal disks (ranging from 
one to five disks) that were either arranged in a straight line or in a staircase pattern 
that required changes in direction of 90û between disks.  Changes in direction and 
different numbers of disks in the series roughly correspond to directional 
movements and different depths in hierarchical marking menus.  Fischman found 
that response time linearly increased with the number of disks, but changes in 
direction did not affect response time. 

(4) Increasing depth increases errors:  As depth increases error rate will increase.  
As depth increases so does the number of times a subject has to estimate at the angle 
of mark needed to select an item.  Therefore the error rate will increase as the 
probability of error increases.   

(5) Inaccuracies propagate:  We hypothesize that the depth at which errors take 
place will be on average greater than half the depth of a menu structure.  Informally, 
we claim that inaccuracies in one portion of a mark will affect the accuracy of the 
remaining portion of a mark.  Our reasoning is as follows:  a subject uses the angle 
of a partially drawn mark to estimate the angle for the next portion of the mark.  
Inaccuracy in the first portion of the mark may then propagate into the rest of the 
mark, eventually resulting in an error.  The effect of this is that the probability of an 
error increases with depth.  If the probability of an error was the same at every level, 
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an error would occur on average at half the depth of the menu structure.  However, 
if the probability of an error increases with depth we should see errors take place on 
average at a depth greater than half the depth of the menu structure.  

(6) Mixing menus degrades performance:  Combining menus of different breadths 
in a menu configuration will degrade response time and increase the error rate 
relative to menu configurations where all menu breadths are the same.  Specifically, 
we hypothesize that subjects will perform better on a 12:12:12 menu than on a 
12:8:12 menu, even though an eight-item menu is easier to select from than a twelve-
item menu.  We believe it is easier for users to select items when the difference of 
stroke angle needed to select different items is consistent.  For example, in a menu 
structure consisting exclusively of eight-item menus, all items are at 45 degree 
angles.  If a twelve-item was introduced into the menu structure, some items would 
be at 45 degrees while others, the ones from the twelve-item menu, would be at 30 
degree angles. We believe inconsistency in “item angle” will degrade performance. 

(7) On-axis items enhance performance:  Marks that consist of on-axis items will be 
faster to draw and produce fewer errors than marks that consist of off-axis marks.  
This hypothesis is based on prior practical experiences using hierarchic marking 
menus.   

(8) Drawing direction affects performance: The direction of drawing will affect 
performance.  Specifically, marks that require drawing left to right will be 
performed faster than marks that require drawing right to left.  Other researchers 
have found a similar bias in directional movements (Boritz, Booth, & Cowan, 1991; 
Malfara & Jones, 1981; Guiard, Diaz, & Beaubaton, 1983). 

(9) Subjects will chunk:   The number of pauses when drawing a selection will 
approach zero with practice.  Once a subject starts to think of selection not as a series 
of strokes at certain angles, but as a mark of a certain shape, the subject will draw 
the mark without pauses between strokes.  This hypothesis was based on our own 
experiences using marking menus in the laboratory. 

5.1.3. Method 

Subjects:  Twelve right handed subjects were recruited from University of Toronto.  
All subjects were skilled in using a mouse but had little or no experience using the 
pen on a pen-based computer. 
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Equipment:  A Momenta pen-based computer development system was used.  The 
input devices consisted of a Microsoft mouse for IBM personal computers, and a 
Momenta pen and digitizer.  The digitizer was transparent and placed over the 
screen.  This allowed subject to “write on the screen” with the pen.  The screen was 
placed in front of the subject at approximately a 45 degree angle.  When using the 
pen the hand could be rested on the screen.  The mouse was placed to the right of 
the screen on a mouse pad.  No mouse acceleration was used and the sensitivity of 
the mouse was set to a value of 50 in the control panel.  A setting of 50 corresponds 
to a one to one C:D ratio.19

Task:  A trial occurred as follows.  The type of menu structure being tested appears 
in the top left corner of the screen.  A small circle appears in the center of the  screen.  
A subject then presses and holds the pen or mouse button over the circle.  The 
system then displays instructions describing the target at the top center of the 
screen.  A subject then responds by drawing a mark that is hoped to be the correct 
response.  The system responds by displaying the selection produced by the mark.  
If the selection did not match the target, the system beeps to indicate an error.  The 
system then displays each menu in the current menu structure at its appropriate 
location along the mark and indicates the selection from each menu.  The subject’s 
score would be shown in the lower left of the screen.  Figure 5.1 shows the 
experimental screen at this point.  If the selection is incorrect, a subject loses 100 
points and the trial is recorded as an error.  If the selection is correct, the subject 
earns points based on how quickly the response was executed. Response time is 
defined as the time that elapsed between the display of the target and the 
completion of the mark. 

A subject's score (accumulated points) is displayed in the lower left corner of the 
screen plotted against current trial number.  The graph also shows the best score for 
that particular pairing of menu structure and input device.  This gives subjects a 
performance level to compete against.  This helped to ensure that subjects 
performed the task both quickly and accurately.  

A subject's progress through the trials was self paced.  Subjects could pause between 
trials for as long as they liked.  Subjects used this pause to check their score and rest.  

                                                 

19  See Section 2.5.3 for the definitions of C:D ratio and mouse acceleration. 
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Most subjects paused just a few seconds.  All subjects required approximately one 
hour and fifteen minutes to complete the experiment. 

Menu is compass8:compass8

Select NE - S
Response NE - S

N

S

EW

NENW

SESW
N

S

EW

NENW

SESW

Trial number1 24

Top Score

Your Score

 

Figure 5.1:  The experiment screen at the end of a trial where the target was “NE-
S”. After the mark is completed, the system displays the  menus  along the mark to  
indicate to the subject the accuracy of their marking. 

Design:  All three factors, device, breadth and depth were within-subject.  Trials 
were blocked by input device with every subject using both the pen and the mouse.  
One half of the subjects began with the pen first while the other half began with the 
mouse.  For each device, a subject was tested on the thirteen menu structures 
(breadths 4, 8 and 12 crossed with depths 1 to 4, plus the mixed menu structure of 
12:8:12). Menu structures were presented in random order.  For each menu structure 
a subject performed 24 trials.  For the 24 trials, subjects were repeatedly asked to 
select one of three different targets.  Each target appeared eight times in the 24 trials 
but the order of appearance was random. 

Given this design, for each data point (a particular combination of input device and 
menu structure) 288 selections were collected (24 selections times 12 subjects).   For 
the experiment, 7,488 selections were performed in total. 
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Before starting a block of trials for a particular menu configuration, subjects were 
allowed eight seconds to study the menu configuration.  Before starting trials with a 
particular input device, a subject was given ten practice trials using the device on a 
4,3 menu.  This was intended to acquaint a subject with the “feel” of the input 
device.   

It can be argued that the practice session on the 4,3 menu gave subjects an unfair 
advantage on this particular menu.  We believe the effect was small for several 
reasons.  First, a different set of targets was used for practice than those used in the 
timed trials so subjects did not become practiced at drawing the targets for the timed 
trials.  Second, because of our choice of obvious menu labels and structure for all 
menus, a subject was already familiar with all of the menu structures even before 
practice. 

5.2. RESULTS AND DISCUSSION 

The main dependent variables of interest were response time and percentage of 
errors.  Response time was defined as the time that elapsed between the display of 
the target and the completion of the mark.  Percentage of errors was the percentage 
of incorrect selections out of 24 trials on a particular combination of device, breadth 
and depth.  Figures 5.2 and 5.3 show the means tables. 

Response time averaged across all subjects, breadths and depths for the pen was 1.69 
seconds, while the mouse was significantly slower at 2.07 seconds  (F(1,11)=19.7, p < 
.001).  The subjects produced significantly more errors with the mouse than with the 
pen (F(1, 11)=6.41, p < .05).  Subjects' performance with the pen was better than with 
the mouse both in terms of response time and percentage of errors, and therefore we 
accept hypothesis 1.   

Breadth significantly affected both response time (F(2,22)=91.7, p < .001) and errors 
(F(2,22)=130.5, p < .001).  Figure 5.3 shows, in general, that increasing breadth 
increases response time and percentage of errors.  Based on these results we accept 
hypothesis 2. 

Depth significantly affected both response time (F(3,33)=195.4, p < .001) and errors 
(F(3,33)=51.5, p < .001).  Figure 5.3 (a) shows a linear increase in response time as 
depth increases.  Linear regression on each device, menu breadth pair verifies this 
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claim (for the pen: breadth four, r2 = 0.79, breadth eight, r2 = 0.88, breadth twelve, r2 
= 0.82; for the mouse: breadth four, r2 = 0.73, breadth eight, r2 = 0.77, breadth 
twelve, r2 = 0.67; p < .001 for all values).  Figure 5.3 (b) shows that as depth 
increased so did percentage of errors.  Given these results we accept hypotheses 3 
and 4.   

 

  Depth   

Breadt
h 

Devic
e 

1 2 3 4 Total mouse & pen 

4 mouse 

pen 

.752 (.146) 

.710 (.108) 

1.189 (.188) 

1.098 (.142) 

1.797 (.407) 

1.451 (.275) 

2.102 (.445) 

1.835 (.298) 

1.460 (.616) 

1.279 (.473) 
1.367 (.554) 

8 mouse 

pen 

.932 (.211) 

.810 (.142) 

1.665 (.543) 

1.411 (.298) 

2.938 (.829) 

2.258 (.420) 

3.309 (.845) 

2.843 (.698) 

2.211 (1.159) 

1.831 (.895) 
2.021 (1.047) 

12 mouse 

pen 

1.170 (.289) 

.915 (.236) 

1.842 (.407) 

 1.531 (.266) 

3.011 (.763) 

2.331 (.519) 

4.181 (1.363) 

3.022 (.443) 

2.551 (1.406) 

1.950 (.888) 
2.250 (1.208) 

Total mouse 

pen 

.951 (.278) 

.812 (.186) 

1.565 (.484) 

1.347 (1.272) 

2.582 (.877) 

2.013 (.572) 

3.197 (1.272) 

2.567 (.724) 

2.074 (1.194) 

1.685 (.826) 

 

 mouse 
& pen 

.881 (.245) 1.456 (.415) 2.298 (.789) 2.882 (1.075) 
  

Figure 5.2:  Means table for response time.  Each entry is average response time in 
seconds.  Standard deviation is shown in parentheses.  
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  Depth   

Breadt
h 

Devic
e 

1 2 3 4 Total mouse & pen 

4 mouse 

pen 

1.43 (2.81) 

2.19 (5.09) 

4.18 (4.35) 

4.59 (4.63) 

4.24 (3.59) 

4.91 (5.97) 

5.10 (4.20) 

4.89 (5.69) 

3.74 (3.92) 

4.15 (5.32) 
3.94 (4.65) 

8 mouse 

pen 

5.90 (4.85) 

5.21 (7.13) 

8.82 (4.62) 

6.64 (6.56) 

20.44 (8.60) 

16.71 (9.84) 

22.98 (9.64) 

12.77 (9.26) 

14.51 (10.18) 

10.33 (9.34) 
12.42 (9.93) 

12 mouse 

pen 

13.19 (6.37) 

8.33 (8.33) 

21.26 (8.79) 

14.61 (14.91) 

38.56 (14.98) 

31.87 (14.13) 

38.58 (12.06) 

31.87 (14.13) 

27.90 (15.45) 

21.09 (16.48) 
24.50 (16.26) 

Total mouse 

pen 

6.84 (6.84) 

5.24 (7.24) 

11.42 (9.51) 

8.62 (10.46) 

21.08 (17.32) 

17.83 (15.5) 

22.19 (16.52) 

15.74 (14.90) 

15.38 (14.69) 

11.86 (13.29) 

 

 mouse 
& pen 

6.04 (7.04) 10.12 (10.02) 19.46 (16.24) 18.96 (15.95) 
  

Figure 5.3:  Means table for percentage of errors.  Standard deviation is shown in 
parentheses.  
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Figure 5.3:  Response time and percentage of errors as a function of menu breadth, 
depth and input device. Each data point is the average of 288 trials. 

All three factors, input device, breadth and depth affected response time.  Analysis 
of variance revealed a three way interaction between input device, breadth, and 
depth (F(6,66)=3.32, p < .05) affecting response time.  Figure 5.3 (a) shows these 
relationships.  As one would expect, increasing breadth and depth increases 
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response time, however subjects' performance degraded more quickly with the 
mouse than with the pen. 

Both depth and breadth interacted to affect error rate (F(6,66)=12.28, p < .0001).  
Variance in the error data is large, so the curves in Figure 5.3 (b) must be interpreted 
carefully.  Individual comparisons of error means revealed no significant differences 
for breadth four at any depth.  For breadth eight and twelve, the only significant 
change in error rate occurred between depth two and three (F(1, 11) = 23.85, p < .001; 
F(1, 11) = 60.52, p < .0001).  This indicates that the “rolling off” of the errors curves 
for breadths eight and twelve between depths two and three is not statistically 
significant but the increase between depths two and three is significant.   

It is important to compare these errors against what we believe would be reliable 
menu configurations.  It seems reasonable that selection from 4,2 menus would be 
reliable since these marks can be recognized even if drawn very inaccurately.  A 
comparison between 4,2 and 8,2 menus reveals no significant difference.  Hence, we 
have no evidence to claim that eight-item menus, up to two levels deep are more 
unreliable than 4,2 menus.   

A similar comparison between the 4,2 and 12,1 menu revealed a significant 
difference (F(1, 11) = 8.25, p < .01).  However, the 12,1 menu was not significantly 
different from the 8,2 menu.  Continuing the comparison, we found that the 12,2 
menu was significantly different from the 8,2 menu (F(1, 11) = 21.11, p < .0001).  
Hence, we claim that the 12,1 menu borders on being unreliable.  Section 5.2 has 
further interpretations on these results. 

Hypothesis 5 (inaccuracies propagate) was shown to be true.  As depth increased, 
the average depth at which errors occurred became significantly greater than half 
the depth of the hierarchy (F(3,33)=7.62, p < .001).  However, the input device had an 
effect on this behavior.  Figure 5.4 shows the pen consistently demonstrated this 
effect but the mouse exhibited a more erratic behavior. 
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Figure 5.4:  Average depth of error - depth/2 versus depth.  Depth is the depth of the 
menu structure being selected from.   

We tested the effects of mixing menu breadths in menu configurations by comparing 
the performance of a 12:12:12 menu with a 12:8:12 menu.  We found no significant 
performance difference between the two menu structures.  Therefore, we have no 
evidence that hypothesis 6 (mixing menus degrades performance) is true. 

In order to test the hypothesis 7 (on-axis items enhance performance), targets for the 
12,2, 12,3 and 12,4 menus were picked such that the experiment data could be 
divided into 3 groups.  With each group we associated an “off-axis-level”: a1, a2 and 
a3.  Experimental data was  placed in group a1 if the target consisted only of menu 
items that were on-axis, such as “12-3-9-3.”  Group a3 consisted of data on targets 
that consisted of entirely off-axis targets such as “1-2-1-2”.  Group a2 consisted of 
data on targets that were a mixture of on-axis and off-axis menu items, such as 12-7-
3-9.  Figure 5.5 shows that axis level had a significant effect on response time 
(F(2,22)=104.84, p < .001), and on percentage of errors (F(2,22)=36.2, p < .001).  Figure 
5.5 (a) shows how the type of device interacted with off-axis level (F(2,22)=6.93, p < 
.05).  This indicates that subjects response time using the pen did not degrade as 
much as their response time with the mouse on the worse off-axis targets.   

 120



 

.a 1 a 2 a 3
1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

pen
mouse

Off Axis Level

R
es

po
ns

e 
Ti

m
e 

(s
ec

)

a 1 a 2 a 3
2

4

6

8

10

12

14

16

18

pen
mouse

Off Axis Level

Pe
rc

en
ta

ge
 o

f E
rr

or
s

  

Figure 5.5:  Average response time and percentage of errors for targets with an 
increasing number of “off-axis” items. 

In order to evaluate hypothesis 8 (drawing direction affects performance), targets 
were picked for 4,3, 4,4, 8,3, and 8,4 menus such that mirror image pairs of targets 
could be compared. For example, the target N-W-N-W was compared with the 
target N-E-N-E.  No significant different in response time was found between “left” 
and “right” direction targets.  Therefore this experiment provides no evidence that 
hypothesis 8 is true. 

The data was analyzed for learning effects by examining performance after every 
sixth trial.  Figure 5.6 shows the results.  Response time dropped over 24 trials 
(F(3,33)=59.227, p<.0001).  Percentage of errors dropped as well (F(3,33)=8.294, 
p<.0003).  This shows that not only were subjects getting faster but also producing 
fewer errors.  No significant performance differences were found between trial 18 
and trial 24.  It may be possible that, because subjects were only selecting from three 
targets, their performance was beginning to asymptote by trial 24. 
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Figure 5.6:  Average response time and percentage of errors after every sixth trial. 

We analyzed the data for the number of pauses that occurred as a selection was 
being drawn.  A pause was defined as the pen or mouse not moving more than five 
pixels for more than 1/2 of a second.  Figure 5.7 shows that, as users gained 
experience the number of pauses dropped (F(9,99)=38.409, p < .0001).  This is 
evidence that subjects, with experience, began to draw a mark not as a series of 
discrete selections but as a single mark of a certain pattern (assuming that when 
pauses did occur they occurred between different selections).  The number of pauses 
did not fall all the way to zero because some of the most difficult targets required 
careful drawing which resulted in pauses.  Given these results we accept hypothesis 
9 (subjects will chunk). 
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Figure 5.7:  Average number of pauses counted after every six trials. 

 122



 

We also gave subjects a questionnaire after the experiment.  This was to elucidate 
subjects' perception of their own performance and compare some of the 
experimental data with subjects' perceptions.   

Eleven out the twelve subjects thought making selections with the pen was faster 
and more accurate than with the mouse.  This agrees with the data from the 
experiment.  Also, when asked to comment on the experiment, four subjects 
reported that, although their performance with the mouse was fast, they found the 
mouse required more effort.   

We wanted subjects' opinion on the accuracy of our mark recognizer.  In some cases, 
for example, menus which are only one level deep, recognition is simple.  In this 
case, only the start and end points of the mark need to be examined to determine the 
item picked.  However, at depths greater than one, submenu selections must be 
determined so changes in direction along a mark must be recognized.  The 
algorithm for determining these “kinks” along a mark is complex because it has to 
handle dense menus and marks that are drawn sloppily.  Typical of most 
recognition systems, occasionally what appears to the subject as a correct mark is 
misinterpreted by the system.  However, on average, subjects claim that this 
happened only three percent of the time.  This is an acceptable recognition rate by 
mark recognizer standards (Sibert, Buffa, Crane, Doster, Rhyne, & Ward,  1987).  
Nonetheless, after observing the type of recognition errors that occurred during the 
experiment, we believe the recognition rate can be further improved by a few 
refinements to the recognizer algorithm. 

Another phenomenon that occurred in the experiment was subjects selecting the 
wrong direction by accident.  For example, the screen would display “select N” and 
the subject would select south.  Errors of this type are referred to as “mental slips” 
(Norman, 1981).  These types of errors were removed from the data set before 
analysis because they are not caused by drawing inaccuracies.  Other errors such as 
clear cut errors on part of the recognizer were also removed from the data.  Subjects 
reported several causes for mental slips: “I just goofed” or “I started to draw the 
mark from the previous trial”.  Subjects, on average, claimed that mental errors 
occurred two percent of the time.  This approximately agrees with the data: we 
found a one percent error rate for clear cut “mental slips”.  We do not feel these 
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errors are particular to drawing marks—mental slips are common in any human 
activity (Norman, 1981). 

We hypothesized before the experiment that drawing marks that were 
predominately left to right movements would be easier, and hence faster, than right 
to left marks.  However, our analysis of the data showed drawing direction had no 
significant effect on selection times.  This agrees with the results of the 
questionnaire:  six out of the twelve subjects thought left to right marks were easier 
to draw that right to left marks.  This even split among subjects perhaps explains the 
non-significant effect of direction.  A closer examination of the data might reveal 
individual effects. 

5.3. CONCLUSIONS 

We can now revisit the questions posed at the start of this chapter and interpret the 
results of this experiment. 

Q1:  Can users use hierarchic marks?  Even if using a mark to access an item is too 
hard to draw or cannot be remembered, a user can perform a selection by displaying 
the menus.  Nevertheless, since the subjects could perform some of the marks in the 
experiment with acceptable response times and error rates, marking is a usable 
method of selection. 

Q2:  How deep can one go using a mark?  Our data indicates that increasing depth 
increases response time linearly.  The limiting factor appears to be error rate.  Error 
rate was found to rise significantly for menus beyond the 8,2 menu.  8,2 menus were 
not any more unreliable than 4,2 menus.  Common sense tell us that the marks 
required to select from a 4,2 menus are not difficult to draw.  Hence we consider 
menu configurations which did not significantly differ in error rate from  4,2 menus 
to be reliable.  It seems reasonable to recommend using menus of breadth four, up to 
depth four, and menus of breadth eight, up to depth two.  12,1 menus border on 
unreliability. 

Off-axis analysis indicates that the source of poor performance at higher breadths 
and depths is due to selecting off-axis items.  Thus, when designing a wide and deep 
menu, the frequently used items should be placed at on-axis marks.  This would 
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allow some items to be accessed quickly and reliably with marks, despite the 
breadth and depth of the menu.  

What is an acceptable error rate?  The answer to this question depends on the 
consequences of an error, the cost of undoing an error or redoing the command, and 
the attitude of the user.  For example, there is data that indicates, in certain 
situations, experts produce more errors than novices (Sellen, Kurtenbach, & Buxton, 
1990).  The experts were skilled at error recovery and thus elected to sacrifice 
accuracy for fast task performance.  Our experiences with marking menus with six 
items in a real application indicate that experts perceived selection to be error-free.  
Other research reports that radial menus with up to eight items produce acceptable 
performance (Hopkins, 1991).  Marking menus present a classic time versus 
accuracy tradeoff.  If the marking error rate is too high, a user can always use the 
slower but more accurate method of popping up the menus to make a selection.  

Marking error rates can be compared to linear menu error rates but one must be 
very cautious when comparing results from different experiments and different 
interaction techniques. Even within the same experiment, subjects may not 
consistently perform at the same level of accuracy, or the experimental task may 
artificially inflate or deflate the error rate. We can, however, make some 
approximate comparisons.  In a study of selection performance using pop-up 
hierarchic linear six-item menus of depth two, Nilsen (1991) reports error rates of 
2.3%.  Nilsen also reports that subjects accidentally popped up the wrong submenu 
on their way to making a correct selection 6.3% of the time.  In another study of 
similar pop-up linear menus, Walker, Smelcer, & Nilsen (1991) report error rates that 
range from 2.0% to 12.6% for subjects selecting from nine-item menus of depth 2.  
These error rate figures are in the range of the error rates found in our experiment 
for menus of up 8,2 menus.  Therefore, we can conclude, with caution, that marks, 
within the limits discussed above, can be as accurate as selection from linear menus.  
It is also critical to note that this level of accuracy is not the expense of speed.  For 
example, in this experiment selection from 8,2 menus required on average 1.5 
seconds.  In Nilsen's experiment, selection from six-item linear menus of depth 2 
required on average 1.8 seconds (six-item menus should be faster).  We found that, 
comparing the data from Nilsen and Walker experiments with this experiment, for 
equivalent menu configurations, selection from linear menus is slower than selection 
using marks.  
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Q3:  Is breadth better than depth?  For menu structures that resulted in acceptable 
performance, breadth and depth seems to be an even tradeoff in terms of response 
time and errors.  For example, accessing 64 items using 4,3 menus, is approximately 
as fast as using 8,2 menus.  Both have approximately equivalent error rates.  Thus, 
within this range of menu configurations, a designer can let the semantics of menu 
items dictate whether menus should be narrow and deep, or wide and shallow.   

Q4:  Will mixing menu breadths result in poorer performance?  The experiment did 
not show this to be true.  One possible explanation is that our menu labels strongly 
suggested the correct angle to draw and thus eliminated confusion.  A stronger test 
would use less suggestive labels when mixing breadths. Our results do indicate that, 
when there is enough familiarity with the menus, mixing breadths is not a 
significant problem. 

Q5:  Will the pen be better than the mouse for marking menu marks? Overall, the 
pen proved to be more suitable. However, for small menu breadths and depths, the 
mouse produced approximately equivalent performance.  We found this extremely 
encouraging because it implies that marking menus are an interaction technique that 
not only takes advantage of the pen but also remains compatible with the mouse.  Of 
course, it is worthwhile to note that some subjects thought their performance with 
the mouse was just as good as with the pen, but that the mouse required more effort 
to attain this level of performance. 

These conclusions should be tempered by reminding the reader that this experiment 
simulated an expert situation (i.e., subjects were asked only to select from three 
different targets, thus they quickly became “expert” at those targets).  We have 
argued that this situation is reasonably realistic.  Other realistic situations, such as 
the performance of users on unfamiliar hierarchic marking menus with varying 
targets, has yet to be explored. 

5.4. SUMMARY 

The chapter described an experiment to test the limitations of using marks to select 
from hierarchic marking menus.  Subjects were asked to select from marking menus 
using marks only.  Menus were chosen such that the subject would very quickly 
learn and remember the mark required to perform a given selection.  The breadth 
and depth of these menus and the input device was then systematically varied to 
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elucidate the effects of these variables.  Subjects' time to perform selections and error 
rates were collected and analyzed.  Subject’s perceptions were collected using a 
questionnaire.  

The experiment revealed that error rate was the limiting factor.  Menus of breadth 4, 
8 and 12 were examined.  Error rate became a factor when menu breadth was eight 
or twelve. For these breadths of menu, error rate rose significantly when depth was 
greater than two.  For these menu structures with acceptable error rates, there 
appeared to be an even depth/breadth tradeoff.  When menus structures contained 
equivalent numbers of items, subjects showed equivalent performance on both 
narrow, deep menus and wide, shallow menus.  It was also discovered that mixing 
menus of different breadths in a menu structure did not adversely affect 
performance.  Finally, we concluded that the pen is more suitable for drawing 
marking menu marks than the mouse, but the difference is not large. 

This chapter has answered some basic questions about the design variables of 
hierarchic marking menus.  Specifically, how deep and wide can menu structures be 
yet still allow a user to perform selections using marks?  The following chapter takes 
the answers to these questions and applies them to the design of hierarchic marking 
menus in a pen-based application. 

 127





 

Chapter 6: Generalizing the concepts of 
marking menus 

6.1. INTRODUCTION 

This chapter reports on a design experiment which deals with applying the design 
principles of self-revelation, guidance, and rehearsal to interface design.  Two issues 
are explored. First, we examine the ramifications of integrating an interaction 
technique that is based on these principles (marking menus) into a pen-based 
interface.  We found that it is possible to integrate marking menus into an interface 
but several compromises needed to be made.  Although these compromises change 
the original design of marking menus, we show that the resulting design still obeys 
our three design principles.  Second, we examine how these design principles can be 
applied to other types of marks besides zig-zag marks.  With this goal in mind, we 
developed an interaction technique that provides self-revelation, guidance, and 
rehearsal for these other types of marks.  These experiences provide a better 
understanding of the role of marking menus in interface design and demonstrate the 
value of the design principles. 

The test bed for this design experiment was a pen-based electronic whiteboard 
application called Tivoli (Pederson, McCall, Moran, & Halasz, 1993).  Tivoli is 
intended to be used in collaborative meeting situations, much in the same way that a 
traditional whiteboard is used.  Tivoli runs on a large vertical display, called 
Liveboard (see Figure 6.1) (Elrod et. al., 1992), that can be written on with an 
electronic pen (see Figure 6.2).  Much like a whiteboard, several people can stand in 
front of a Liveboard and write, erase, gesture at, and discuss hand drawn items. 
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Figure 6.1:  The Liveboard in use. 

Tivoli, however, does more than just emulate marking on a whiteboard.  Marks can 
be edited, stored, and retrieved.  Marks are remembered by Tivoli in terms of strokes.  
A stroke is the path of the pen recorded from the moment the pen is pressed against 
the screen and moved, until it is released from the screen.  A screenfull of strokes 
can be grouped into a “slide”, and saved for retrieval later. Typical operations on 
strokes include moving or copying groups of strokes, changing the color or 
thickness of the pen tip, and undoing edit operations.   Users draw “edit marks” to 
perform some of the editing operation described above.  Figure 6.3 shows the types 
of marks used.  Other operations are triggered using graphical buttons, dialog 
boxes, and menus. 

One basic goal of our design study was to address the problem of operating 
extremely large displays.  It is envisioned that someday the Liveboard display surface 
would be very large, and therefore, we wanted to address the problem of bringing 
the commands to the user as opposed to the user moving to the commands.  
Marking menus seemed suitable for this type of design since the menus can pop up 
at any location and the marks can be made at any location.20  Furthermore, since 

                                                 

20  This is not completely true.  Depending on the design of the interface a user may have to be over some 
particular area or object on the display before a menu can be popped-up or a marking intepreted.  However, the 
point is that pop-up menus and marks help reduce the amount of movement a user must make to invoke 
functions.  For example, when a user wants to change pen color, traditionally one has to move from the drawing 
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Tivoli has many commands, we felt that hierarchical marking menus might allow 
access to many of these commands from a single location.  The issue was whether  or 
not we could integrate marking menus into the existing Tivoli interface design to 
solve some of these problems. 

Another basic design goal was that Tivoli should be based on the unfolding interface 
paradigm described in Chapter 2.  For example, for a novice Tivoli user the interface 
presents a limited set of functions—the type of functions one gets with an ordinary 
whiteboard.  However, additional functions can be discovered and used with 
minimal instruction and experience.  In effect, once a user has the “key” to unlock 
the hidden functionality, Tivoli can be unfolded and additional functions invoked.  
Using edit marks is a way to hide additional functions.  The edit marks are not in 
themselves self-revealing, and therefore, this serves as a way to hide functions from 
a novice.   

                                                                                                                                                       

area to a color pallet and back.  With a pop-up menu, this trip is avoided since the menu can be popped-up over 
some white space in the drawing area. 
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Figure 6.2:  An application called Tivoli, running on Liveboard,  emulates a 
whiteboard but also allows drawings to be edited, saved and restored. 

 

Figure 6.3:  The basic edit marks used in Tivoli.  

Given these basic goals, we explored two problems.  The first problem was to 
determine which Tivoli functions would be suitable for marking menus, and how 
marking menus could be integrated into the existing interface.  The second problem 
was how to provide self-revelation, guidance, and rehearsal for the edit marks in 
Tivoli. 

6.2. INTEGRATING MARKING MENUS INTO A PEN-BASED INTERFACE 

We decided we would explore design issues by using marking menus to control pen 
settings in Tivoli.  In Tivoli, the pen can be set to different colors and thicknesses.  
Originally, these settings were performed using a pallet of buttons which had an 
individual button for each pen thickness and color.  There were several reasons why 
it would be advantageous to control these functions using marking menus.  First, the 
original buttons consumed a large amount of screen space.  Replacing these buttons 
with a marking menu would free up this screen space.  Second, changing pen 
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settings was a frequent operation while drawing.  Changing settings meant many 
trips to and from the button pallet.  A marking menu could be made to pop up at the 
drawing location, thus avoiding trips to the button pallet.  Third, no intuitive set of 
marks exist for controlling pen settings.  Marking menus could provide a set of 
marks and a method for learning those marks. 

6.2.1. Adapting to drawing and editing modes 

Figure 6.4 shows the marking menu we used to control pen thickness and color.  The 
range of items is deliberately small.  We felt that, in Tivoli, users need only a few 
different thicknesses and colors for the pen.  This is like real whiteboards, where the 
number of markers is limited.  The menu items “inc” and “dec” allow a user to 
increment and decrement the pen size to get custom thicknesses.  The menu appears 
when a user presses-and-waits with the pen anywhere in the drawing area.  This 
allows a user to change pen settings without having to move the pen from the 
current drawing location. 
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Figure 6.4:  The hierarchical marking menu used to control pen settings in Tivoli.  
The menu can be popped up by pressing-and-waiting instead of drawing. 

There is a complication with this design.  Normally, a marking menu allows a user 
the alternative of drawing a mark to select a menu item.  However, in the situation 
just described, Tivoli is in the “drawing mode” (i.e., all marks are interpreted as 
drawings, not commands).  A mark is interpreted as a command in Tivoli when it is 
drawn while a button on the pen (the command button) is pressed.  Thus, the design 
of the Tivoli's interface requires that menu selection marks (which are actually 
command marks) be performed with the command button pressed.  However, this 
deviates from the rehearsal principle slightly:  the physical action of making a 
selection mark is the same as selecting from the menu, but the command button 
must also be pressed.  All the directional motions remain the same so we can be 
hopeful that using the menu still develops skills useful for learning and making the 
selection marks.   

We have no empirical data to verify that, despite this deviation in rehearsal, skills 
developed in using the menu are still transferred to using the marks.  However, 
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when using Tivoli ourselves, because of our experiences with the menu, we were 
able to recall the spatial layout of the menu, and issue marks.  The role of spatial 
memory and physical movement memory in the transition from menus to marks is a 
topic for future research. 

6.2.2.  Avoiding ambiguity 

Typically interfaces that use marks as commands identify marks by the shape of the 
mark or the context in which the mark is made.  This discussion discriminates 
between marks intended for marking menu selections and other kinds of marks 
intended for commands.  For the sake of brevity in this discussion, we will refer to 
these other kinds of marks as iconic marks, although the meanings of these marks 
may not be strictly based on iconic shape (see section 6.3.1 for further discussion).  
Also for the sake of brevity, we refer to marking menu's zig-zag marks as menu 
marks.  The important point is that the potential exists for marking menu marks 
(menu marks) to be confused with iconic marks.  Figure 6.5 shows an example of 
two marks for a menu structure of breadth eight and depth of two which are the 
same as some of the iconic marks in an early version of Tivoli.   

These types of ambiguities are not peculiar to marking menu marks.  Many 
interfaces that use marks exhibit this problem.  For example, a classic problem is 
drawing an “O” for the letter “O” and having it confused with a small circle (where 
circling performs a selection).  We present three strategies for overcoming this 
problem for marking menus, and the advantages and disadvantages of each one.  
We then describe how a one of these three strategies was used in Tivoli. 

Avoidance 

One way to avoid ambiguities between marking menu marks and iconic marks is to 
eliminate the ambiguous marks from the marking menu set.  This can be done by 
avoiding the placement of menu items at locations in a menu structure that would 
result in ambiguous marks.  These “avoided locations” can be occupied by null 
menu items.  A mark that selects a series of null items is then considered no longer a 
marking menu mark, and therefore ambiguity is eliminated.   
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Figure 6.5:  The marks used for a marking menu may conflict with other marks.  The 
example shows two marks used for selecting from a marking menu that can be 
confused with edit marks in an early version of Tivoli.  A dot indicates the starting 
point of the mark. 

One drawback to this approach is that the number of items a menu can hold is 
reduced and “unnatural” gaps may appear in the menus.  For example, suppose a 
menu contains an ordered set of font sizes.  If one of the menu items is not used, 
then a gap appears between two menu items that logically should appear adjacent to 
one another.  This may make learning the layout of the menus more difficult.   

Another drawback is that eliminating a menu item from certain location forces that 
the item to be placed somewhere else.  Menu structures can be expanded to hold 
displaced items either in breadth or in depth. As shown in Chapter 5, expanding in 
breadth or depth slow menu selection and increases errors.  Furthermore, 
eliminating items may result in losing on-axis items, which have been shown in 
Chapter 5 to enhance performance. Ultimately, rearranging menus may lead to 
menus that appear to be oddly structured, and this results in menus that are hard to 
learn, slow to use and error-prone. 

These drawbacks makes avoidance a poor solution.  In certain restricted cases, 
though, it can be a simple and easy solution to implement.  For example, suppose 
the only conflicting mark is a horizontal stroke which is to the right, and the 
marking menu only needs to contain six items.  The simple solution is to use an 
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eight-item menu and the make the “right stroke” menu item and some other menu 
item null items, and populate the remaining menu items with the six commands.  A 
variation on this strategy is to change the iconic marks.  This, of course, avoids the 
problems with modifying a marking menu as described earlier, but in certain 
situations may cause confusion for a user when obvious or common marks are 
replaced by non-obvious, uncommon iconic marks. 

Different context 

Another design alternative is to allow iconic marks and marking menu marks of the 
same shape to coexist but determine their meaning by the context in which they are 
drawn.  Two dimensions in which the context can vary are time (i.e., when the 
system is in a certain mode a mark has a certain meaning), and by space (i.e., a 
mark’s meaning varies depending on the location at which it is drawn). 

Distinguishing the meaning of a mark by the context of time leads to moded 
interfaces.  An interface where a user must enter a “marking menu mode” to issue a 
marking menu mark seems to defeat the purpose of making a mark—a fast way to 
invoke a particular command.  However, if the cost of switching modes is very low 
and properly designed (Sellen, Kurtenbach, & Buxton, 1992), this can be an effective 
technique.  An example of low cost mode switching is a dedicated pop-up menu 
button on the mouse which is found in many windowing systems such as X11 (X11, 
1988) and Open Look (Hoeber, 1988).  After developing the habit of holding down the 
button to pop-up and maintain a menu, a user no longer perceives using a menu as a 
mode.  One can imagine such a similar design for marking menus where a user 
presses down a button on the pen or mouse to indicate to the system that the mark is 
intended for the marking menu.  The obvious disadvantage to this scheme is that a 
hardware button must be dedicated strictly to a menu.  Many pen-based system 
pens do not have buttons, or the buttons have already been assigned other functions.  
For example, in Tivoli the two buttons on the pen were already used for other 
functions.  The first button is used to distinguish between drawing mode and 
command (edit mark) mode.  The second button is used to control whether the pen 
is in drawing mode or erasing mode. 

Another type of context that can be used to distinguish the meaning of a mark is 
location.  For example, a stroke through a word may mean “delete the word” while 
the same stroke starting on a graphic may mean “move the graphic”.  This type of 
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scheme works well with object oriented direct manipulation systems, where the 
combination of an object and a mark can be used to distinguish a mark's meaning.  
Of course, distinguishing meaning by location will not work if the same location 
must accept two identically shaped marks. 

Marking menus work very well in identification by location situations.  For example, 
on a different project, we found an effective interaction technique can be created by 
embedding a marking menu in an ordinary graphical button.  In effect, this extends 
the functionality of the button. Along these lines, we developed a system called 
HyperMark which allows marks to be used in Apple's Hypercard (Apple 1992).  For 
example, if HyperMarks are added to a button, not only does a button react to a 
mouse press, but marks can also be drawn on the button which trigger other actions.  
This results in the interface having fewer buttons and faster interactions in some 
cases.  In effect, HyperMarks are similar to pop-up menus where additional 
functions are hidden under a button until popped up.  However, with HyperMarks, 
a user does not have to wait for a menu to pop up, visually search the menu and 
point to an item.  Instead, a mark triggers the item directly.  Our intention was to 
permit ordinary Hypercard users or programmers to incorporate marks into their 
own Hypercard stacks.  

With HyperMark, different buttons accept the same mark but the interpretation of 
the mark is different.  Figure 6.6 shows an example of different locations having 
different menus but reusing the same set of marks.  The meaning of the marks is 
disambiguated by the location of the mark.  We feel this is a reasonable design as 
long as the common commands (scroll up and scroll down, for example) are kept 
consistent from button to button.  

The disadvantages of discriminating by location are, first, it does not eliminate the 
problem if the same location accepts two ambiguous commands and second, it 
consumes screen space.  Consumption of screen space results in situations where the 
desired location is not displayed on the screen and must be acquired by the user.  
This can slow interactions and defeat the purpose of using marks. 
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(a) (b )  

Figure 6.6:  A simple news reader program in Hypercard that is controlled by 
marking menus.  (a) shows the four major area of the screen: “Headlines”, a list of 
articles, the title of the current article, and text of the article.  (b) shows the marking 
menus associated with each of these areas.  When marks are used to select from the 
menus the context (the location) of the mark contributes to its meaning. 

Distinguishing tokens 

Distinguishing marks by tokens involves augmenting a mark with some 
characteristic that disambiguates it.  Augmentation can be of several forms.  The 
shape of marks can be augmented.  Alternatively, the dynamics of drawing the mark 
can be used to augment a mark. 

Figure 6.7 shows how an augmenting “dot” at the start of a marking menu mark is 
used to indicate the mark is intended for a marking menu.  An augmenting token, 
however, does not have to be at the start of the mark.  The token could appear as a 
prefix to the mark, within the mark or as a suffix to the mark.  However, if the mark 
is not distinguished from the start, then mark-confirmation may lead to ambiguities, 
since the system may identify the partially completed mark as both the start of a 
marking menu mark and an iconic mark.   
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Figure 6.7:  Two marking menu marks that are augmented by a “dot” to distinguish 
them from other types of marks in an interface. 

There are many alternatives to “dot”.  Any sort of token that guarantees distinction 
could be used.  In practice, we found “dot” easy to draw and easily and reliably 
recognized by the system.21  We also found that one could make an analogy between 
it and press-and-wait.  In Tivoli, pressing-and-waiting in drawing mode popped up 
a marking menu to change pen settings.  “Dot” could be thought of as a mark in 
command mode that mimicked press-and-wait, and allowed access to the pen 
setting menu.   

Another way of distinguishing marks is by dynamics.  For example, in some systems 
the speed at which a mark is drawn determines its meaning.  For example, a slow 
up-stroke may mean “next page”, while a quick up-stroke (a “flick-up”) may mean 
“go to the end of the document” (Go, 1991).  In Tivoli, we experimented with 
dynamic schemes and found several problems.  First, flicks are not consistently 
recognized because the speed of a flick varied with direction and the user's 
dexterity.  Also, quick movements sometimes caused the pen to skip off the display 
surface before the speed of a flick could be attained.  Flicking was not very reliable 
because of these problems.  We also experimented with prefix flicks and suffix flicks.  
Prefix flicks made drawing the remaining mark too hard:  slowing the pen down 
after drawing the flick to draw the rest of the mark, was difficult.  Alternatively, 
drawing the entire mark at flick speed was too hard.  Suffix flicks were more 
reliable:  we could safely draw the first part of the mark then add a “flick flourish” 
on the end of the mark to indicate it as a marking menu mark.   

                                                 

21  We occasionally operated Tivoli with a mouse, although it is intended to be operated with a pen.  In this case 
we found a "dot" very difficult to draw.  Thus we would not recommend the use of the "dot" for mouse driven 
system that use markings. 

 140



 

Recognizing flicks was further complicated by limitations in the input event 
software.  On occasion, input events are buffered.  Time stamping of input events 
occurs after events are read from the input buffers and therefore, at times, these 
buffering delays confuse the flick recognition process.  This problem could be 
overcome by immediately time stamping all events.  Nevertheless, this indicates that 
tracking dynamics place special demands on input software.  

Even if flicks could be made reliable they still present a problem: how can flicks be 
demonstrated to a user?  The “dot” is easy to learn because a user can simply be 
told: “make a dot, about this big”.  Flicks on the other hand are dynamic in nature 
and are best learned by demonstration and practice. Section 6.3.2 discusses issues 
concerning self-revelation of mark dynamics. 

To summarize, we have presented three strategies to avoid ambiguity between 
menu marks and iconic marks: avoidance, different context, and distinguishing 
tokens.  Based on  the various advantages and disadvantages each strategy just 
discussed, we elected to use a distinguishing tokens strategy in Tivoli.  Specifically 
we used the “dot” prefix mark shown in Figure 6.7.  Section 6.4 discusses our 
experiences with this strategy. 

6.2.3. Dealing with screen limits 

One problem that can occur in a pop-up menu system is that, when a menu is 
displayed near the edge of a screen, some portion of the menu may be clipped-off.  
This may make it impossible to see or select some items.  We refer to this as the 
screen limit problem.  Marking menus suffer from this problem because they use 
pop-up menus. 

One possible solution to the screen limit problem is not to allow menus to be 
displayed too close to the edge of the screen.  This implies placing menu “pop-up 
spots” some safe distance away from the edge of the screen.  While this is a 
workable solution, it is not practical when menu hierarchies are deep, since pop-up 
spots may have to be located a large distance from the edge of the screen to keep the 
submenus from hitting the edge of the screen.  Furthermore, it seems to be an 
unreasonable constraint given popular interface design.  For example, most drawing 
programs have scrollable windows, and a user is allowed to scroll a window till 
menu pop-up spots are close to the edge of the screen. 

 141



 

Another solution to the screen limit problem is constraining.,  Most pop-up menu 
systems constrain menus to display entirely on the screen, even if the location from 
which the menu was invoked would cause some portion of it to be clipped-off.  For 
example, the menus in Open Look use this solution (Hoeber, 1988).  Constraining, 
however, causes problems when hierarchic menus are used.  In this case, accessing a 
series of menus causes each menu to hit the edge of the screen.  We refer to this 
problem as crowding.  When crowding occurs, users end up making a series of 
selections from menus that are against the screen edge and this can sometimes make 
menu selection slow and error-prone. 

Hopkins (1991) uses a constraining solution for radial menus.  Since marking menus 
use radial menus, it is worthwhile to consider this solution.  With Hopkins' radial 
menus (or pie menus), normally, a pie menu pops up centered around the cursor 
location.  However, when the cursor is close to the edge of the screen, this results in 
some portion of the menu being clipped-off,   To overcome this problem the menu is 
displayed not centered around the cursor, but shifted over so it is completely 
displayed.  The cursor is then reset by the system to the center of the menu (this is 
referred to as “warping” the cursor).  At this point, the user can make a selection in 
the usual way. 

Problems occur with Hopkins' solution when the input device is an absolute device 
like the pen, and this makes it unsuitable for marking menus in Tivoli.  The problem 
is that the system cannot change the location of pen (given the constraint that the 
cursor always appears under the tip of the pen).  An example demonstrates this.  
Suppose a radial menu is popped up too close to the edge of the screen.  If the menu 
is constrained to display completely on the screen, the pen tip is no longer in the 
center of the menu. The pen tip generally ends up located in one of the menu items.  
This immediately highlights the item.  If the highlighted menu has a submenu, this 
menu would then be displayed.  Thus, a user inadvertently descends the menu 
hierarchy.  Even if the menu item has no submenu the user would still have to move 
the pen out of the menu item if the menu item was not the desired one.  

We propose the following solution which permits marking menu selections near the 
edge of the screen when using a pen.  When the pen is pressed close to the edge of 
the screen, the marking menu appears centered around the pen tip cursor with some 
portion of it clipped-off.  If the clipped-off portion is large enough to obscure some 
menu items, another special menu item (referred to as the “pull-out” menu item) 
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appears on the screen (see Figure 6.8).  At this point a user can select the visible 
menu items in the normal fashion.  However, if the user moves the cursor to the 
pull-out menu item, the menu is redisplayed centered at the location of the pull-out 
item.  The pull-out menu item is located far enough away from the edge of the 
screen so that the menu is completely visible when redisplayed.  At this point the 
pen is located in the center of the menu and all items are accessible.  This same 
scheme works with hierarchic menus.  Every time a submenu hits the edge of the 
screen, a pull-out item is displayed. 
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Figure 6.8:  A “pull-out” menu item allows a user to access menu items that would 
be clipped-off by the edge of the screen.  In (a) a user has displayed a marking menu 
but a portion of it is clipped-off by the edge of the screen.  Because of this, a pull-out 
item appears (the gray circle).  In (b) when the user drags over to the pull-out item, 
the menu is redisplayed so all items can be accessed. 

Marks also have a screen limit problem.  If one starts a mark too close to the edge of 
the screen one may run into the edge.  As with menu mode, the input device used 
makes an important difference in a solution to the problem.   

If a relative input device like the mouse is used, it is possible for users to draw 
marks “beyond” the edge of the screen.  Hopkins (1991) has proposed a solution that 
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is suitable for marks.  Hopkins’ pie menus use a technique called mousing-ahead 
which is similar to marking but the path of the cursor leaves no ink-trail (see Section 
2.3.1 for a complete explanation of mousing-ahead).  Mousing-ahead is possible 
even when the cursor hits the edge of the screen.  Although the cursor is constrained 
to the area of the screen, mouse movement after the cursor hits the edge of the 
screen is still tracked.  Thus, a user can mouse-ahead beyond the edge of the screen.  
Applying this solution to marks, a user could draw marks beyond the edge of the 
screen, although some portion of the mark would not be visible.  This solution is 
important because it preserves the principle of rehearsal.  The movement to select 
from the menu must be the same as movement to make a mark and this happens 
even when menus and marks hit the edge of screen.  

If the input device is a pen, drawing a mark close to the edge of the screen behaves 
logically:  if the mark does not hit the edge of the screen, it can be performed as 
usual;  if the mark does hit the edge of the screen, a user cannot physically draw it.  
This behavior mimics the way pen and paper works—if one is too close to the edge 
of the page one cannot draw certain marks.  

We still need to, however, be able to apply marks to objects that are near the edge of 
screen.  To do this we mimic pen and paper traditions.  Generally, when something 
is too close to the edge the page to fit, a line is drawn from the object, out to some 
clear space and then an annotation is made.  We propose a similar design.  Suppose 
an object is too close to the edge of the screen for a certain mark to be made.  A user 
can draw a line, out to some clear space on the screen, then make a “pull-out” mark, 
followed by the desired mark.  Figure 6.9 shows this.   

6.3. APPLYING THE PRINCIPLES TO ICONIC MARKINGS 

Marking menus provide self-revelation, guidance, and rehearsal for “zig-zag” types 
of marks, specifically, the type of marks that are the byproducts of  selecting from 
radial menus.  Can a similar mechanism be provided for iconic marks?  As a design 
experiment we decided to see if we could design mechanisms similar to marking 
menus but for the edit marks in Tivoli.  Thus we attempted to design ways to self-
reveal these marks, guide a user in making them, and have this be a rehearsal which 
builds skills for expert behavior. 
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Figure 6.9:  Using a “pull-out” mark to apply a mark to an object close to the 
screen edge.  In (1), the pull-out mark is drawn (a line followed by a dot).  In (2), the 
system has turned the mark into a pull-out object.  A mark is then drawn in the pull-
out object, in (3).  In (4), the mark is applied to the object that is “pulled out”, and it 
is deleted. 

Another design goal was ease of programming.  One of the attractions of marking 
menus is that an interface programmer can implement interactions which provide 
self-revelation, guidance, and rehearsal with something as simple as a pop-up menu 
subroutine call.  We wanted a mechanism for iconic marks that was just as 
convenient to program.  The idea was to avoid creating custom code to self-reveal 
each different type of mark. 

6.3.1. Problems with the marking menu approach 

Overlap 

Suppose we strictly applied the marking menu design to the marks shown in Figure 
6.3.  In other words, display all the possible marks a user could make starting from a 
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certain location.  Figure 6.10 shows the result of this approach.  Marks overlap and 
can cause confusion.  Part of the problem is that iconic marks are not suitable for 
displaying in this manner.  Menu marks, however, are suitable because of their 
directional nature.  Another problem in the example is that each entire mark is 
displayed.  If all the marks of a hierarchical marking menu were displayed, this too, 
would result in overlap. 

Type-in point

Select

Paste  

Figure 6.10:  Overlap causes confusion when using the marking menu approach to 
self-reveal other types of marks.  Here we display the commands available when 
starting a mark from a clear spot in the drawing region of Tivoli.   

Not enough information 

A display like Figure 6.10 gives little contextual information.  For example, the 
important thing about the “Select” mark is that it should encircle objects and the 
shape of the circle can vary.  This type of information is not shown in Figure 6.10. 

The meaning of several edit marks in Tivoli is determined not only by the shape of 
the mark but also by the context in which the mark is made. For example, a straight 
line over a bullet-point moves an item in a bullet-point list, while a straight line in a 
margin scrolls the drawing area.  These types of inconsistencies can potentially 
confuse the user.  To avoid these problems, we wanted to provide context sensitive 
information about which edit marks a user can make over what objects.  Informally, 
we wanted a user to be able to answer the question: “what marks can I draw on this 
object or location?”.  Since marking menus are sensitive to context (i.e., the contents 
of a menu may vary depending on where it is popped up), we hoped that some 
similar mechanism could be designed for iconic marks in Tivoli. 
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For mark sets in general, besides Tivoli's iconic mark set and the marking menu 
mark set, the following characteristics may contribute to a mark's meaning and this 
type of information therefore needs to be self-revealed.   

Shape:  This is the case where a particular shape is an icon for a certain command.  
For example the “pigtail” shape is an icon for the delete command. 

Direction:  Sometimes the direction of a mark affects its meaning.  For example a 
up-stroke means “scroll up” while a down-stroke means “scroll down”.  The shape 
of the mark is basically the same but the direction or orientation of the mark has 
meaning. 

Location of features:  The location of particular features of a mark can affect its 
meaning.  For example, the summit of the “Type-in” point mark shown in Figure 
6.10, determines the exact placement of the text cursor. 

Dynamics of drawing:  How a mark is drawn can affect its meaning. For example, a 
flick could mean “scroll to the end of document”, while a slow up-stroke could 
mean “scroll to the next page”. 

6.3.2. Solutions 

Crib-sheets 

Interactive crib-sheets self-reveal marks without the overlap problem.  When the 
user requires help, a crib-sheet can be popped up which shows the available marks 
and what they mean.  The user can then dismiss the crib-sheet (or “pin” it down on 
the side) and make a mark.  In Chapter 1, two systems that use mechanisms similar 
to this were described.  Crib-sheets can be as succinct as a simple list of named 
marks or as elaborate as multi-page explanations of the marks in great detail.  Thus a 
crib-sheet could contain complete information on all the characteristics of a mark.  
However, since crib-sheets are for reminding and guidance, they are usually 
succinct.   

Figure 6.11 shows the crib-sheet technique we designed for Tivoli.  The design 
works as follows.  Similar to a marking menu, if one doesn’t know what marks can 
be applied to a certain object or location on the screen, one presses-and-waits over 
the object for more information, rather than marking.  At this point, rather than a 
menu popping up as in the marking menu case, a crib-sheet is displayed.  The crib-
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sheet displays the names of the functions that are applicable to the object or location, 
and example marks.  If this is enough information, a user can draw one of the marks 
in the crib-sheet (or take any other action) the crib-sheet automatically disappears.  If 
the pen is released without drawing mark, the crib-sheet remains displayed until the 
next occurrence of a pen press followed by a pen release or a press-and-wait event. 

Breakfast

Lunch

Tea

Dinner

Snack

Delete

Reselect

Move

Pen

Demo

Dismiss

In a
se lect ion

 

Figure 6.11: Self-revealing iconic marks in Tivoli:  The user has selected the word 
“Tea” by circling it.  To reveal what functions can be applied to the selection, the 
user presses-and-waits within the selection loop.  A crib-sheet pops up indicating the 
context (“In a selection”) and the available functions and their associated marks.   

This design has several important features.  First, the system displays the crib-sheet 
some distance away from the pen tip so that the crib-sheet does not occlude the 
context.  This leaves room for a user to draw a mark.  Second, the significance of the 
location of the pen tip is displayed at the top of the crib-sheet (i.e., in Figure 6.11 “In 
a selection” is displayed at the top of the crib-sheet).  This is useful for revealing the 
meaning of different locations and objects on the screen.   

This design obeys the principles of self-revelation, guidance, and rehearsal.  The 
crib-sheet provides self-revelation, and a user can use the examples as guidance 
when drawing a mark.  Rehearsal is enforced because a user must draw a mark to 
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invoke a command.  For example, a user cannot press the delete button on the crib-
sheet to perform a deletion.  The user must draw a delete mark to perform a 
deletion. 

Animated, annotated demonstrations 

While the crib-sheet does self-reveal contextual information about marks, it still 
lacks certain types of information.  For example, one static example of a mark relays 
little information about variations and features of a mark.  It has been shown that 
people need good examples to help visualize procedures (Lieberman, 1987).  Ideally 
a demonstration of the mark in context should be provided, similar to what one 
receives when an expert user demonstrates a command.  The tutorial program in 
Windows for Pen Computing  works like this.  In the tutorial, a user is shown how 
marks are made by animated examples. 

Demonstrations can be provided through animation. Baecker and Small have 
described how animation can assist a user, and how the animation of icons can be 
effective (Baecker & Small, 1990; Baecker, Small, & Mander, 1991).  The idea of 
animated help is not new.  Cullingford (1982) used “precanned” graphical 
animation coupled to natural language contextual messages to provide help.  Feiner 
(1985) used graphical explanations to illustrate the problem solving process of real 
world physical actions.  Feiner's system, however, was not sensitive to the user's 
current context.  A research system, called Cartoonist, which automatically generates 
context sensitive animated help for direct manipulation interfaces, has been 
developed (Sukaviriya & Foley, 1990; Sukaviriya, 1988).  The major difference 
between Cartoonist and the system we are about to describe is that Cartoonist is 
designed for direct manipulation interfaces, not mark-based interfaces.  As we shall 
see, an animation of drawing a mark must have special features to make it 
meaningful and helpful.  Specifically, in our system, the animation of a mark is 
annotated with text for explanation.  Cartoonist does not support annotations.  
Furthermore, Cartoonist relies on an extensive knowledge base to describe the 
application and interface.  The system we describe has a vastly simpler 
implementation which is compatible with existing user interface architectures. 

Crib-sheets could be animated.  A crib-sheet could show how to draw a mark, 
variations on a mark, and the various features of a mark.  This certainly would help 
a user understand how a mark should be drawn.  However, crib-sheets illustrate 
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marks outside of the context of the material that the user is working on, and this can 
make it difficult to see how the mark applies to the context.  Marking menus, on the 
other hand, have the advantage of showing the available marks directly on top the 
object being worked on,. 

To solve these problems we extended the function of the crib-sheet by adding 
animations of marks which take place in context.  If the crib-sheet does not provide 
sufficient information, a demonstration of a mark can be triggered by pressing the 
“demo” button on the crib-sheet.  The demonstration of the mark begins at the 
location originally pressed.  The demonstration is an animation of the drawing of 
the mark which is accompanied by text describing the special features of the mark 
(see Figure 6.12). 

There are several important aspects to this design:   

•  Marks are shown in context.  The animation of the mark is full size, and emanates 
from the exact location originally pressed on by the user.  A user can trace the 
animated mark to invoke the command. 

•  Variations in marks can be demonstrated by multiple animations.  There is 
usually a variety of ways to draw mark.  For example, a pigtail, signifying deletion, 
may be drawn in any direction, clockwise or counterclockwise, big or little.  To 
prevent users taking a single animated example too literally, we show variations by 
animating multiple examples of mark.  Usually, two examples seems to be enough.  

•  Information about features is provided by annotations.  Not only is the drawing 
of a mark animated but the animation is annotated with text to explain features or 
semantics of marks (e.g., in Figure 6.12 “A pigtail deletes the selected objects.”).  In 
addition, features of the application can be displayed.  For example, in Tivoli 
scrolling marks can only be drawn in the margins of the drawing area, but the 
borders of margins are not visible.22  In situations like this, the animation can 
display these features to clarify matters.  Annotations appear in  sequence during 
the  

                                                 

22  This was done to keep the drawing area uncluttered. 
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Figure 6.12:  A demonstration of a particular function can be attained by pressing its 
icon.  In (1) the user presses on the delete icon for more information.  This triggers an 
animated demonstration of the mark with text annotation to explain its features.  This is 
shown in (2), (3) and (4).  In (5), the user traces along the example mark to invoke the 
function.  When the pen is lifted, the action for the mark is carried out, and the crib-
sheet and animation disappear (shown in (6)).  
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mark’s animation, and they are timed to remain on the display long enough for the 
user to be able to read them. 

•  Animation can be controlled.  A long series of animations takes quite a bit of time 
and this can be tedious for the user.  By pressing a button in the crib-sheet, 
individual animations of the marks can be started or stopped.  Pressing  “Demo All” 
causes the system to cycle through all the animations.  Pressing the “Dismiss” 
button stops the animation and removes the crib-sheet.  As in the case of the crib-
sheet by itself, the moment a user completes a mark, the crib-sheet is removed and 
the animation terminates.23

•  The user is not required to make a mark from the crib-sheet.  The user is free to 
perform any mark at any location on the screen while the animation is running.  As 
before, the moment the user completes a mark, the animation and crib-sheet are 
removed.  The user can also choose to not draw a mark by tapping the pen against 
the screen.  This also removes the animation and crib-sheet. 

Architecture  

A goal for our crib-sheet/animation design was that it be easy for an interface 
programmer to use.  We designed the software architecture with this in mind.  To 
describe the characteristics of this architecture, we will describe an interactive 
computer system as consisting of two parts, an application module and animator 
module.  The application allows the user to interact with a particular domain of 
materials by means of marks (i.e., Tivoli is the application and the materials are free-
hand drawings).  The animator is called by the application to show the marks to the 
user.  The animator is generic—it can be made to work with different applications. 

The design of the animator raises many specific design problems. We describe the 
animator by laying out the problems and describing how they are addressed. 

How does the animator get invoked?  This is the job of the application.  As with a 
marking menu, the user deliberately presses-and-waits while the command button 
pressed.  The application detects this action and then calls the animator. 

                                                 

23  The animation actually freezes  when a user begins drawing a marking so a user can trace the animated 
mark.  The animation is removed from the screen when the user finishes drawing the mark and raises the pen. 
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How does the animator know which marks to animate?  In order to make an 
application work with the animator, an application-specific Mark Animation 
Database (MAD) must exist. The MAD contains descriptions of examples of marks 
grouped by application context.  When the user presses-and-waits, the application 
calls the animator with a description of the current context.  The animator can then 
select the marks to be animated based on context. 

How are marks and contextual features animated?  In order to understand how 
marks are animated it is convenient to first understand the structure of MAD.  
Figure 6.13 shows an example of the structure of MAD.  MAD consists of annotated 
examples of marks which are grouped by context.  When the application calls the 
animator with a context, the examples corresponding to the context are retrieved 
from MAD.  When a user requests a demonstration, the animator animates these 
examples.  A mark is a sequence of x and y coordinates which is animated by 
incrementally displaying the mark.  The marks that appear in MAD were originally 
drawn by hand.  When animating a mark the animator uses the same drawing 
dynamics as the original hand-drawing (a technique developed by Baecker (1969)).  
In this way, dynamics of drawing can be revealed and the speed of an animation can 
be controlled by the constructor of the database.  Annotations are labeled by where 
and when they should occur in the animation cycle (e.g., “start” and “end”).  The 
pacing of the animation of text annotations is determined by length of text:  after an 
annotation is displayed the animator pauses for an amount of time that is 
proportional to the length of the text before continuing with the rest of the 
animation.  This gives a user time to read the annotation and then watch the rest of 
the animation. 

How are variations shown?  Variations are shown by animating another example of 
a mark.  A mark in MAD can have more than one example.  If an extra example is 
tagged as “variation”, it is then included in the animation along with the original 
example. 

How is the crib-sheet constructed?  When the animator retrieves the examples from 
MAD, labels for the crib-sheet buttons are extracted, and example marks are shrunk 
down to be displayed in the buttons.  We found it convenient to designate certain 
example marks for shrinking.  Therefore, a function in MAD can contain an extra 
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example mark that is tagged for use as an “icon” in the crib-sheet.  If no “icon” 
example is found, the animator shrinks the first example mark it finds.   

How are application features animated?  Like text annotations, application features 
appear in MAD.  If during an animation an application feature needs to be 
displayed, the animator makes a call-back to the application.  For example, the call-
back may ask the application to display the margin boundaries of the drawing area.  
Therefore, a call-back protocol must exist between the application and animator. 

context: "in a selection"
item: Delete

example:

start: "A pigtail"

end: "deletes the
         selected objects"

item: Reselect
example:

start: "A loop"

end: "reselects
         objects"

context: "on an object"

 

Figure 6.13:  An example of the structure of the Mark Animation Database (MAD).  
Annotated examples of marks used for the crib-sheet and animations are grouped by 
context and function. 

How are marks animated in constrained spaces?  Assume that a user invokes the 
animator near the bottom of the drawing area, and that one of the possible marks at 
that point is a pigtail.  At the bottom of the drawing area, there is no room to draw a 
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pigtail downwards, but there is room to draw it upwards.  Thus, the animator 
should show only pigtails that fit in this place.  The solution to this problem lies in 
the fact that MAD contains multiple examples of marks.  When the animator 
retrieves examples from MAD it looks for examples that will fit in the space it is 
working with.  Thus, MAD should be set up with many examples of each mark, so 
that the animator can find an example for any location.  We found as little as four 
different examples were sufficient.  In the event that an example which fits cannot be 
found, the animator generates and displays a “no room message (e.g., “not enough 
room to demo pigtail here”).  This tends to only happen when there is not enough 
room for a user to actually draw the mark.   

How is MAD constructed?  MAD is constructed by drawing the examples in the 
form shown in Figure 6.13 and then copying these examples into MAD.  For Tivoli, 
we constructed the examples by drawing them in Tivoli.  Thus we could easily 
design examples that fit in constrained spaces in Tivoli by drawing them in those 
spaces.  For example, we drew instances of pigtails that fit at the top, bottom, left 
and right edge of the screen.  The animator does not have to be sophisticated at 
laying out the animations—the layouts are determined by the constructor of the 
examples.  The animator need only check if an example will fit at a certain location.  
If it does not fit, it merely looks for another example.   

More sophisticated features 

The design for the crib-sheet/animator and MAD previously described has been 
implemented.  Section 6.4 describes experiences using it.  We now discuss future 
designs which are currently not implemented. 

One problem with our current implementation is that, although animations do 
appear in context, they do not “work with” the context.  For example, the animation 
of a loop being drawn to select objects sometimes doesn't enclose any objects.  The 
problem is the animator has no knowledge about the application objects underlying 
the animation. 

A more advanced version that we have not implemented extends the notion of 
parameterized marks to allow them to utilize application objects in the current 
working context.  For example, assume we have a mark to move a list item.  There 
would be two typed parameters to this mark: the list item and the location to which 
it is moved.  In Tivoli, the list item would be a set of strokes between two “blue 
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lines” (like the blue lines on lined paper), and the location would be a blue line 
between two other list items.  When the application calls the animator and tells it to 
animate a move-list-item mark, it would have to also give the animator some actual 
items and locations in the current context.  The animator would then  deform a 
move-list-item mark to fit the items and locations.  Thus, the user would see a real 
example in the current context. 

Having examples that manipulate the objects in the current context requires a much 
more sophisticated architecture for the animator.  The animator must be able to 
manipulate objects in the application interface, and therefore a protocol that allows 
this must exist.  Essentially, the distinction between the application and the animator 
becomes blurred in this more sophisticated scheme:  the  animator needs to know 
how to manipulate the application in the same way a user does.  It must be able to 
identify objects and locations, construct marks and apply those marks.  In addition, 
it needs to annotate the examples in a meaningful way.  All these features require 
that examples in MAD be parameterizable.  The design of this architecture is future 
research.  A good starting point is to build on the work that Sukaviriya and Foley 
have done on the generation of parameterizable, context sensitive animated help for 
direct manipulation interfaces (Sukaviriya & Foley, 1990; Sukaviriya, 1988). 

Integrating menu marks 

As described earlier, menu marks in Tivoli are treated in the same manner as iconic 
marks.  Specifically, menu marks will be interpreted as commands if drawn in 
command mode (i.e., drawn with the command button pressed down).  The crib-
sheet/animator provides self-revelation for all marks available in this mode 
including menu marks.   

It would be impractical to include in the crib-sheet and animations all the marks 
used to access the pen settings menu.  The menu is a much better mechanism for 
revealing this information, but is available only in drawing mode.  Therefore, the 
crib-sheet/animator refers the user to the marking menu that is available in drawing 
mode.  The animation of this is shown in Figure 6.14.  The animation shows how to 
draw the dot required for a menu mark to be distinguished from other marks, and 
shows one example pen setting.  The animation then displays a message for the user 
to see the marking menu available in drawing mode for more information.  In this 
way an information link exists between the crib-sheet/animator and the marking 
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menu.  Hence the crib-sheet provides self-revelation for the menu marks by 
referring the user to the marking menu. 

A dot-stroke

changes the pen
color or thickness,
press and hold pen
for more info  

Figure 6.14:  To self-reveal menu marks, the animator shows one example then 
refers the user to pop up the marking menu itself for more information.  This avoids 
the problem of explaining and animating the many marks used for the marking menu. 

6.4. USAGE EXPERIENCES 

A large portion of the design described in this chapter has been implemented.  The 
crib-sheet, animator, and MAD have been implemented, although the parameterized 
version of the animator was not implemented.  Tivoli currently supports animations 
with multiple examples for every mark it uses.  As Tivoli evolves, we expect the 
mark set to change.  This can be supported by simply modifying MAD.  The pen 
setting menu and marks were completely implemented.  The “pull-out” menu item 
has yet to be implemented. 

Future research will include formal user tests of our designs.  It would be optimistic 
of us not to expect users to have problems with our system.  First, there are many 
details that user might trip over: are the menus and buttons labeled meaningfully?  
Are the press-and-wait time thresholds correct?  We believe the next step in user 
testing is to evaluate some of these details and refine the content of the animations.  
As Baecker, Small, & Mander (1991) point out, animations require significant 
development and refinement.  Fortunately, our design makes this easier than a 
frame by frame process. 

The design has been used informally by several researchers at Xerox PARC.  Users 
appeared to be quite successful at using the marking menu, once press-and-wait was 
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understood.  Users were also successful at selection using a mark but found 
recognition unreliable.  We traced this unreliability to incorrectly drawn “dots” at 
the start of marks.  We found the source was not that a user failed to draw the “dot”,  
but that the system occasionally did not start tracking the pen till after the “dot” was 
drawn.  This implies that the pen tracking hardware and software needed 
improvement.   

Another problem revealed through informal use was the “right-handedness” of the 
marking menu.  Depending on a user's handedness, some portion of the screen is 
occluded from view when one's arm is holding the pen against the screen.  When 
using the marking menu, left handed users found some menu items occluded from 
view (they had to look “under” their arms).  This implied that, like most pen-based 
systems, marking menus must be configurable for handedness. 

Users also experimented with using the crib-sheet/animator.  Initially, we found 
that users did not notice the crib-sheet pop up on the left side of the display.   This 
was because users were so close to the large display that the crib-sheet popped up 
outside their visual focus.  We then added an animation of the crib-sheet expanding 
from the point at which press-and-wait occurred.  This helped users notice the 
display of the crib-sheet.   

Users were also able to make use of the crib-sheet/animator after a brief demo.  We 
found that users explored the interface by pressing-and-waiting at different spots to 
see what functions where available.  We also observed users tracing the animated 
marks.  The most common error involved a user pressing-and-waiting with the 
command button pressed, then releasing the button while watching the animation.  
The user would then trace the animated mark without the command button being 
pressed.  This would result in the mark being drawn but not interpreted (i.e., the 
mark as drawn in drawing mode, not in command mode).  We feel this type of error 
may disappear when a user gets into the habit of holding down the command 
button to issue a command.  It is also possible to have the system recognize this 
error and advise the user to press the command button. 

6.5. SUMMARY  

In the beginning of this chapter we set out to integrate hierarchical marking menus 
into a pen-based application, and provide self-revelation, guidance, and rehearsal 
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for iconic marks.  A design was developed and implemented to satisfy these goals.  
The design gives rise to many issues and conclusions:  

The integration of marking menus into Tivoli reflects the situation with many 
applications today.  Tivoli had an interface prior to our design experiment.  Thus we 
were faced with the task of integrating marking menus with other interaction 
techniques.  The main effect of this was that our design of marking menus had to 
change, not the existing interface components.  This was an excellent test of the 
resiliency of the marking menus paradigm. 

Marking menus had to be integrated with a range of interaction techniques.  The 
interface to Tivoli not only contains edit marks but also free-hand drawing, buttons, 
dialog boxes, pop-up menus, mode buttons and a windowing system.  Thus it was a 
challenge to find a spot where marking menus could fit in and be effective.  The 
exploration also reminded us that interaction techniques cannot be added to an 
interface design without considering the other interaction techniques that surround 
it. 

There were many other situations where we could have experimented with marking 
menus.  One goal in redesigning the Tivoli interface was to reduce the number of 
buttons on the screen.  Consolidating many buttons into a marking menu, hence, 
removing them from the screen, would have accomplished this.  Also, using 
marking menus to issue commands to Tivoli objects such as list-items would have 
been another effective use.  Time constrained us to only explore one particular 
usage. We thought using a marking menu to control pen settings would elucidate 
many design issues, since the menu marks would have to be used in the same mode 
as the edit marks.  Nevertheless, this simple implementation gave rise to many 
design issues which one would encounter in a larger scale integration. 

This design exploration also revealed issues concerning using marking menus in 
mark-based interfaces.  Figure 6.15 summarizes the major design problems and the 
solutions we developed.  Specifically, ambiguities can develop between menu marks 
and iconic marks.  We proposed three solutions: avoidance, different context, and 
distinguishing token.  We elected to used a distinguishing token strategy, given the 
way marking menus were being used in Tivoli.  The other strategies, however, can 
be useful in other situations.  Also this design exploration allowed us to use marking 

 160



 

Problem Solution 

Ambiguity between iconic and menu marks. Draw a distinguishing token (a “dot”) at the 

start of an menu mark. 

Menu items clipped-off near edge of screen. Use pull-out menu item. 

Object too close to edge of screen to mark. Use pull-out mark. 

Need self-revelation for iconic marks. Use crib-sheet/animator. 

Provide guidance for iconic marks. Draw a mark based on crib-sheet example or... 

Trace a mark over an example displayed by 

the animator. 

Ensure rehearsal of iconic marks. A mark is the only way to issue a command. 

Crib-sheet/animator should be easy to 

program and work at any screen location. 

The programmer generates multiple examples 

in MAD. 

Getting information on marking menus marks 

from the crib-sheet/animator. 

A crib-sheet/animator item refers user to the 

marking menu. 

Figure 6.15:  Major design problems encountered integrating marking menus into Tivoli and 
the solutions developed. 

menus with a pen.  This uncovered issues and led to developments concerning 
screen limits and drawing dynamics. 

The crib-sheet/animator is designed to support the principles of self-revelation, 
guidance and rehearsal.  These mechanisms do not appear and behave exactly like 
marking menus, and we have shown why this must be so, but we feel that the 
design supplies the same type of information to the user and promotes the same 
type of behavior. 

Designing a mechanism to self-reveal iconic marks brings to light many issues 
concerning the self-revelation of marks.  First, revelation can occur at various levels 
of detail.  The crib-sheet is the first level:  a quick glance at the icon for the mark may 
be sufficient for the user.  An animation is the second level:  it requires more time 
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but provides more information and explanation.  Our design essentially supports a 
hierarchy of information where there is a time versus amount of information 
tradeoff. 

A hierarchic view of information can also be applied to the way in which marks 
themselves are self-revealed.  For some marks, it is sufficient just to show a static 
picture of the mark.  For other marks an annotated animation is needed before each 
one can be understood.  Besides an animation, some marks need to show variations.  
Finally some marks, like menu marks, are best self-revealed incrementally.  
Depending on the characteristics of a mark, there are different ways of explaining 
the mark.  This implies our self-revelation schemes must support these different 
forms of explanation.  Marking menus, crib-sheets, and animations are instances of 
different forms of explanation.  A complete taxonomy of forms of explanation is 
future research. 

While user testing is needed to refine our design, we feel that this design supports 
the desired type of information flow.  Users can interactively obtain information on 
marks and this information is intended to interactively teach them how to use these 
marks like an expert.  No mark-based system that we know of supports this type of 
paradigm. 
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Chapter 7: Conclusions 

7.1. SUMMARY 

This dissertation develops and evaluates an interaction technique called marking 
menus.  Marking menus were developed based on several observations: 

1) Marks can be an efficient and expressive way to issue commands, especially for 
pen-based computers. 

2) Marks, by themselves, are not easy to use because unlike buttons, menus, and 
icons, they do not automatically reveal themselves to a user.  

3) Therefore, marks must rely on some other interaction technique to reveal 
themselves to the user. 

Given these observations we designed an interaction technique that combines 
menus and marks with the intention that using the menu helps a user learn the 
marks.  The design of marking menus was based the design principles of  self-
revelation, guidance, and rehearsal.  The principle of self-revelation states the 
system should interactively provide information about what commands are 
available and how to invoke those commands.  The principle of guidance states that 
the way in which this information is provided should guide a user through invoking 
a command.  The principle of rehearsal states that the guidance provided should be 
a rehearsal of act of drawing the mark associated with a command.  The goal of 
these design principles is to help a user learn and use marks and quickly move from 
novice to expert. 
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After proposing a design for the technique based on these principles, we then 
evaluated the technique.  The intention of the evaluation was to determine the 
limitations of the technique.   

The first evaluation was an empirical experiment on non-hierarchic (i.e., one level) 
marking menus.  This experiment showed that certain configurations of menu items 
make marking faster and less error-prone.  Specifically, the experiment showed that 
four, eight, and twelve item menus enhance performance when marking.  Also this 
experiment showed that subjects, on average, performed marks faster and more 
accurately with a mouse and stylus/tablet than with a trackball.   

The second evaluation was a practical case study of two users' behaviors using a six-
item marking menu for a real-life editing task.  From this study we observed several 
things.  First, with practice, users learn to use the marks and tend towards using the 
marks 100% of the time.  Second, users utilized the features of the technique that 
were designed to aid in learning the marks (i.e., reselection and mark-confirmation).  
Third, using a mark in this situation was on average 3.5 times faster than selection 
using the menu.  

A third evaluation was an empirical experiment examining the effect of menu 
breadth and depth on users' performance when selecting from hierarchic marking 
menus using marks.  We found as breadth and depth of a menu structure increases, 
subject performance slows and the number of incorrect selections increases.   Error 
rate appears to the limiting factor when selecting using marks.  The experiment 
examined menus of breadth four, eight, and twelve, and menu depths from one to 
four.  A significant change in error rate occurred when menu depth was greater than 
two and breadth was eight or twelve.  The results suggest that marks can be used to 
reliably select from four-item menus up to four levels deep, or from eight-item 
menus up to two levels deep.  This experiment also examined the effect of using a 
pen or a mouse.  We found that subjects, on average, performed better with the pen 
than with the mouse.  However, the difference in performance was not large.  This 
indicated that the mouse would be an acceptable input device for hierarchic 
marking menus. 

A final design study examined generalizing the design concepts of marking menus.  
Marking menus are an interaction technique that provides self-revelation, guidance, 
and rehearsal for a particular class of marks (i.e., straight lines and zig-zag marks).  
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We developed an interaction technique that provides self-revelation, guidance, and 
rehearsal for more general classes of marks.  We also showed why the technique 
must differ from marking menus, and described an efficient means of implementing 
the technique.  

7.2. CONTRIBUTIONS 

The contributions of this work can be divided into two categories:  contributions 
concerning marking menus specifically, and contributions concerning larger issues 
of human computer interaction.   

7.2.1. Marking menus 

The design of marking menus is a contribution in itself because of several design 
features.  These features were described in detail in Section 2.2.  The following is a 
summary of the design features that make marking menus a valuable and unique 
interaction technique.  Marking menus: 

•  Allow menu selection acceleration without a keyboard.   

•  Permit acceleration on all menu items.    

•  Minimize the difference between the menu selection and accelerated 
selection.   

•  Permit pointing and menu selection acceleration with the same input  
device.    

•  Utilize marks that are easy and fast to draw.  

•  Use a spatial method for learning and remembering the association 
between menu items and marks.   

•  Are implementable as a “plug-in” software module.     

The empirical studies and case studies in this work have contributed in: 

Proving that users behave with marking menus as predicted.  The design of 
marking menus features three modes of interaction: menu mode, mark confirmation 
mode, and mark mode.  The case study in Chapter 4 has shown that users utilize all 
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three modes in the transition from novices, who use menus, to experts, who use 
marks.  The case study also showed that users performed marks as quickly as 
keypresses.  An equivalent interaction implemented with accelerator keys would 
have required pointing with the mouse and pressing an accelerator key.  Hence we 
can conjecture that interaction was faster with marks than with accelerator keys in 
this setting. 

Increasing our understanding of the limitations of marking menus.  There is a 
limit to how accurately one can select items from a marking menu using a mark.  
The experiment in Chapter 5 has determined that selection using marks from menus 
with more than eight items per level and more than two levels of hierarchy will be 
error-prone.  However, if two levels of eight item menus are used, marks can be 
used to quickly select from 64 menu items. 

Determining configurations of marking menus that produce the best 
performance.  Certain configurations of menu items make marking faster and less 
error-prone than other configurations.  Specifically, our experiments have shown 
that 4, 6, 8 and 12 item menus and on-axis items enhance performance. 

Demonstrating how command item  selection and command parameters can be 
combined.  Our case study demonstrates how both the starting point and end point 
of a mark can be used to express command parameters.  This results in efficient 
interactions. 

7.2.2. Issues of human computer interaction. 

This work has several contributions to the study of human computer interaction in 
that it: 

Identifies the fact that markings are not self-revealing.  In the past, it has been 
assumed that mark-based interfaces will be easy to use because marks will be 
“natural” or mnemonic.  This may be true in a some situations but not in all cases.  
There is a danger of falling into the trap that a system will be easy to use because it 
uses marks.  This research makes the important point that while marks can be a very 
efficient means of interaction, this efficiency cannot be obtained if the user does not 
first have knowledge about the mark set.  In some situations our experience with 
everyday pen and paper conventions supplies this knowledge.  In other situations it 
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does not, and a self-revealing mechanism must be provided in conjunction with the 
marks. 

Develops interaction techniques for self-revealing markings.  Marking menus are 
a solution to the self-revealing problem for one particular class of mark.  The crib-
sheet/animator is a solution for more general classes of marks. 

Identifies and develops the design principles of self-revelation, guidance and 
rehearsal.  To solve the problem of marks not being self-revealing, this research 
develops the design principles of self-revelation, guidance, and rehearsal.  Marking 
menus serves as an example of the application of the design principles and the crib-
sheet/animator demonstrates that the principles can be applied to other situations.  
We feel that these design principles are valuable for interface design in general. 

Develops a unique way to support novice/expert differences.  The notions of 
guidance and rehearsal are a unique way of supporting novice/expert differences 
and transitions in mark-based interfaces.  We know of no other systems that use a 
similar scheme. 

Other research has dealt with novice/expert differences by providing explicit 
novice/expert modes.  In these types of systems, novice mode has fewer functions 
than expert mode.  The focus of this research is on supporting novice/expert 
differences and transitions using mark-based interfaces at the level of interaction, 
not at the level of available functions.  These two approaches differ but they are not 
mutually exclusive. 

Demystifies “the folk legend of gesture” in human computer interaction.  It is 
clear from the literature that the types of gestures performed while operating an 
interface contribute to the overall sense of satisfaction with an interface.  While 
others have observed that careful design of the body language of interactions results 
in better interface design, the research here is an explicit attempt to make use of this 
philosophy in a practical interaction technique.   

Identifies the real value of marks as an interaction technique.  Finally this research 
demonstrates that if the real advantages of particular interactions are understood, 
simple technology, used appropriately, can exploit these advantages.  It is not 
simply the case that marks are desirable because marks are easy to remember.  
Another desirable property is the ability of a mark to efficiently express a command 
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and its parameters.  The marks created by marking menus demonstrate this 
property.  Furthermore, the technology required to support this property is not 
overly complex. Recognition methods, and ways of embedding and recognizing 
command parameters, are easily programmable. 

7.3. FUTURE RESEARCH 

As we developed marking menus we came across many interesting design 
variations, extensions and applications worth exploring: 

• Adapt marking menus to be used on very small screens.  A problem with very 
small screen computers is that there isn't enough room to draw long marks or 
display hierarchic menus.  A variation on our marking menu design is to use a series 
of short strokes, all starting from the same location to perform a selection from a 
hierarchy of menus.   

• Investigate other types of combinations of marks and menus.  Continuous menu 
items, and dartboard and donut layouts, which were mentioned in Chapter 1, are 
examples of other types of combinations of marks and menus.   

• Investigate feedback and pairing with command parameters.  This research has 
only scratched the surface of things that can be done while performing a selection or 
after making a selection.  Marking menus need the ability to show system status 
(e.g., display the current font), to preview the effects of selecting a menu item (e.g., 
highlighting a particular font in a menu causes an example of the font to be 
displayed), and to embed command parameters after a selection is confirmed (e.g., 
after selecting “volume” a user is automatically connected to a graphical slider).  
Integrating these features while maintaining the design principles is an open 
problem.  

• 3D marking menus.  Marking menus are based on selection by direction in two 
dimensions with two dimensional pointing devices.  A natural generalization is to 
three dimensions.   

• While our research has established some upper bounds on the limits of hierarchic 
marking menus, a natural extension would be a case study of user behavior with 
hierarchic marking menus in a real application.  We know from our first case study 
on non-hierarchic menus that with enough practice users will use marks.  Hierarchic 
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menus have many more menu items than non-hierarchic menus.  For example, a 
menu hierarchy which is two levels deep, with eight items in each menu, contains 64 
items.  It would be interesting to see if this potential could be tapped in an 
application. 

• Further development and evaluation of the crib-sheet/animator is another topic 
for future research.  Clearly, user testing of the design is required.  Also developing 
a parameterized version of the animator is an interesting research challenge. 

• Investigating the application of self-revelation, guidance and rehearsal to other 
domains, besides marking is of interest.  An example of the use of guidance and 
rehearsal in another domain is keyboard driven menus.  The menus serve to reveal 
functionality to a novice, and the novice is guided through the menu by hitting keys 
to select menu items.  This guidance provides a rehearsal of an expert type of 
behavior in which menu items are selected without looking or waiting for the menus 
to be displayed. 

•  There are many open questions concerning using marks and motor behavior.  
Does using a distinct gesture when drawing a mark have an advantage?  What is a 
distinct gesture?  Are there ways that we can design the gestures of drawing marks 
such that learning or performance is improved? 

7.4. FINAL REMARKS 

The interfaces to many ordinary, non-computerized objects have properties which 
make human operation of them second nature.  For example, gear-shifts and turn-
signal levers in automobiles have labels which we initially look at to learn the 
function mappings but with experience these mappings become automatic.  
Furthermore, with practice, the gestures of operating these devices become 
secondary to the task of driving.  The fact that the gestures are unique contribute to 
our ability to perform them with very little attention.  This provides the advantage 
of allowing our attention to be focused on other more important tasks, for example, 
watching traffic or reading street signs. 

In this thesis, we have tried to exploit these types of properties in the realm of the 
computer interface.  As computers become more entrenched as our everyday 
objects, tools and instruments, it is not unreasonable to expect them to exhibit the 
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properties that make many non-computerized objects easy and effective to use.  This 
dissertation contributes to the understanding and creation of human computer 
interactions that have these properties. 
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Appendix A: Statistical Methods 

This appendix explains the statistical methods used in this dissertation.  Analysis of 
variance (ANOVA) is used for hypothesis testing.  Specifically, the F-statistic is used 
to determine if an independent variable has any effect on a dependent variable.  In an 
experiment, the dependent variable is a variable being measured.  The independent 
variable is a variable being controlled.  

Testing for differences in means:  F(k - 1, k(n -1)) = f, p < α. 

Data is grouped according to different values of the independent variable.  Each 
group is commonly referred to as a treatment.  Random samples of size n are selected 
from each of k treatments.  It is assumed that the k treatments each have a 
population that is independent and normally distributed with means µ1, µ2, . . ., µk 

and a common variance σ2.  The null hypothesis can be represented as: 

µ1 =  µ2 = . . . = µk 

The ANOVA procedure separates the total variability of the samples into two 
component: s1

2 and s2.  The variance s1
2 is the variability between treatments 

attributed to changes in the independent variable and chance or random variation.  
The variance s2 is the  variability within treatments due to chance or random 
variation. 

It can be shown that, assuming the null hypothesis is true, the ratio: 

f = s1
2/s2. 

is a value of the random variable F having the F distribution with k - 1 and k(n - 1) 
degrees of freedom.  Since s1

2 overestimates the true variance when the null 

hypothesis is false, a large value for f suggest a large portion of the variance in the 
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dependent variable is caused by the independent variable.  A test can be done by 
comparing the observed value f with the theoretical value of F(k - 1, k(n -1)) and 
reporting the probability, p, of such a large value for f occurring simply by chance.  If 
p is very small (e.g., p < .05), this suggests that the null hypothesis should be 
rejected. 

Multiple comparison of means:  Tukey HSD, α =  p 

After determining a significant f ratio, it is may be necessary to determine which 
pairs of means are significantly different.  Various procedures, which are referred to 
as post-hoc comparisons, allow this.  If means µ1 and µ2 are being compared, the null 

hypothesis is: 

µ1 - µ2  = 0. 

A Tukey HSD post-hoc test reports the significantly differing means with a 
probability of α of incorrectly rejecting the null hypothesis (i.e., no difference exists 
between the means).  Generally a .05 level of significance is used.  This means one 
can be 95% sure that two means actually differ. 

Contrasting means:  F(1) = f, p < α. 

Post-hoc tests are not available for within subjects factors in repeated measures 
experimental design.  An alternative method for determining which pairs of means 
are significantly different is by contrasting means.  ANOVA separates the variance 
into two components: SSw and s2.  SSw is the variance attributed to the difference 
between the means.  The variance s2 is the  variability due to chance or random 
variation. 

It can be shown that, assuming the null hypothesis is true, the ratio: 

f = SSw/s2. 

is a value of the random variable F having the F distribution with 1 and n - k degrees 
of freedom.  Since SSw overestimates the true variance when the null hypothesis is 
false, large values of f indicate a large portion of the variance is due to a difference 
between the means.  A test can be done by comparing the observed value f with the 
theoretical value of F(1, n - k)) and reporting the probability, p, of such a large value 
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for f occurring simply by chance.  If p is very small (e.g., p < .05), this suggests that 
the null hypothesis should be rejected.   

Testing for linear relationships:  F(1, n - 2) 

The F-statistic is used to provide a single significance probability of a linear 
relationship between dependent and independent variables.  In this case, the null 
hypothesis is that the slope of the regression line is zero.  If the null hypothesis is 
true, then  

f = SSR/s2. 

Where SSR is the amount of variation explained by the straight regression line.  The 
variance s2 is the  variability around the regression line due to errors.  It can be 
shown f is the value of the random variable F having the F distribution with 1 and n 
- 2  degrees of freedom.  A test can be done by comparing the observed value f with 
the theoretical value of F(1, n - 2)) and reporting the probability, p, of such a large 
value for f occurring simply by chance.  If p is very small (e.g., p < .05), this suggests 
that the null hypothesis should be rejected. 

Testing a linear relationship for goodness of fit:  r2 

The sample correlation coefficient r2 is used to test the quality of the fit of a linear 
regression line.  The amount of variation in the dependent variable which is 
explained by the independent variable is r2 × 100% .  A r2  value greater than .5 is 
considered to indicate a linear relationship. 

For further information on these statistical methods see Kirk (1982). 
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