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Abstract. Previous work created the systemic computer – a model of 
computation designed to exploit many natural properties observed in biological 
systems, including parallelism. The approach has been proven through two 
existing implementations and many biological models and visualizations. 
However to date the systemic computer implementations have all been 
sequential simulations that do not exploit the true potential of the model. In this 
paper the first parallel implementation of systemic computation is introduced. 
The GPU Systemic Computation Architecture is the first implementation that 
enables parallel systemic computation by exploiting multiple cores available in 
graphics processors. Comparisons with the serial implementation when running 
a genetic algorithm at different scales show that as the number of systems 
increases, the parallel architecture is several hundred times faster than the 
existing implementations, making it feasible to investigate systemic models of 
more complex biological systems. 
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1   Introduction 

In biological modeling and bio-inspired computation, the demand for fast parallel 
computation has never been greater. In computer science, entire fields now exist that 
are based purely on the tenets of simulation and modelling of biological processes. In 
the developing fields of synthetic biology, DNA computing, and living technology, 
computer modelling plays a vital role in the design, testing and evaluation of almost 
every stage of the research1. There are also many fields of computer science that 
focuses on bio-inspired algorithms such as genetic algorithms, artificial immune 
systems, developmental algorithms, neural networks, and swarm intelligence. 

Almost without exception these computer models and algorithms involve 
parallelism, although they are usually implemented as serial simulations of parallel 
processes. While multi-core processors, clusters or networked computers provide one 

                                                             
1 Evident from the many publications of the European Center for Living Technology: 

http://www.ecltech.org/publications.html 



way to parallelise the computation, the underlying computer architectures remain 
serial, and so can significantly limit our ability to scale up our models and bio-
inspired algorithms and make them practical for real-world problems [1]. 

Several research groups have focused on this area for many years, resulting in 
novel bio-inspired architectures such as the POEtic tissue [2] and the Ubichip of 
Perplexus project [3], as well as formalisms such as PI-Calculus, Bi-Graphs [4] and 
Brane Computing [5]. Systemic computation is a similar attempt to exploit desirable 
natural properties such as parallelism within a computer, developed in 2005 [1].  

Although not the first such model, SC is the result of considerable research into 
bio-inspired computation and biological modelling, and has been developed into a 
working computer architecture [1,6]. To date, two simulations of this architecture 
have been developed, with corresponding machine and programming languages, 
compilers and graphical visualiser [1,6]. Extensive work has shown how this form of 
computer enables useful biological modeling and bio-inspired algorithms to be 
implemented with ease [7-11] and how it enables properties such as fault-tolerance 
and self-repairing code [12]. Research is ongoing in the improvement of the PC-based 
simulator, refining the systemic computation language and visualiser [10,14]. 
However, the systemic computation model defines a highly parallel, distributed form 
of computer. While simulations on conventional computers enable improvement of 
the model and programming tools, the speed of simulated systemic computation is too 
slow to be useable for larger models. The work described in this article aims to 
overcome this problem by making use of Graphics Processing Units (GPUs) to 
parallelize some of the bottlenecks in systemic computation and thus take the first 
steps towards a fully parallel systemic computer, capable of high-speed modeling. 

Graphic Processing Units are multi core processors designed to process graphical 
information at high speed. Because of their price and power, the use of GPUs for 
more general-purpose computation is rapidly becoming something of a revolution in 
affordable parallel computation [15]. More recently the design of GPUs was changed 
to support more general computation. Today GPGPU (General Purpose GPU) 
languages are used widely in scientific computation. They are used in physical based 
simulation, signal and image processing, global illumination, and geometric 
computing [15].  GPGPU is frequently used in biological modelling and visualization 
that requires large-scale computation and real-time processing. They have been used 
in molecular modeling applications [17], string matching to find similar protein and 
gene sequences [18], and in implementations of bio-inspired algorithms [19]. 

This work describes a novel GPU-based implementation of the bio-inspired 
computing approach known as systemic computation. The next section summarizes 
systemic computation. The new GPU Systemic Computation Architecture is then 
described, followed by an experiment to compare the GPU version with the single-
processor implementation. 

2.    Systemic Computation 

Systemic Computation is a model of computation and corresponding computer 
architecture based on a systemics world-view and supplemented by the incorporation 



of natural characteristics [1]. This approach stresses the importance of structure and 
interaction, supplementing traditional reductionist analysis with the recognition that 
circular causality, embodiment in environments and emergence of hierarchical 
organisations all play vital roles in natural systems. Systemic computation makes the 
following assertions: 
• Everything is a system. 
• Systems can be transformed but never destroyed or created from nothing. 
• Systems may comprise or share other nested systems. 
• Systems interact, and interaction between systems may cause transformation of 

those systems, where the nature of that transformation is determined by a 
contextual system. 

• All systems can potentially act as context and affect the interactions of other 
systems, and all systems can potentially interact in some context. 

• The transformation of systems is constrained by the scope of systems, and systems 
may have partial membership within the scope of a system. 

• Computation is transformation. 
In systemic computation, everything is a system, and computations arise from 

interactions between systems. Two systems can interact in the context of a third 
system. All systems can potentially act as contexts to determine the effect of 
interacting systems. Every system is divided into three parts: two schemata and one 
functional region. These three parts can be used to hold anything (data, typing, etc.) in 
binary. The functional region defines the transformation of two systems interacting in 
its context. The two schemata specify through a matching function which subject 
systems may interact in this context. A system can also contain or be contained by 
other systems. This enables the notion of scope. Interactions can only occur between 
systems within the same scope. An SC program therefore comprises systems that are 
instantiated and positioned within an embedded hierarchy (some inside each other). It 
defines an initial state from which the systems can then randomly interact, 
transforming each other through those interactions and following an emergent process 
rather than a deterministic algorithm. For full details see [1] and [10]. 

 

 
Figure 1.  A basic SC program, which sums the values held in the schemata of systems, leaving 
one system containing the solution. Initial state is shown on the left, state after several 
interactions is shown on the right. 



Systems can be implemented using representations similar to those used in genetic 
algorithms and cellular automata. In implementations to date, each system comprises 
three binary strings: two schemata that define sub-patterns of the two matching 
systems and one coded pointer to a transformation function. Two systems that match 
the schemata will be transformed according to the appropriate transformation function 
(i.e. their binary strings are modified according to the function defined in the context). 
A simple example of a (partially interpreted) system string (where S11 is the first 
schema and S12 is the second schema of system 1) might be: 
“zzx00rzz  [S11=SUM(S11,S21); S12=SUM(S12,S22); S21=0; S22=0]  zzx00rzz” 

meaning: for every two systems that have functional part of NOP that interact in 
the context of this system, add their two S1 values, storing the result in S1 of the first 
system and add the two S2 values, storing the result in S2 of the first system, then set 
S1 and S2 of the second system to zero. (The table of schema codes is given in [1].) 
Given a pool of inert data systems, able to interact but with no ability to act as 
context, for example (where NOP means “no operation”): 

“00010111 NOP 01101011” and “00001111 NOP 00010111” 

after a sufficient period of interaction, the result will be a single system with its S1 and 
S2 values equal to the sum of all S1 and S2 values of all data systems, with all other 
data systems having S1 and S2 values of zero. Figure 1 illustrates the program using 
SC graph notation. (The program performing this operation was described in [1].) 

Bentley [1] describes the first implementation of the systemic computer. The initial 
work included the creation of a virtual architecture, instruction set, machine code and 
corresponding assembly language with compiler. Over 30 transformation functions 
were implemented (e.g., arithmetic and logical operations, and basic i/o). The 
simulation was implemented in ANSI C on a PowerBook Macintosh G4, enabling 
systemic computation programs to be simulated using conventional computer 
processors. Later work by Le Martelot created a second implementation on PCs with 
a higher-level language and visualization tools [2,6-12,14]. Other work provided a 
discussion on the use of sensor networks to implement a systemic computer [13]. 
Many systemic computation models have been written, showing that simulations of 
this parallel computer can perform tasks from investigations of neurogenesis to a self-
adaptive genetic algorithm solving a travelling salesman problem [10]. Work on the 
language and refinements to systemic computation and its use for modelling are 
underway. However, perhaps the biggest single problem with all implementations to 
date has been the speed of execution. The simulation of a parallel bio-inspired 
computer on a conventional serial computer can be excessively slow for models using 
large numbers of systems. For this reason, we hypothesize that an implementation on 
GPUs may provide significant speedup. 

3. GPU Implementation of Systemic Computation 

Systemic computation is a Turing Complete parallel computer [1], but it is still a 
significant challenge to exploit the parallel architecture of the GPU to implement such 
a flexible bio-inspired approach. 



The constituent elements of Systemic Computation are systems. Two systems can 
only interact with a context and within a shared scope, which are also systems. Akin 
to Bentley’s implementation [1], membership of scopes can be implemented as a 
global scope table, a row and column for every system, with each entry defining the 
membership of one system within another system. Also akin to Bentley’s original 
implementation [1], in the GPU design we can implement the concept of a system by 
storing it in three binary parts: two schemata and one function. If the current system is 
acting as a context, then its two schemata define all possible pairs of systems that 
could interact within the current context. The system function defines the interaction 
between the two systems, i.e. it provides a transformation function. In the 
implementation created by Bentley [1], the transformation function contains a 
matching threshold for schema 1 and schema 2. The length of each part of the system 
is 16 character codes. Each code is decoded to three binary characters (0, 1, and 
wildcard). If the difference between a system and the decoded schema’s part is less 
than the schema’s threshold, that system matches the context system’s schema [1].  

 

  
Figure 2. Producer and Consumer flowchart. 



We call a system that has a valid transformation function, a ‘context’ or 
‘functional’ system. A context system and two interacting systems together are called 
a triplet. If two interacting systems can match the schema parts of a functional system 
to form a triplet, and all of them are in the same scope, it is defined as a matched or 
valid triplet.  

The GPU Systemic Computation architecture has two main tasks: 1) finding a valid 
triplet, and 2) performing a transformation to the interacting systems. The finding of 
valid triplets is the biggest bottleneck in systemic computation, so in our design, the 
producer finds matched triplets and puts them in a shared buffer whilst the consumer 
picks one of triplets and performs the interaction between them. The producer and 
consumer are two threads, running in parallel on the CPU, see Figure 2. 

3.1 Consumer: Performing System Interactions 

The consumer is a thread running on the CPU. It is responsible for enabling the 
interactions between systems. This thread selects valid triplets (each a valid context 
and two matching systems) randomly from the shared buffer. It then uses the 
transformation function defined in the context system to transform the pair of 
interacting systems. However, performing the transformation may change the 
systems’ scopes and definitions. As a result, other triplets in shared memory that share 
the one of the current triplet’s systems may no longer match (i.e., the transformation 
of one triplet may invalidate other triplets). In order to solve this problem we check 
the validity of triplets before performing interaction. After selecting a triplet, if the 
triplet is still a matched triplet, the transformation is performed. Then the flags of 
systems definitions and scopes are set. These flags are necessary to update data on 
GPU memory for the other thread, producer.  

3.2 Producer: Finding Matching Systems 

General Purpose Graphic Processing Unit (GPGPU) languages are based on shared 
memory [20][21]. In the GPU Systemic Computation Architecture, systems are 
shared data and the instructions that check validity of triplets in a scope are the same 
for all threads. So, CUDA is a good choice to find matched triplets in parallel.  

Finding a list of matched triplets is both a sequential and parallel procedure. There 
are six main steps: initializing, updating, finding matched triplet, prefix sum, creating 
a list of matched triplets, and copying them to the shared buffer.  These steps are run 
sequentially on the CPU. The third, fourth, and fifth steps are the main parts that are 
run on GPU. Each of these steps is a kernel, a section of code that is run on the GPU. 
As only one kernel can be run on the GPU in CUDA, and the output of each step is an 
input of the next step, these steps run sequentially on the CPU, but individually 
parallel on the GPU. In the summary below we focus on kernels. 

STEP 1: Initialize. Memory is allocated on the GPU for different variables: system 
definitions, scope table and decoded systems (including the two decoded schemata 
and threshold function). 



STEP 2: Update. The other thread that performs transformation functions changes 
the scope table and system definitions, and so the producer thread always updates 
variables on GPU before checking all possible combination of triplets. Then new 
values of variables are copied from the host, (a part of the hardware that is on the 
CPU’s processing part) to the device, (part of hardware that is on the GPU’s part for 
processing). In addition, functional systems and valid scopes (scopes with equal or 
greater than three systems inside and at least one functional system) are found and 
copied to the GPU Memory. For finding differences between the schema part and the 
system, the schema is decoded; therefore, a list of decoded functional systems is 
prepared on the device and updated after being changed by the consumer thread.  

STEP 3: Finding Matched Triplets. In this step a kernel is called that searches 
through all possible triplets in order to find matched triplets. Before calling the kernel, 
memory is allocated for the list of flags. Each thread has a flag that is initialized to 
zero.  Next, the GPU grid and block dimensions are set. 

All threads in a block check one scope and context for some interacting systems. 
Thus, one thread in each block, usually the first one, calculates the index of context 
and scope systems and stores it in the shared memory of the block; meanwhile, other 
threads in a block wait. If the context is in the scope, the index of interacting systems 
is then calculated. After that if interacting systems are in the scope and three systems 
are matched, the triplet’s flag is set to one. (Memory access is optimized by making 
use of the short-latency, on-chip memory as a cache.)  

STEP 4: Prefix Sum. In this step we want to create a list of parallel matched triplets, 
whose flags have been set in the previous step. In order to do so, the index of matched 
triplets in the new list have to be found. The prefix sum kernel is run on the flags to 
find indexes of matched triplets. The prefix sum calculates number of previously 
matched triplets in the current list for each matched triplet. A parallel implementation 
of this algorithm is available in CUDA SDK 2.22. The current implementation of this 
algorithm is only run in one grid dimension, but we have changed it to two 
dimensions to support a larger size array, if sufficient memory is available. 

STEP 5: Creating List of Triplets. The kernel for creating lists of matched triplets is 
run with the same grid’s and block’s dimensions of the found matched triplets kernel.  
The first thread calculates the block and context, stores in the shared memory. Then 
threads read two subsequent memories of prefix-sum flags. If a thread identified two 
different values, the thread’s dimensions indicate indexes of matched triplet’s systems 
and scope. Here each flag memory is read twice, for optimization the first 16 threads 
of each block load the 17 subsequent memory of flags to shared memory. This helps 
to reduce the number of reads from global memory by half. 

STEP 6: Copy matched triplet list to buffer. A list of matched triplets is copied to 
the host. It is then randomized and copied to the shared buffer. For a large number of 
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systems, it is not possible to process all combination of triplets at once, because there 
is not enough memory for flags and list of matched triplets on the GPU. So each time 
step, a subset of all possible triplets is chosen randomly and processed, a list of 
matched triplets of the subset triplets is created. After all possible triplets checks, 
variables update the GPU memory and the second round starts. 

4. Architecture Testing and Evaluation 

In order to assess the new implementation we run a systemic program on the original 
architecture created by Bentley [1] and the new GPU Systemic Computation 
Architecture, and compare the results. In the following section we outline a problem 
implemented in the Systemic Computation language: the knapsack problem using a 
Genetic Algorithm (GA). The problem is specifically designed to challenge the 
systemic computer with a complex parallel computation. 

4.1 Genetic Algorithm Optimization of Binary Knapsack 

In the knapsack problem there are n objects with value vi > 0 and weight wi > 0. We 
want to find a set of objects with maximum total weight that fits into a knapsack with 
capacity C. Thus, we wish to maximize: 

 

€ 

vi
i=1

n

∑ xi  where 

€ 

wi xi ≤ C
i=1

n

∑  and 

€ 

xi ∈ {0,1}  

Here, we use a Genetic Algorithm (GA) [10] as a bio-inspired algorithm to 
implement the optimization program. The binary knapsack implementation in the 
Systemic Computation language is derived from the genetic algorithm model 
developed for systemic computation in [2]. There are three different solutions, as 
shown in Figure 3: uninitialized solutions, initialized solutions, and final solutions. 
The chromosome size equals the schema size (16 in this implementation). So, this 
program supports a knapsack with 16 objects. 

 
Figure 3.  Left: The Solution system S. Schema1 stores the chromosome. XY in Schema2 
specifies solution type (00: non initialized, 10: initialized, 11: final solution). Right: the 
systemic program (not all non-initalised, inialised solutions and GA systems shown). 



Solution initialisation is random. An initialiser system selects one solution and 
initializes it randomly then places it in the scope of the computation system. Three 
GA operators are used: uniform crossover, one-point crossover and binary mutation 
[10].  Candidate (evolving) solutions to the problem are implemented as systems, and 
GA operators are implemented as context systems, defining the interaction of pairs of 
solution systems. Each operator performs crossover or mutation to generate a new 
solution, this is evaluated and then the less fit solution is replaced by the new one. 
The final solution system is used to store the final chromosome. The output context 
accepts the final solution and one initialized solution, and updates the final solution if 
the input solution system has better fitness than final solution system.  

4.3 Experiments 

To assess any performance gain of the GPU Systemic Computation Architecture, 
comparisons are made with Bentley’s original serial implementation [1]. We study the 
effect of number of systems. The execution time in both experiments includes the 
running time for 10,000 interactions. It does not include reading of input and program 
files and initializing variables on CPU or storing results, but it does contain 
initializing and updating GPU memory, allocating and releasing memory from it.  The 
hardware and software specification used in this work is given in Table 1. Bentley’s 
original Systemic Computation Architecture was written with C language [1], thus we 
use C language based on CUDA as programming language. 

Setup 
The goal of the experiment is to compare the performance of the new parallel 
implementation and Bentley’s original sequential implementation of the systemic 
computation architecture with increasing number of Solution systems on the GA 
binary knapsack program. In this experiment, increasing number of systems refers to 
increasing number of GA solution systems. Each systemic computation program was 
run for 10 times; reported execution time is the average of all programs’ execution 
time. In this experiment, the number of knapsack objects is 16; the maximum 
knapsack’s weight is 80.0 kg. The configuration of experiment is: 
• Context systems: 3 GA systems and 1 output system 
• Solution systems: 50 to 4000 systems for sequential implementation and 50 to 

8000 systems for parallel implementation (each increment is double the previous 
increment except 800 to 1000 with an increment of 200)  

• Final Solution system: 1 system 
• Scope: 1 main scope and 1 computation scope 
• Initial increment: 50 

 

 
 



Table 1. Hardware and operating system specifications are used for experiments 

CPU Intel® dual core™, 2.40 GHz 
RAM 2 GB 
OS Microsoft Windows XP professional 2002 SP1 

Name: GeForce 9800 GT 
CUDA: 1.1 
Size of Global memory: 1 GB 
Multiprocessors 14 
Number of cores: 112 

GPU 

Clock Rate: 1.62 GHz 

 
 
 

 
 

 
Figure 4. Top: Execution time of knapsack problem on both sequential and parallel 
implementation with increasing number of systems. Bottom left: execution time of parallel 
implementation alone. Bottom right: improvement as shown by sequential divided by parallel 
execution times for different numbers of systems in the program.  

 
 



Results 
Figure 4 shows the execution time for both parallel and sequential implementation 
with increasing number of systems. As can be seen in the figure, the execution time of 
the sequential implementation increases with a 2nd degree polynomial, characteristic 
of algorithms and implementations with time complexity O(n2). The parallel 
implementation appears to increase linearly, characteristic of algorithms and 
implementations with time complexity O(n). The increase in performance varies 
according to the number of systems, e.g. it is 2.3 times as fast for 50 systems, 108 
times faster for 800 systems, 256 times faster for 2000 systems, and 465 times faster 
for 4000 systems. The improvement derives from the efficient division of labour 
using the parallel resources of the GPU; it is likely that as the number of systems 
increases beyond this capacity, the execution time will appear as O(n2). Consistent 
results have since been found with other programs, including those that move systems 
between scopes. 

5. Conclusion 

The need for fast bio-inspired computation has never been greater. Systemic 
computation is a new bio-inspired model of computation that has shown considerable 
success for biological modeling and bio-inspired computation [6-14]. However until 
now it has only been available as a serial simulation running on conventional 
processors. In this work the first parallel GPU Systemic Computation Architecture 
was presented. Its performance was assessed by comparing the change in execution 
time needed when scaling up the number of systems within a genetic algorithm 
knapsack problem. As the number of systems increased, the parallel GPU architecture 
was several hundred times faster than the existing implementations.  

These highly successful results will make it possible to investigate systemic 
models of more complex biological systems in the future. Further improvements are 
also planned. The GPU SC architecture is just the first step towards creating a fully 
parallel systemic computer. Future work will continue the development of parallel SC 
architectures and will investigate the use of reconfigurable hardware such as FPGAs. 
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