
Swift: Reducing the Effects of Latency in Online Video Scrubbing
Justin Matejka, Tovi Grossman, George Fitzmaurice

Autodesk Research, Toronto, Ontario, Canada
{firstname.lastname}@autodesk.com

Figure 1. An illustration of the scrubbing behavior of a traditional streaming video player and the Swift player. With the
Swift system a quick-to-download low resolution version of the video is displayed while scrubbing.

ABSTRACT
We first conduct a study using abstracted video content to
measure the effects of latency on video scrubbing
performance and find that even very small amounts of
latency can significantly degrade navigation performance.
Based on these results, we present Swift, a technique that
supports real-time scrubbing of online videos by overlaying
a small, low resolution copy of the video during video
scrubbing, and snapping back to the high resolution video
when the scrubbing is completed or paused. A second study
compares the Swift technique to traditional online video
players on a collection of realistic live motion videos and
content-specific search tasks which finds the Swift
technique reducing completion times by as much as 72%
even with a relatively low latency of 500ms. Lastly, we
demonstrate that the Swift technique can be easily
implemented using modern HTML5 web standards.

Author Keywords
Video, Video Navigation, Online Streaming

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Graphical User Interfaces.

INTRODUCTION
Streaming online video players have given internet users
the instant gratification of watching a video play immedi-
ately, as opposed to the previous workflow of downloading
a video and then viewing it using a local player. With recent
advancements in both internet download speeds, and faster

CPUs, the quality of streaming videos has improved
drastically. High definition videos are now standard, and
full length television shows and movies are readily
available on sites such as Netflix and Hulu.

Although very popular, streaming videos have limitations
when it comes to navigation. In most desktop media
players, the user is able to “scrub” the video by moving a
slider along the timeline and the current frame of the video
updates in real-time. In contrast, streaming video players
request new frames from the server to update the view,
introducing a significant amount of latency. This latency
makes the scrubbing experience very choppy at best, and
for many players, the view does not start updating until
after the mouse button has been released (Figure 1).

For many usage scenarios, the ability to scrub video
timelines is critical to the viewing experience. For example,
a user may wish to find a particular scene in a movie, look
for when a particular operation was performed in a software
tutorial video, or skip past an advertisement while watching
a sporting event. While scrubbing is sometimes enabled
once a video is cached, fully downloading a video can take
a considerable amount of time. Furthermore, it might not be
desirable, or even possible, to cache a large video file for
reasons such as the bandwidth costs incurred by the server
and/or user, or the storage capacity of the playback device.

Many aids for navigating videos have been explored [21].
However, most require additional visual elements such as
summary storyboards [25] or video analytics [22], and few
enhance the ubiquitous scrubbing behavior. Furthermore,
most enhancements are designed for desktop systems and
assume random access availability to the video. Despite the
ubiquity of online video players, we are unaware of any
research to date which has empirically measured the user
performance impact of latency during video scrubbing.

Traditional Video Scrubbing Swift Video Scrubbing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

I
o
e
d
ty
ta

T
S
s
w
v
r
p
c
v
s
f
o

I
S
2
d
A
s
r
in
th

R

V
T
v
u
d
u
p
s

S
tr
e
a
f
b
u
w
H
b

A
th
a
c
a
th
f

In this paper, w
of latency in a c
even extremely
difficulty when
ypically exper
ake up to 10 tim

To combat the
Swift, a techn
streaming vide
works by over
video during v
resolution vide
paused. The te
controls or layo
video frames to
slider, the size
fixed size of ap
or size of the or

In a second st
Swift, against v
20ms and 500m
decreased task
After providing
simple HTML5
results, we bel
nto today’s on
he user’s view

RELATED WOR

Video Navigati
There have bee
video navigatio
using the tra
different dynam
uses the additio
precise contro
scrubbing expe

Several system
raditional vid

elements and i
additional tim
features. Baile
boundaries and
uses additional
workflow even
HD [14] and em
based on user c

An alternate w
hrough a colle

and Venkatesh
classification o
and video skim
humbnails hie

fisheye views o

we first conduct
controlled abst
y short delays
n navigating vi
rience (1000m
mes longer.

ese observed e
nique that sup
eos even in h
rlaying a smal
video scrubbing
eo when the
chnique has no
out. By fixing
o the number o
of the low-res

pproximately 1
riginal source v

tudy, using rea
video navigatio
ms latency env

completion ti
g an analysis o
5 implementat
lieve the Swif
line video play
ing experience

RK

ion
en many projec
on. A number
aditional time
mics such as th
onal dimension
l. The PVSli

erience for mor

ms have been
deo timeline
information. T
eline strips t
er et. al.’s

d motion events
l rows on the
nts based on c
moPlayer [4] b
contributed met

way to get an o
ection of scene
h [24] provid
of work in bo
mming. This in
erarchically [6
of thumbnails [

t a study to me
tract environm

(20ms) can c
ideos, and with
s or more), se

effects of laten
pports real-tim
high latency c
ll, low resolut
g, and snaps b

scrubbing is
o impact on th

g the resolution
of input pixels
solution copy
MB, regardles
video.

al video conte
on with traditio
vironments. Sw
imes, in some
f the results, w
tion of Swift.
ft technique ca
yers, and signif
e.

cts exploring i
of approaches
line slider a

he AV-ZoomSl
n of the y-axis
der [20] prov

re fluid control

n developed t
with additi

The Video Exp
o visualize lo
SVAT [2] v

s on the timelin
timeline to di

captured metad
both support n
tadata.

overview of an
e thumbnails [

de a thorough
th the creation

ncludes techniq
6], thumbnails
[5].

easure the impa
ent. We find th
cause significa
h latencies use
eeking tasks c

ncy, we prese
me scrubbing
conditions. Sw
tion copy of th
back to the hig
s completed
he user interfa
n and number
s on the timelin
can be kept at

ss of the duratio

ent, we evalua
onal browsers
wift significant
e cases by 72%
we demonstrate

Based on the
an be integrat
ficantly improv

improvements
s have looked
augmented wi
lider [12], whi
s to enable mo
vides an elast
.

to augment th
ional graphic
plorer [22] us
ow level vid

visualizes scen
ne. Chronicle [
isplay docume
data. Joke-o-m
avigating vide

n entire video
[11, 25]. Truon
h summary an
n of thumbnai
ques that displ
s lists [3], an

act
hat
ant
ers
an

ent
of

wift
he
gh
or

ace
of
ne
t a
on

ate
in

tly
%.
e a
ese
ed
ve

to
at

ith
ch

ore
tic

he
cal
ses
eo
ne
[8]
ent

mat
os

is
ng
nd
ils
ay
nd

While
interes
video,
real-tim

Existin
The int
we tes
popula
more t
the Yo
cached
genera
of strea

Severa
ESPN.
a thum
These
same la
interes

The PC
only
scrubb
thumbn
and up

Figu

We are
describ
is unk
only b
downlo
within
take se
to work

Despit
consid
contrib
only re
resolut
simple
consist
code, a
tion an

DEFIN
Before
definiti

these describe
sting ways, the

or its thumbn
me scrubbing i

ng Deployed T
ternet is full of
sted over 30

ar video strea
than 350 millio

ouTube player
d video until
al interaction m
aming players

al players suc
.com support e
mbnail preview
thumbnails are
atency issues a

sting interaction

C version of th
example we

bing. When th
nail images ar

pdate in real-tim

ure 2. PC versio

e unaware of a
bing its behavi
known. Howev
be enabled on
oaded. For so
10 seconds, h

everal minutes
k, even with a

te its limitati
ered closely r

bute a scalable
equires 1MB o
tion or durati
e implementat
ting of less th
and provide a p
nd related techn

NITIONS
e describing t
ions for the tw

ed techniques a
ey typically req
nails, to funct
in an online env

Technologies
f sites with stre

unique impl
aming site, Yo
on streaming v
does not upda
the mouse b

model is repre
we have found

ch as the one
enhanced video
w while hove
e not pre-loade
as the full vide
n model.

he Netflix strea
have found

he user begin
re displayed in
me as the user s

n of the Netflix

any archived pu
ior, and so its t
ver, the real-ti
nce a full set
ome movies, th
however, for o
s before the re
high-speed bro

ions, the Ne
related to Swif
e technique, w
of data, regard
ion. Furtherm
tion using m

han 30 lines of
public dissemin
nical details to

the first exper
wo main factors

all aid video na
quire a local ca
tion, and do n
vironment.

eaming video p
lementations.

YouTube, curre
videos. While
ate the position
button is rele
sentative of th
d.

es found on
o navigation by
ering over the
ed so they suffe
eo, but they do

aming video pl
d to support
ns scrubbing,

the center of
scrubs (Figure

streaming video

ublication or w
technical imple
ime scrubbing
of thumbnails
he scrubbing

others, we foun
al-time scrubb
oadband conne

tflix player
ft. That said,

where real-time
dless of the so

more, we dem
modern web
f javascript an
nation of its im
the research c

riment, we w
s being tested.

avigation in
ache of the
not support

players and
The most

ently hosts
scrubbing,

n in an un-
ased. This

he majority

Hulu and
y providing
e timeline.

fer from the
 present an

layer is the
real-time

sequential
the screen,
2).

o player.

white paper
ementation

g seems to
s has been
is enabled

nd it could
bing begins
ection.

should be
Swift does

e scrubbing
ource video
monstrate a

standards
nd HTML5
mplementa-
ommunity.

will outline

Simulated Network Latency
All computer systems have some amount of inherent input
latency. Using the technique from [17] we calculated the
average delay between when the mouse is moved to when
the cursor actually moves on the screen to be 37ms. For our
video navigation tasks we refer to simulated network
latency (or sn-latency) as the time between when a frame is
requested by the user and when the frame is displayed on
the screen, less the inherent system latency. With an online
video player this is the time it takes to request a new play
position from the server, and have the server transfer
enough frames to buffer the video sufficiently to begin
playing again. While the effects of latency on some
interaction tasks has been studied [16, 18], its impact on
video scrubbing is unknown.

Classification of Video Types for Navigation Tasks
We restrict our evaluation to tasks where the user knows
what scene they are looking for, and would recognize when
they have successfully navigated to it. Within such a task, a
user’s knowledge of the target video content and scene
organization provides information and orientation which
may affect scrubbing behaviors. Thus we found it useful to
divide videos into three main video type categories:

Sequential
In a sequential video, the scenes have a natural order which
is known to the user. It is therefore possible for a user to
estimate where the target scene is, and to “jump” to the
approximate point in the timeline. During the navigation
task the user is able to tell if they have gone too far, or not
far enough, and also judge how far away from the target
they are. An example of a sequential video seeking task is
finding a particular time in a televised sporting event: to
find “the beginning of the 4th quarter” in a basketball game,
the user could jump to about 75% into the video and then
looking at the game clock, adjust accordingly.

Ordered
With an ordered video it is possible for a user to tell if they
are before or after the target scene, but not how far away
they are. An example would be navigating through a
commercial break to get back to the television show. After
navigating, the user would know if they have gone too far,
or, if they still see a commercial, had not gone far enough.
Without real-time scrubbing, the optimal strategy for this
type of task may be a binary search of the timeline,
reducing the search space by half in each step.

Random
In a video with a completely random ordering, the user
does not know where the target scene is likely to be located
in the timeline, and has no cues as to where the target sits in
relation to their current position. There are no particularly
intelligent strategies for this type of task; the user is forced
to try and look at each scene. A primary example of this
type of task is for a user to find a particular scene in a
movie which they have never seen before.

The exact same video could have different navigation
characteristics for different users; finding a scene in a
movie that one person is unfamiliar with would be a
random searching task. For a person who is very familiar
with the move, it would be more of a sequential seeking
task. These classifications also do not necessarily have hard
boundaries between them. For example a sporting event
which only displays the clock some of the time could
present a primarily sequential seeking task, but the
segments without a clock present would represent a random
seeking sub-task. Even though the distinctions are not
always clear, this categorization of video types will be
useful when studying navigation techniques over a range of
potential scene finding scenarios.

EXPERIMENT ONE
To better understand how latency affects video navigation
tasks we conducted a controlled experiment. Specifically,
we wanted to test video scrubbing performance while
navigating to a target scene with varying levels of latency
and for differing video types. To ensure a controlled
environment, this experiment was carried out with
abstracted video content simulating three types of videos:
sequential, ordered and random, and two different scene
counts to simulate shorter (12) and longer (24) videos.

Participants and Apparatus
Twelve paid volunteer participants (8 female) were
recruited though an online classified posting. Users had
varying levels of computer experience, with daily usage
ranging between 2 and 10 hours.

The experiment was conducted in a private office on a
3.16GHz quad-core desktop computer running Windows 7
64-bit Edition. The graphics card was an nVidia Quadro FX
5600 and was driving a 24” Dell LCD monitor with a
resolution of 1920 by 1200.

Design
A repeated measures within-participant design was used
with the independent variables being video type (sequential,
ordered, random), number of scenes (12, 24), and sn-
latency (1000ms, 500ms, 100ms, 20ms, 0ms, 0ms-lowRes).
The ordering of sn-latency and number of scenes were
counterbalanced and video type was randomized. A fully
crossed design resulted in 36 combinations of variables.

Each participant performed the experiment in one session
lasting approximately one hour. The study was divided into
two blocks, with each condition run 4 times per block.

Video Player
A custom video player with a playback resolution of 800 by
600 pixels was used for the study. The player was
programmed as a stand-alone application to allow for
precise control of the latency, and to support high frequency
logging capabilities. The interface was intentionally simple,
with just the video playback window and a timeline slider
(Figure 3). In the 0ms condition, dragging the slider along

th
a
in
o
c
to
s
d
to
d

S
F
f
1
f
Y
g
o
h
m
a
n

T
s
o
h
v
(
th
6
s
p
v
a

V
T
g
e
s
D
m
d

he timeline wo
ate location im
nput latency).

only update i
condition’s asso
o mouse-up to

sufficient. Dur
display a “Loa
o help the user

disabled, as we

Figure 3. Vid
beginning of
most recently
scene, was ou
marked with

Simulated Netw
Five different
for the first stu
1000ms conditi
fast (~18MB/s
YouTube. Wh
generally more
of 500ms and
have been able
might be conce
an approximat
network latency

The 0ms condi
scenario, of wa
of real-time sc
has been fully c
video resolutio
(0ms-lowRes) w
hat while scrub

64 by 48 pixel
scaled up to
particular, we
view and a blu
affect navigatio

Video Content
The video cont
generated squar
equal number
squares for 12
During each sc
make it easier t
drawn (i.e. the

ould update th
mmediately (le

In the other
if the slider
ociated latency
o trigger the u
ring the laten
ding” message
r understand th

e were only test

deo player used
a trial (A) and
y drawn squar

utlined with a w
a black dot.

work Latency
simulated netw

udy ranging fro
ion is typical o
) network wh

hen viewing
e than 2000ms.
100ms, which
e to achieve o
eivably possibl
e “theoretical
y, or ping times

ition was incl
atching the vide
rubbing, or an
cached. To beg
on on navigati
was the same
bbing the timel
version of the
800 by 600
hoped to see

urry view of t
on performance

tent for the stu
res that faded i
of squares a

2 scenes, and
cene a different
to determine w

e current “scen

e video frame
ess the 37ms

conditions, th
remained sta

y duration. It w
update, dwellin
cy period, th
e on top of the
he player’s stat
ting seeking be

d in the experim
d at the target s
re, representin

wide border. Th

work latency l
om 1000ms do
of what we hav
hen viewing a

720p content
. We also teste

h are both faste
on any deploy
e. We also test
limit” based

s, of 20 to 40m

uded to simul
eo on a deskto

n online player
gin to understa
ion tasks, the
as the 0ms c

line, the frame
current frame
and bilinearly
if switching b

the same video
e.

udy was a grid
in one at a time
s number of

d 24 squares
t square would

which was the
ne”), the most

to the appropr
inherent syste
he frame wou

ationary for th
was not necessa
ng in place w
e screen wou
e previous fram
te. Playback w
ehaviors.

ment near the
scene (B). The
g the current

he goal scene is

evels were us
own to 0ms. Th
ve observed on

480p video o
t the delay
ed shorter dela
er than what w

yed network, b
ted with 20ms
on the averag

ms.

late the baselin
p player capab
r once the vid
and the effects

final conditio
ondition, exce
 displayed was
which had be

y smoothed.
between a cri
o content wou

d of procedural
e. There were
scenes (i.e.,
for 24 scenes

d be filled in. T
last square to b
t recently draw

ri-
em
uld
he

ary
was
uld
me

was

ed
he

n a
on
is

ays
we
but
as
ge

ne
ble
eo
of
on
ept
s a
en
In

isp
uld

lly
an
12
s).
To
be

wn

square
The tim
each sc
disable
duratio
occupi
800/24

To rep
fashion

SEQUEN

to bott
the targ
large m
timelin

Figu
ing. T

ORDER

in a ra
colored
configu
(the ta
square
far forw

Figu
The

RANDO

becom
remain
inform
past th
exactly

Figu
The

Task
In all t
video.
video w
target s
video
chosen
consec
and ha

Proced
At the
showed
differen

was outlined
meline was div
cene was of th
ed, the scenes,
on. The timelin
ied 800/12=67
4=33 pixels in t

present each o
n, the order for

ENTIAL: The squ
tom (Figure 4)
get scene was
movement and
ne if desired.

ure 4. First thre
The order whic

RED: For the or
andom order, a
d for the rest
uration the use
arget square w

was filled, bu
ward or back th

ure 5. First thre
order which th

OM: With the
me filled in a ra
n filled in for

mation to the u
he target scene
y at the target s

ure 6. First thre
order which th

trials, the user’
More specific
where a target
square was ind
(Figure 3). T

n for a trial, and
cutive trials. A
alf of the trials w

dure
beginning of

d the user exa
ences between

with a 10px
vided into equ
he same length
, and video, d
ne was 800 pix

pixels in the
the 24 scene co

of the video o
r which the squ

uares filled in f
). This made it
into the video
d “jump” to

ee scenes in a s
ch the squares f

rdered conditio
and once a squ
t of the video
er could tell if
was not filled)
ut not outlined
hey needed to

ee scenes in an o
he squares fill in

random order
andom order, h
r one scene (F
user in terms o
e; they could
scene.

ee scenes in a r
he squares fill in

’s task was to
ally, the user h
square was th

dicated with a
The first and
d the same scen

Additionally, th
were selected f

the study the
amples of eac
the video typ

wide border (
ually spaced se
h. Because pla
did not have a
xels wide and
12 scene cond
onditions.

orderings in a
uares appeared

from left-to-rig
t possible to te
so the user cou
the correct ar

sequential scen
fill in is fixed.

on the squares
uare filled in, i
o (Figure 5).
they were not
), or too far

d) but could no
navigate.

ordered scene o
n is random.

ring, the squa
however they w
Figure 6). Thi
of if they were
only know if

random scene o
n is random.

find a target sc
had to find the
he last to be fil
black dot over
last scenes w
ne was never s
he timeline w
from each sect

examiner exp
ch video type.
pes were under

(Figure 3).
egments so
ayback was
an absolute
each scene

ditions, and

controlled
differed:

ght and top
ell how far
uld make a
rea of the

ne order-

were filled
it remained

With this
far enough
(the target
ot tell how

ordering.

ares would
would only
is gave no
e before or

they were

ordering.

cene in the
part of the
led in. The
rlaid on the
were never
selected for

was halved,
tion.

plained and
. Once the
rstood, the

participants spent two minutes becoming accustomed to the
different latency conditions.

Each trial began when the cursor entered the timeline slider,
and at that time the dot would appear over the target square.
Participants were instructed to click and hold the mouse
button down while searching for the target scene and to
release the button once it was found. Errors were not
possible as the trial ended only once the target scene was
found. Between each block users were given a short break,
and the next condition was described on the screen. If the
participant was unclear how the next condition would work
they had the opportunity to execute several practice trials.

Results
The primary independent variable was completion time for
each task. Repeated measure analysis of variance showed a
main effect for video type (F2,22 = 79.2, p < .0001), number
of scenes (F1,11 = 39.4, p < .0001), and latency (F5,55 = 73.5,
p < .0001). Additionally, video type had a significant
interaction with number of scenes (F2,22 = 14.6, p < .0001)
as well as with ns-latency (F10,110 = 22.3, p < .0001).

Looking at the results for each video type we can see that
overall the completion times increase as the latency
increases (Figure 7). Of particular interest is the large jump
in completion times between 0ms and 20ms conditions with
overall mean completion times of 3210ms and 6175ms
respectively (p < .0001). It is important to recall that the
20ms latency condition represents a theoretical limit, and is
much lower than any existing online video player that we
are aware of. This result suggests that even optimal latency
levels will not approximate the efficiency of real-time
scrubbing capabilities.

Figure 7. Average median navigation completion times
for each combination of video type and ns-latency. (Note:
error bars report standard error).

When we compare the 0ms and 0ms-lowRes conditions we
see that the average completion times were 3.21s and 3.22s
respectively. This result indicates that exploring the use of a
lower resolution video while scrubbing could be a
promising direction.

Figure 8 illustrates the completion times for each individual
video type. It can be seen that after the initial jump from
0ms to 20ms, completion times increase in a fairly linear

fashion with latency. The exception is the Random video
type with 24 scenes, where the 1000ms latency condition
possesses additional difficulty.

Figure 8. Average median navigation completion time
divided into groups based on video type. (Note: error bars
report standard error).

Frames Seen
In addition to completion time, it is interesting to look at
how efficient users are being in their searching behaviors.
One way to do this is to look at how many times a new
video frame is seen by the user while completing a task. For
conditions with no latency we cannot tell when a user has
seen a new frame, as they are being displayed constantly.
However, for the conditions with latency we can count the
number of frames seen during each trial (Figure 9).

Across all video type and number of scene combinations the
trend is for the number of frames seen to go down as the
latency increases. This matches with the observed behavior
of users being more “careful” with their movements as the
penalty for each additional search step became greater. That
is, when the penalty for a poor strategy is small, users were
more likely to randomly search around in the video than to
make a calculated decision of where to look next. So

0.0

5.0

10.0

15.0

20.0

25.0

Sequential Ordered Random

Ti
m

e
(s

ec
)

20
m

s

0m
s

0m
s-

lo
w

R
es

10
0m

s

50
0m

s

10
00

m
s

20
m

s

0m
s

0m
s-

lo
w

R
es

0m
s

0m
s-

lo
w

R
es

10
0m

s

50
0m

s

10
00

m
s

20
m

s

10
0m

s

50
0m

s

10
00

m
s

12 Scenes
24 Scenes

12 Scenes
24 Scenes

12 Scenes
24 Scenes

0 20 100 500 1000
Simulated Network Latency (ms)

Simulated Network Latency (ms)

Simulated Network Latency (ms)

1 20
(low res)

0 20 100 500 10001 20
(low res)

0 20 100 500 10001 20
(low res)

0.0

5.0

10.0

15.0

Ti
m

e
(s

ec
)

0.0

2.5

5.0

7.5

Ti
m

e
(s

ec
)

0.0

10.0

20.0

30.0

Ti
m

e
(s

ec
)

Sequential

Ordered

Random

although latency is detrimental to performance times, users
can partially make up some of the time in higher latency
conditions with improved search strategies.

Figure 9. Average number of frames seen per trial.

Anecdotally, we found that most users were using near
optimal strategies of jumping to the approximately correct
position with the sequential videos, and linearly searching
through the random videos. With the ordered videos
however, few participants performed an optimal binary
search of the video scenes, however, many participants
performed a somewhat “partial binary” search by first
seeking to near the middle of the video, and then searching
linearly in one direction to find the target scene.

THE SWIFT TECHNIQUE
Our controlled evaluation on the effects of latency indicates
a significant performance decrease when real-time
scrubbing is not available. One possible way to address this
limitation is to use a lower resolution version of the video
that can be cached immediately and used for scrubbing. The
Netflix player comes close to doing so, but its implementa-
tion details are unknown, and there is a noticeable delay
before scrubbing is enabled. As such, we developed Swift to
support immediate low resolution scrubbing. This technique
will allow us to empirically evaluate if low-resolution
scrubbing could address the performance limitations
identified in our first experiment.

Overview
The idea behind Swift is to display a fully cached, low
resolution copy of the video during video scrubbing, and
snap back to the high resolution video when scrubbing is
completed or paused. Since the low resolution version of
the video is fully cached ahead of time, it can be scrubbed
in real-time and used to find the desired scene in the video.
Displaying the low resolution version overlaid onto the
entire size of the high resolution version allows for spatial
congruence and tracking video content while scrubbing.

User Interface
There is a large base of existing streaming videos on the
internet, and a broad demographic spectrum of users who
consume them [9]. As such, it is important for the
navigation mechanism to be simple and have minimal
impact on the existing user interfaces. Introducing advanced
controls could impact ease-of-use, and hosting sites may be
reluctant to adopt major changes to the interface layout.

To this end, our technique requires no changes to the
traditional video player interface, and no changes to the
interaction model. It would be relatively straightforward to

retrofit an existing player to use our technique, and we
believe any user familiar with a traditional timeline slider
would be able to use the Swift interface on first exposure
based on our results and observations from the 0ms-lowRes
condition in the first study.

Low Resolution Videos
The human visual system has an amazing tolerance to
degradation in image resolution. For example, as little as 16
× 16 pixel images are suitable for face recognition [1].
Torralba et. al. found that human scene recognition on
images with a resolution of 32 × 32 was 93% of the
recognition at the full resolution of 256 × 256 source
images, despite having only 1.5% the number of pixels as
the original [23]. This findings support the idea that low
resolution videos might be suitable for recognition tasks.

Increases in internet bandwidth and advances in video
compression and streaming technology [10, 15] will
continue to drive the movement to higher quality streaming
videos. Those same advancements make lower resolution
videos extremely efficient to transfer.

Video Size Analysis
The success of Swift depends on a low-resolution video
small enough that it can be cached almost immediately after
a page is loaded, but large enough to give a reasonable
depiction of the video. Our hope was to use a video size of
approximately 1MB, which would take less than a second
to download with most broadband internet connections.

To determine appropriate parameters for the lower-
resolution video, we looked at file sizes generated by a
modern codec. We used the H.264/MPEG-4 AVC high
profile codec, given its high quality, low file sizes, and
HTML5 compatibility. Videos were converted to .mp4 files
with this codec using the “mp4” option of “Miro Video
Converter”, a free video conversion tool. A one hour full
motion movie was used for the evaluation, at 800 × 600
resolution. For the evaluation, we varied the video
resolution, ranging from 320×240 to 32×24.

In addition, we varied the total number of frames encoded.
A key insight is that only a subset of the video’s frames
need to be encoded for real-time scrubbing, equal to the
pixel width of the timeline slider. For instance, a slider with
a width of 600 pixels can only access one of 600 frames
during scrubbing, regardless of the actual length of the
video. We varied frame totals from 50 (representing low
granularity scrubbing) to 1600 (representing high
granularity scrubbing in a full screen playback mode). To
convert the videos to a desired frame total, n, the playback
speed was modified using a video editor to run exactly n
seconds, and the video was then encoded at 1fps.

Figure 10 shows the resulting mp4 file sizes, at different
resolutions and frame counts. It can be seen that video sizes
drastically decrease as the resolution decreases. It can also
be seen that there are a group of candidate parameters that

0

5

10

15

20

Sequential Ordered Random

20
m

s

10
0m

s

50
0m

s

10
00

m
s 20

m
s

10
0m

s

50
0m

s

10
00

m
s

20
m

s

10
0m

s

10
00

m
s

50
0m

s

Fr
am

es
Se

en

result in video sizes close to 1MB. Based on these results,
we choose to use a video size of 134 × 100, with a frame
count of 800. This gave us the file size we wanted and the
resolution seemed to provide adequate visual cues during
navigation tasks. If the aspect ratio of a video was wider
than 4:3, the height could be reduced instead of increasing
the width, so that the file size would not increase.

Figure 10. Encoded file sizes using varying resolutions
and frame counts.

Because we fix the total frames encoded, and the frame
resolution, these parameters should reduce any source video
into the range of a 1MB file, regardless of its initial
resolution, duration, or frame rate. The compressibility of
the video content will have some effect on the resulting
video size, however, the most complicated videos we tried
still had files sizes of approximately 1MB, and for some
videos we achieved sizes as small as 0.2MB.

EXPERIMENT TWO
To validate the Swift technique we conducted a second
controlled experiment using an actual full-motion video and
content-specific search tasks.

Participants and Apparatus
Twelve paid volunteer participants (7 female) were selected
from the same recruiting pool as used for the first
experiment. Participants reported using a computer for an
average of between 2 and 14 hours per day (µ = 6.5 hours)
and watching between 0 and 200 online videos per month
(µ = 47 videos). The experiment was conducted in the same
office and on the same machine as the first study.

Design
A repeated measures within-participant design was used
with the independent variables being video type (sequential,
ordered, random), target discernibility (low, high), sn-
latency (20ms, 500ms), and technique (traditional, swift).
The ordering of video type, discernibility, and technique
were counterbalanced and the order of sn-latency was
randomized. A fully crossed design resulted in 24
conditions. Each participant performed the experiment in
one session and each condition was run 5 times, with the
first trial discarded as practice.

For the traditional technique the sn-latency value had the
same effect as in the first study (the frame would update
after x ms), and with the Swift technique the low resolution
version of the video was shown while scrubbing and the full
resolution version would appear after the x ms delay.

Latency values of 20ms and 500ms were selected from the
values used in the first study, with again the 20ms condition
serving as an approximate “theoretical limit” assuming
infinite download speed and fast network ping responses
and the 500ms representing a level of latency still lower
than what we have found on any existing online player.

Video Content
In video seeking tasks, the distinguishing feature of a target
scene could have varying degrees of visibility. To examine
this dimension, videos representing two levels of
discernibility were selected for each video type; the high
discernibility condition contained targets which were easier
to recognize than the low discernibility conditions. We
specifically chose videos that the subjects would not have
seen prior to the study. Also, as described below, the
experimental design tried to minimize learning effects from
memorizing the video content.

Figure 11. Frames taken from the target scenes for each
video type and discernibility combination used in the
study. For the ordered examples, (A) is from before the
change occurring, and (B) is from after. In the random
examples, (C) is a typical scene from the movie and (D) is
the target scene.

SEQUENTIAL: The sequential videos used for the study were
both “countdown” videos which presented a number of
clips in decreasing numerical ranking. For the high
discernibility condition, a countdown of the Top 25 Music
Videos of 1986 was used (Figure 11). This video displayed
the number of the current video prominently in the bottom
left corner of the screen. Each video took the same fraction
of time to play making the target size on the timeline
800/25 = 32 pixels wide. The low discernibility video was a
countdown of the Top 50 Basketball Dunks. The decreasing
numbers were shown on a slightly transparent rotating cube
in the bottom right corner of the frame. The clips in this
video were of varying length, but the ones used in the task
each occupied 12 pixels on the timeline.

ORDERED: For the ordered condition we used a software
tutorial video and simulated the situation where a user
wants to find out how a particular piece of the design was

0
64x48

80x60
96x72 128x96

1600 frames

800 frames

400 frames

200 frames
100 frames
50 frames

176x132 240x180 320x240

1

2

3

4

5

6

Vi
de

o
Si

ze
(M

B
)

Video Resolution

RandomSequential

H
ig

h
D

is
ce

rn
ib

ili
ty

Lo
w

D
is

ce
rn

ib
ili

ty

Full Resolution Swift Resolution

Ordered

created. Both the high and low discernibility videos were
taken from a tutorial video of the drawing program
Paint.NET. In the high discernibility condition the user
needed to find when the background of the drawing
changed from white to black, while in the low discernibility
condition the user needed to find the point where the inner
bevel was added to the porthole (Figure 11). Participants
were not required to find the exact single frame where the
change occurred, but were given a 5 pixel buffer on either
side making for an 11 pixel range on the timeline.

To enable positioning the target point at different locations
on the timeline, each of the ordered videos were construct-
ed in three parts: a seamless loop of material before the
change, a small section of video where the change occurred,
and a seamless loop of material from after the change. From
these “master” videos, a portion was trimmed from each
end, positioning the change in the desired location; half of
the trials occurred at a random location in the first half of
the timeline, and the remainder occurred in the second half.

RANDOM: The video used for the random conditions was the
1946 movie “Till the Clouds Roll By” (Figure 11). To
counter the potential learning bias of users memorizing the
movie, participants were required to find one particular
scene which was placed at a random location within the
video. For the high discernibility condition the scene was
the easily recognizable opening credits (taking up 32 pixels
on the timeline), and for low discernibility the scene was a
dance number where the actors were wearing red and green
costumes (a 3 minute scene, taking 34 pixels).

Procedure
The examiner began by using a sample video to show each
of the technique/latency combinations to the participant.
The examiner demonstrated how each worked, and
observed the user interacting with the player to ensure that
they understood. The trials were ordered with video type at
the outermost level, and discernibility at the second level.
This created 6 occasions when a new video or target type
would be introduced. At these times the examiner would
verbally explain the video and target to accompany the
written description presented on the screen. Four trials with
a 0ms latency, full resolution video player were presented
for the user to become accustomed to the new video and
target content, and then the balance of the trials began.

The trial timing behavior and interaction instructions were
the same as in the first study.

Results
As in the first study, the primary independent variable was
completion time for each task. Repeated measure analysis
of variance showed a main effect for technique (F1,11 =
100.3, p < .0001) with means of 7.01s for swift and 12.51s
for traditional. Additionally, significant effects were found
for video type (F2,22 = 91.6, p < .0001), discernibility (F1,11
= 7.15, p < .05), and sn-latency (F1,11 = 32.3, p < .0001).

Looking at the technique pairs for each of the video
type/discernibility/sn-latency conditions (Figure 12) we see
that in all cases the Swift technique performed faster than
traditional. Post-hoc analysis shows the effect to be
significant for all pairs except the 20ms conditions in the
sequential videos, and the 20ms/ordered/low condition.

Figure 12. Results for the three video types. (Note: error
bars report standard error).

It is interesting to see that for each video type/discernibility
condition, the performance of the Swift technique stayed
relatively constant across the two latency values. With the
traditional player the completion times increased
significantly overall from 9.9s in the 20ms conditions to
15.1s during the 500ms conditions (F1,11 = 40.4, p < .0001).
Based on the increasing trend of the results from the first
study, it is reasonable to project that the gap in performance
would continue to increase as the latency increased.

As in the first study, the overall task completion times
increased as the tasks moved through the video types from
sequential to ordered to random. As the tasks became more
difficult, the benefit of the Swift technique became more
pronounced, with traditional taking between 2 and 3.5
times as long as Swift in the random/500ms conditions. So
as not to make the study unnecessarily hard, the target
scenes were relatively long, and the movie relatively short.
As the total length of the movie increases and the length of
the target decreases, the benefits of Swift would become
even more pronounced.

0.0

2.5

5.0

7.5

10.0

Ti
m

e
(s

ec
)

Swift Traditional Swift Traditional Swift Traditional Swift Traditional
20ms 500ms 20ms 500ms

Low Discernibility High Discernibility

Low Discernibility High Discernibility

Low Discernibility High Discernibility

0.0

5.0

10.0

15.0

20.0

Ti
m

e
(s

ec
)

Swift Traditional Swift Traditional Swift Traditional Swift Traditional

20ms 500ms 20ms 500ms

0.0

7.5

15.0

22.5

30.0

Ti
m

e
(s

ec
)

Swift Traditional Swift Traditional Swift Traditional Swift Traditional

20ms 500ms 20ms 500ms

Sequential

Ordered

Random

HTML5 IMPLEMENTATION
In this section we describe a simple HTML5 implementa-
tion of Swift, which demonstrates that the technique can
work in today’s web browsers. Two videos are rendered
with the HTML5 <video> tag, with the small video above
the large video, but initially invisible. The Swift technique is
implemented with less than 20 lines of javascript code
(Listing 1). A custom slider is configured to make the
small-resolution video visible when sliding begins, and
update its position as it slides. The position of the full
resolution video is not updated until the sliding completes.
The small-resolution video is not hidden until the full
resolution video has finished seeking to the desired frame,
resulting in a seamless transition between resolutions. Our
testing of this code indicated that by default, the small and
large video are downloaded in parallel, resulting in a close
to instant download of the small video. However, further
code could be investigated to force the initial download of
the small-resolution video.

Listing 1. Javascript and HTML code for basic imple-
mentation of Swift technique.

Unfortunately, supported codecs and input elements still
vary from one browser to the next. The listed code is fully
functional in Google Chrome, and minor adjustments would
be required for other HTML5 enabled browsers.

DISCUSSION AND LIMITATIONS
We have presented the empirical results from two novel
experiments related to navigating online videos. Our first
study demonstrated that even a small amount of network
latency (20ms) can significantly hinder performance in
video navigation tasks. Our second study demonstrated that
real- time, low resolution scrubbing, significantly improves
performance, in both high and low latency environments.
The new empirical data provided by these studies will help

practitioners and researchers better understand the benefits
of enabling real-time scrubbing in online video players.

In addition to being beneficial in online environments, our
results are applicable to desktop video players as well.
Many such players still do not support real-time scrubbing,
and only update their frames when a seek operation has
completed. While transitioning to a lower resolution version
in a desktop environment may not be necessary, this could
actually improve the display rate of frames during a
scrubbing operation, due to the reduced CPU load.

An important aspect of our implementation, Swift, is that it
limits the download capacity required to enable real-time
scrubbing to approximately 1MB, regardless of the source
video’s resolution, frame rate, and duration. As such, real-
time scrubbing is available almost immediately when
viewing videos with a broadband connection. We are unable
to verify the Netflix implementation, but we did find it
usually takes at least 10 seconds, and often several minutes
before real-time scrubbing is enabled. Limiting the
download size is also important as many internet providers
are employing download caps and pay-per-use models.

Another advantage of Swift is its simple HTML5 compati-
bility. We demonstrated how real-time scrubbing could be
enabled with less than 30 lines of HTML5 and javascript
code. However, for a video sharing site to implement the
technique, a service to create the low-resolution videos
would be required. This should not be problematic, since
sites, such as YouTube already have services to convert
videos into multiple versions at different resolutions.

One potential limitation of low-resolution scrubbing is that
it may be impossible to discern low-granularity details
while scrubbing. Although prior research indicates very
little resolution is required to identify features in images,
small text fonts for example would be unreadable. Although
we do not believe it is common for users to be searching for
such fine grain details while navigating videos, it should be
noted that low-resolution scrubbing would not aid such a
task. In our future work section, we discuss possible ways
for which fine grain details could be represented.

FUTURE WORK AND CONCLUSION
There are a number of other techniques in the literature that
aid video navigation, although most do not focus on the
scrubbing interaction. Low-resolution scrubbing could
potentially be used in combination with these techniques.
For example, Pongnumkul et al.’s content-aware dynamic
timeline control [19] could be used while scrubbing, so that
instead of frames flashing quickly by, salient scenes could
be displayed at a more digestible rate. Additionally, direct
manipulation video navigation systems such as DRAGON
[13] and DimP [7] could utilize a low-resolution overlay.

Our implementation of Swift overlaid the low-resolution
version of the video across the entire video player canvas.
In contrast, the Netflix player displays multiple smaller

var small_length = 800;
var large_length = 3999.929;
var large = document.getElementById("lmovie");
var small = document.getElementById("smovie");
document.getElementById("slider").max = small_length;

function startSlide() {
small.style.visibility = 'visible';

}

function Slide(newValue) {
small.currentTime = newValue;

}

function endSlide() {
var t = small.currentTime;
large.currentTime = ((t) * (largelength)) / small_length;

}

function Seeked() {
small.style.visibility = 'hidden';

}

<video STYLE="position:absolute;" id="lmovie" src="large.mp4"
onseeked="Seeked()" width="800" height="600" preload controls>

</video>

<video STYLE="position:absolute; visibility:hidden" id="smovie"
src="small.mp4" width="800" height="600" preload>

</video>

<input STYLE="position:absolute; TOP:608px; WIDTH:800px" type="range"
id="slider" value="0" onchange="Slide(this.value)"
onmousedown="startSlide()" onmouseup="endSlide()">

thumbnails centered on the canvas. We did not become
aware of the Netflix player until our studies were
completed, but it would be interesting in the future to
compare these two approaches. Another alternative design
worth exploring is displaying a small thumbnail just above
the timeline, offset from the cursor position. Some players,
such as Hulu, already do this when hovering over the
timeline, but do not pre-cache these thumbnails.

It would also be interesting to look at alternative low-data
representations of the content while scrubbing, other than a
literal down-sampling of the entire video. For example, the
low resolution video could be a zoomed in view of the full
resolution video, showing an area that has important details.
Alternatively, metadata could be stored alongside the video
and rendered instead of frames from the actual video. For
example, when scrubbing through a sporting event, the
current score or time remaining in the game could be
overlaid. When scrubbing a movie or music video, the
closed captions or lyrics could be displayed.

While our implementation used a fixed 1MB file size, our
analysis of the H.264 codec performance showed that
representations could be made as small as 29KB. To
support low speed connections, it could be useful to have
multiple low-resolution files available, and possibly
progressively download and use larger versions.

Our study focused on scrubbing under uniform latency
values while in practice, users may experience a range of
latencies and this would be interesting to examine further.

Finally, we feel low-resolution scrubbing is particularly
suited for mobile devices, as it reduces both bandwidth and
CPU load. Our implementation should work with minimal
modification on HTML5 supported mobile devices, such as
the iPad, and it would be interesting to evaluate such an
implementation.

To conclude, we have contributed empirical data demon-
strating the impact of latency on online-video navigation
tasks, demonstrated that low-resolution real-time scrubbing
can significantly improve performance, and provided a
simple HTML5 compatible implementation. Given today’s
prevalence of online streaming video sites, we feel these are
important and timely contributions.

REFERENCES
1. Bachmann, T. (1991). Identification of spatially queatized

tachistoscopic images of faces: How many pixels does it take
to carry identity? European J. of Cog. Psychology. 3:85-103.

2. Bailer, W., Schober, C., and Thallinger, G. (2006). Video
Content Browsing Based on Iterative Feature Clustering for
Rushes Exploration. TRECVID Workshop. 230-239.

3. Chang, L., Yang, Y., and Hua, X.S. (2008). Smart Video
Player. IEEE Multimedia and Expo. 1605-1606.

4. Chen, L., Chen, G.C., Xu, C.Z., March, J., and Benford, S.
(2008). EmoPlayer: A Media Player for Video Clips with
Affective Annotations. Int. with Comp. 20:17-28.

5. Divakaran, A. and Forlines, C. and Lanning, T. and Shipman,
S. and Wittenburg, K. (2005). Augmenting Fast-Forward and
Rewind for Personal Digital Video Recorders. ICCE. 43-44.

6. Doulamis, A.D. and Doulamis, N.D. (2004). Optimal Content-
based Video Decomposition for Interactive Video Navigation.
IEEE CSVT. 757-775.

7. Dragicevic, P., Ramos, G., Bibliowitcz, J., Nowrouzezahrai,
D., Balakrishnan, R., and Singh, K. (2008). Video browsing by
direct manipulation. CHI. 237-246.

8. Grossman, T., Matejka, J., and Fitzmaurice, G. (2010).
Chronicle: Capture, Exploration, and Playback of Document
Workflow Histories. UIST. 143-152.

9. Hanson, G. and Haridakis, P. (2008). YouTube Users Watching
and Sharing the News: A Uses and Gratifications Approach.
Journal of Electronic Publishing. 11:3.

10. Hefeeda, M. and Hsu, C.H. (2008). Rate-Distortion Optimized
Streaming of Fine-Grained Scalable Video Sequences. ACM
TOMCCAP. 1-28.

11. Holthe, O. and Ronningen, L.A. (2006). Video Browsing
Techniques for Web Interfaces. IEEE CCNC. 1224-1228.

12. Hürst, W. (2006). Interactive Audio-Visual Video Browsing.
ACM MM. 675-678.

13. Karrer, T., Weiss, M., Lee, E., and Borchers, J. (2008).
DRAGON : A Direct Manipulation Interface for Frame-
Accurate In-Scene Video Navigation. CHI. 247-250.

14. Janin, A., Gottlieb, L., and Friedland, G. (2010). Joke-o-Mat
HD: Browsing Sitcoms with Human Derived Transcripts.
ACM MM. 1591-1594.

15. Krasic, C. and Légaré, J.S. (2008). Interactivity and Scalability
Enhancements for Quality-Adaptive Streaming. MM. 753-756.

16. MacKenzie, I.S. and Ware, C. (1993). Lag as a Determinant of
Human Performance in Interactive Systems. CHI. 488-493.

17. Pavlovych, A. and Stuerzlinger, W. (2009). The Tradeoff
between Spatial Jitter and Latency in Pointing Tasks. ACM
Symposium on Eng. Interactive Comp. Syst. 33-44.

18. Pavlovych, A. and Stuerzlinger, W. (2011). Target Following
Performance in the Presence of Latency, Jitter, and Signal
Dropouts. GI. 33-44.

19. Pongnumkul, S., Wang, J., Ramos, G., and Cohen, M. (2010).
Content-Aware dynamic timeline for video browsing. ACM
UIST. 139-142.

20. Ramos, G. and Balakrishnan, R. (2003). Fluid Interaction
Techniques for the Control and Annotation of Digital Video.
ACM UIST. 105-114.

21. Schoeffmann, K., Hopfgartner, F., Marques, O., Boeszoerme-
nyi, L., and Jose, J.M. (2010). Video browsing interfaces and
applications: a review. SPIE Reviews. 18004:1-35.

22. Schoeffmann, K., Taschwer, M., and Boeszoermenyi, L.
(2010). The Video Explorer – A Tool for Navigation and
Searching within a Single Video based on Fast Content
Analysis. ACM SIGMM. 247-258.

23. Torralba, A., Fergus, R., and Freeman, W.T. (2008). 80 million
tiny images: A large data set for non-parametric object and
scene recognition. IEEE Pattern Analysis and Machine
Intelligence. 1958-1970.

24. Truong, B.T. and Venkatesh, S. (2007). Video Abstraction: A
Systematic Review and Classification. ACM TOMCCAP. Appl.
3, 1, Article 3.

25. Uchihashi, S., Foote, J., Girgensohn, A., and Boreczky, J.
(1999). Video Manga: Generating Semantically Meaningful
Video Summaries. ACM CHI. 383-392.

