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Figure 1. An illustration of the scrubbing behavior of a traditional streaming video player and the Swift player. With the 
Swift system a quick-to-download low resolution version of the video is displayed while scrubbing. 

 
ABSTRACT 
We first conduct a study using abstracted video content to 
measure the effects of latency on video scrubbing 
performance and find that even very small amounts of 
latency can significantly degrade navigation performance. 
Based on these results, we present Swift, a technique that 
supports real-time scrubbing of online videos by overlaying 
a small, low resolution copy of the video during video 
scrubbing, and snapping back to the high resolution video 
when the scrubbing is completed or paused. A second study 
compares the Swift technique to traditional online video 
players on a collection of realistic live motion videos and 
content-specific search tasks which finds the Swift 
technique reducing completion times by as much as 72% 
even with a relatively low latency of 500ms. Lastly, we 
demonstrate that the Swift technique can be easily 
implemented using modern HTML5 web standards. 

Author Keywords 
Video, Video Navigation, Online Streaming 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Graphical User Interfaces.  

INTRODUCTION 
Streaming online video players have given internet users 
the instant gratification of watching a video play immedi-
ately, as opposed to the previous workflow of downloading 
a video and then viewing it using a local player. With recent 
advancements in both internet download speeds, and faster 

CPUs, the quality of streaming videos has improved 
drastically. High definition videos are now standard, and 
full length television shows and movies are readily 
available on sites such as Netflix and Hulu. 

Although very popular, streaming videos have limitations 
when it comes to navigation. In most desktop media 
players, the user is able to “scrub” the video by moving a 
slider along the timeline and the current frame of the video 
updates in real-time. In contrast, streaming video players 
request new frames from the server to update the view, 
introducing a significant amount of latency. This latency 
makes the scrubbing experience very choppy at best, and 
for many players, the view does not start updating until 
after the mouse button has been released (Figure 1). 

For many usage scenarios, the ability to scrub video 
timelines is critical to the viewing experience. For example, 
a user may wish to find a particular scene in a movie, look 
for when a particular operation was performed in a software 
tutorial video, or skip past an advertisement while watching 
a sporting event. While scrubbing is sometimes enabled 
once a video is cached, fully downloading a video can take 
a considerable amount of time. Furthermore, it might not be 
desirable, or even possible, to cache a large video file for 
reasons such as the bandwidth costs incurred by the server 
and/or user, or the storage capacity of the playback device.  

Many aids for navigating videos have been explored [21]. 
However, most require additional visual elements such as 
summary storyboards [25] or video analytics [22], and few 
enhance the ubiquitous scrubbing behavior. Furthermore, 
most enhancements are designed for desktop systems and 
assume random access availability to the video. Despite the 
ubiquity of online video players, we are unaware of any 
research to date which has empirically measured the user 
performance impact of latency during video scrubbing.  

Traditional Video Scrubbing Swift Video Scrubbing
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Simulated Network Latency 
All computer systems have some amount of inherent input 
latency. Using the technique from [17] we calculated the 
average delay between when the mouse is moved to when 
the cursor actually moves on the screen to be 37ms. For our 
video navigation tasks we refer to simulated network 
latency (or sn-latency) as the time between when a frame is 
requested by the user and when the frame is displayed on 
the screen, less the inherent system latency. With an online 
video player this is the time it takes to request a new play 
position from the server, and have the server transfer 
enough frames to buffer the video sufficiently to begin 
playing again. While the effects of latency on some 
interaction tasks has been studied [16, 18], its impact on 
video scrubbing is unknown.  

Classification of Video Types for Navigation Tasks 
We restrict our evaluation to tasks where the user knows 
what scene they are looking for, and would recognize when 
they have successfully navigated to it. Within such a task, a 
user’s knowledge of the target video content and scene 
organization provides information and orientation which 
may affect scrubbing behaviors. Thus we found it useful to 
divide videos into three main video type categories: 

Sequential 
In a sequential video, the scenes have a natural order which 
is known to the user. It is therefore possible for a user to 
estimate where the target scene is, and to “jump” to the 
approximate point in the timeline. During the navigation 
task the user is able to tell if they have gone too far, or not 
far enough, and also judge how far away from the target 
they are. An example of a sequential video seeking task is 
finding a particular time in a televised sporting event: to 
find “the beginning of the 4th quarter” in a basketball game, 
the user could jump to about 75% into the video and then 
looking at the game clock, adjust accordingly. 

Ordered 
With an ordered video it is possible for a user to tell if they 
are before or after the target scene, but not how far away 
they are. An example would be navigating through a 
commercial break to get back to the television show. After 
navigating, the user would know if they have gone too far, 
or, if they still see a commercial, had not gone far enough. 
Without real-time scrubbing, the optimal strategy for this 
type of task may be a binary search of the timeline, 
reducing the search space by half in each step. 

Random 
In a video with a completely random ordering, the user 
does not know where the target scene is likely to be located 
in the timeline, and has no cues as to where the target sits in 
relation to their current position. There are no particularly 
intelligent strategies for this type of task; the user is forced 
to try and look at each scene. A primary example of this 
type of task is for a user to find a particular scene in a 
movie which they have never seen before. 

The exact same video could have different navigation 
characteristics for different users; finding a scene in a 
movie that one person is unfamiliar with would be a 
random searching task. For a person who is very familiar 
with the move, it would be more of a sequential seeking 
task. These classifications also do not necessarily have hard 
boundaries between them. For example a sporting event 
which only displays the clock some of the time could 
present a primarily sequential seeking task, but the 
segments without a clock present would represent a random 
seeking sub-task. Even though the distinctions are not 
always clear, this categorization of video types will be 
useful when studying navigation techniques over a range of 
potential scene finding scenarios. 

EXPERIMENT ONE 
To better understand how latency affects video navigation 
tasks we conducted a controlled experiment. Specifically, 
we wanted to test video scrubbing performance while 
navigating to a target scene with varying levels of latency 
and for differing video types. To ensure a controlled 
environment, this experiment was carried out with 
abstracted video content simulating three types of videos: 
sequential, ordered and random, and two different scene 
counts to simulate shorter (12) and longer (24) videos. 

Participants and Apparatus 
Twelve paid volunteer participants (8 female) were 
recruited though an online classified posting. Users had 
varying levels of computer experience, with daily usage 
ranging between 2 and 10 hours. 

The experiment was conducted in a private office on a 
3.16GHz quad-core desktop computer running Windows 7 
64-bit Edition. The graphics card was an nVidia Quadro FX 
5600 and was driving a 24” Dell LCD monitor with a 
resolution of 1920 by 1200. 

Design 
A repeated measures within-participant design was used 
with the independent variables being video type (sequential, 
ordered, random), number of scenes (12, 24), and sn-
latency (1000ms, 500ms, 100ms, 20ms, 0ms, 0ms-lowRes). 
The ordering of sn-latency and number of scenes were 
counterbalanced and video type was randomized. A fully 
crossed design resulted in 36 combinations of variables.  

Each participant performed the experiment in one session 
lasting approximately one hour. The study was divided into 
two blocks, with each condition run 4 times per block. 

Video Player 
A custom video player with a playback resolution of 800 by 
600 pixels was used for the study. The player was 
programmed as a stand-alone application to allow for 
precise control of the latency, and to support high frequency 
logging capabilities. The interface was intentionally simple, 
with just the video playback window and a timeline slider 
(Figure 3). In the 0ms condition, dragging the slider along 
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participants spent two minutes becoming accustomed to the 
different latency conditions. 

Each trial began when the cursor entered the timeline slider, 
and at that time the dot would appear over the target square. 
Participants were instructed to click and hold the mouse 
button down while searching for the target scene and to 
release the button once it was found. Errors were not 
possible as the trial ended only once the target scene was 
found. Between each block users were given a short break, 
and the next condition was described on the screen. If the 
participant was unclear how the next condition would work 
they had the opportunity to execute several practice trials. 

Results 
The primary independent variable was completion time for 
each task. Repeated measure analysis of variance showed a 
main effect for video type (F2,22 = 79.2, p < .0001), number 
of scenes (F1,11 = 39.4, p < .0001), and latency (F5,55 = 73.5, 
p < .0001). Additionally, video type had a significant 
interaction with number of scenes (F2,22 = 14.6, p < .0001) 
as well as with ns-latency (F10,110 = 22.3, p < .0001). 

Looking at the results for each video type we can see that 
overall the completion times increase as the latency 
increases (Figure 7). Of particular interest is the large jump 
in completion times between 0ms and 20ms conditions with 
overall mean completion times of 3210ms and 6175ms 
respectively (p < .0001). It is important to recall that the 
20ms latency condition represents a theoretical limit, and is 
much lower than any existing online video player that we 
are aware of. This result suggests that even optimal latency 
levels will not approximate the efficiency of real-time 
scrubbing capabilities.  

 
Figure 7. Average median navigation completion times 
for each combination of video type and ns-latency. (Note: 
error bars report standard error). 

When we compare the 0ms and 0ms-lowRes conditions we 
see that the average completion times were 3.21s and 3.22s 
respectively. This result indicates that exploring the use of a 
lower resolution video while scrubbing could be a 
promising direction. 

Figure 8 illustrates the completion times for each individual 
video type. It can be seen that after the initial jump from 
0ms to 20ms, completion times increase in a fairly linear 

fashion with latency. The exception is the Random video 
type with 24 scenes, where the 1000ms latency condition 
possesses additional difficulty.  

 
Figure 8. Average median navigation completion time 
divided into groups based on video type. (Note: error bars 
report standard error). 

Frames Seen 
In addition to completion time, it is interesting to look at 
how efficient users are being in their searching behaviors. 
One way to do this is to look at how many times a new 
video frame is seen by the user while completing a task. For 
conditions with no latency we cannot tell when a user has 
seen a new frame, as they are being displayed constantly. 
However, for the conditions with latency we can count the 
number of frames seen during each trial (Figure 9). 

Across all video type and number of scene combinations the 
trend is for the number of frames seen to go down as the 
latency increases. This matches with the observed behavior 
of users being more “careful” with their movements as the 
penalty for each additional search step became greater. That 
is, when the penalty for a poor strategy is small, users were 
more likely to randomly search around in the video than to 
make a calculated decision of where to look next. So 
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although latency is detrimental to performance times, users 
can partially make up some of the time in higher latency 
conditions with improved search strategies.  

 
Figure 9. Average number of frames seen per trial. 

Anecdotally, we found that most users were using near 
optimal strategies of jumping to the approximately correct 
position with the sequential videos, and linearly searching 
through the random videos. With the ordered videos 
however, few participants performed an optimal binary 
search of the video scenes, however, many participants 
performed a somewhat “partial binary” search by first 
seeking to near the middle of the video, and then searching 
linearly in one direction to find the target scene. 

THE SWIFT TECHNIQUE 
Our controlled evaluation on the effects of latency indicates 
a significant performance decrease when real-time 
scrubbing is not available. One possible way to address this 
limitation is to use a lower resolution version of the video 
that can be cached immediately and used for scrubbing. The 
Netflix player comes close to doing so, but its implementa-
tion details are unknown, and there is a noticeable delay 
before scrubbing is enabled. As such, we developed Swift to 
support immediate low resolution scrubbing. This technique 
will allow us to empirically evaluate if low-resolution 
scrubbing could address the performance limitations 
identified in our first experiment. 

Overview 
The idea behind Swift is to display a fully cached, low 
resolution copy of the video during video scrubbing, and 
snap back to the high resolution video when scrubbing is 
completed or paused. Since the low resolution version of 
the video is fully cached ahead of time, it can be scrubbed 
in real-time and used to find the desired scene in the video. 
Displaying the low resolution version overlaid onto the 
entire size of the high resolution version allows for spatial 
congruence and tracking video content while scrubbing.  

User Interface 
There is a large base of existing streaming videos on the 
internet, and a broad demographic spectrum of users who 
consume them [9]. As such, it is important for the 
navigation mechanism to be simple and have minimal 
impact on the existing user interfaces. Introducing advanced 
controls could impact ease-of-use, and hosting sites may be 
reluctant to adopt major changes to the interface layout.  

To this end, our technique requires no changes to the 
traditional video player interface, and no changes to the 
interaction model. It would be relatively straightforward to 

retrofit an existing player to use our technique, and we 
believe any user familiar with a traditional timeline slider 
would be able to use the Swift interface on first exposure 
based on our results and observations from the 0ms-lowRes 
condition in the first study. 

Low Resolution Videos 
The human visual system has an amazing tolerance to 
degradation in image resolution. For example, as little as 16 
× 16 pixel images are suitable for face recognition [1]. 
Torralba et. al. found that human scene recognition on 
images with a resolution of 32 × 32 was 93% of the 
recognition at the full resolution of 256 × 256 source 
images, despite having only 1.5% the number of pixels as 
the original [23]. This findings support the idea that low 
resolution videos might be suitable for recognition tasks. 

Increases in internet bandwidth and advances in video 
compression and streaming technology [10, 15] will 
continue to drive the movement to higher quality streaming 
videos. Those same advancements make lower resolution 
videos extremely efficient to transfer. 

Video Size Analysis 
The success of Swift depends on a low-resolution video 
small enough that it can be cached almost immediately after 
a page is loaded, but large enough to give a reasonable 
depiction of the video. Our hope was to use a video size of 
approximately 1MB, which would take less than a second 
to download with most broadband internet connections. 

To determine appropriate parameters for the lower-
resolution video, we looked at file sizes generated by a 
modern codec. We used the H.264/MPEG-4 AVC high 
profile codec, given its high quality, low file sizes, and 
HTML5 compatibility. Videos were converted to .mp4 files 
with this codec using the “mp4” option of “Miro Video 
Converter”, a free video conversion tool. A one hour full 
motion movie was used for the evaluation, at 800 × 600 
resolution. For the evaluation, we varied the video 
resolution, ranging from 320×240 to 32×24.  

In addition, we varied the total number of frames encoded. 
A key insight is that only a subset of the video’s frames 
need to be encoded for real-time scrubbing, equal to the 
pixel width of the timeline slider. For instance, a slider with 
a width of 600 pixels can only access one of 600 frames 
during scrubbing, regardless of the actual length of the 
video. We varied frame totals from 50 (representing low 
granularity scrubbing) to 1600 (representing high 
granularity scrubbing in a full screen playback mode). To 
convert the videos to a desired frame total, n, the playback 
speed was modified using a video editor to run exactly n 
seconds, and the video was then encoded at 1fps.  

Figure 10 shows the resulting mp4 file sizes, at different 
resolutions and frame counts. It can be seen that video sizes 
drastically decrease as the resolution decreases. It can also 
be seen that there are a group of candidate parameters that 
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result in video sizes close to 1MB. Based on these results, 
we choose to use a video size of 134 × 100, with a frame 
count of 800. This gave us the file size we wanted and the 
resolution seemed to provide adequate visual cues during 
navigation tasks. If the aspect ratio of a video was wider 
than 4:3, the height could be reduced instead of increasing 
the width, so that the file size would not increase.  

 
Figure 10. Encoded file sizes using varying resolutions 
and frame counts. 

Because we fix the total frames encoded, and the frame 
resolution, these parameters should reduce any source video 
into the range of a 1MB file, regardless of its initial 
resolution, duration, or frame rate. The compressibility of 
the video content will have some effect on the resulting 
video size, however, the most complicated videos we tried 
still had files sizes of approximately 1MB, and for some 
videos we achieved sizes as small as 0.2MB. 

EXPERIMENT TWO 
To validate the Swift technique we conducted a second 
controlled experiment using an actual full-motion video and 
content-specific search tasks.  

Participants and Apparatus 
Twelve paid volunteer participants (7 female) were selected 
from the same recruiting pool as used for the first 
experiment. Participants reported using a computer for an 
average of between 2 and 14 hours per day (µ = 6.5 hours) 
and watching between 0 and 200 online videos per month 
(µ = 47 videos). The experiment was conducted in the same 
office and on the same machine as the first study. 

Design 
A repeated measures within-participant design was used 
with the independent variables being video type (sequential, 
ordered, random), target discernibility (low, high), sn-
latency (20ms, 500ms), and technique (traditional, swift). 
The ordering of video type, discernibility, and technique 
were counterbalanced and the order of sn-latency was 
randomized. A fully crossed design resulted in 24 
conditions. Each participant performed the experiment in 
one session and each condition was run 5 times, with the 
first trial discarded as practice. 

For the traditional technique the sn-latency value had the 
same effect as in the first study (the frame would update 
after x ms), and with the Swift technique the low resolution 
version of the video was shown while scrubbing and the full 
resolution version would appear after the x ms delay. 

Latency values of 20ms and 500ms were selected from the 
values used in the first study, with again the 20ms condition 
serving as an approximate “theoretical limit” assuming 
infinite download speed and fast network ping responses 
and the 500ms representing a level of latency still lower 
than what we have found on any existing online player. 

Video Content 
In video seeking tasks, the distinguishing feature of a target 
scene could have varying degrees of visibility. To examine 
this dimension, videos representing two levels of 
discernibility were selected for each video type; the high 
discernibility condition contained targets which were easier 
to recognize than the low discernibility conditions. We 
specifically chose videos that the subjects would not have 
seen prior to the study. Also, as described below, the 
experimental design tried to minimize learning effects from 
memorizing the video content.  

 
Figure 11. Frames taken from the target scenes for each 
video type and discernibility combination used in the 
study. For the ordered examples, (A) is from before the 
change occurring, and (B) is from after. In the random 
examples, (C) is a typical scene from the movie and (D) is 
the target scene. 

SEQUENTIAL: The sequential videos used for the study were 
both “countdown” videos which presented a number of 
clips in decreasing numerical ranking. For the high 
discernibility condition, a countdown of the Top 25 Music 
Videos of 1986 was used (Figure 11). This video displayed 
the number of the current video prominently in the bottom 
left corner of the screen. Each video took the same fraction 
of time to play making the target size on the timeline 
800/25 = 32 pixels wide. The low discernibility video was a 
countdown of the Top 50 Basketball Dunks. The decreasing 
numbers were shown on a slightly transparent rotating cube 
in the bottom right corner of the frame. The clips in this 
video were of varying length, but the ones used in the task 
each occupied 12 pixels on the timeline. 

ORDERED: For the ordered condition we used a software 
tutorial video and simulated the situation where a user 
wants to find out how a particular piece of the design was 
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created. Both the high and low discernibility videos were 
taken from a tutorial video of the drawing program 
Paint.NET. In the high discernibility condition the user 
needed to find when the background of the drawing 
changed from white to black, while in the low discernibility 
condition the user needed to find the point where the inner 
bevel was added to the porthole (Figure 11). Participants 
were not required to find the exact single frame where the 
change occurred, but were given a 5 pixel buffer on either 
side making for an 11 pixel range on the timeline. 

To enable positioning the target point at different locations 
on the timeline, each of the ordered videos were construct-
ed in three parts: a seamless loop of material before the 
change, a small section of video where the change occurred, 
and a seamless loop of material from after the change. From 
these “master” videos, a portion was trimmed from each 
end, positioning the change in the desired location; half of 
the trials occurred at a random location in the first half of 
the timeline, and the remainder occurred in the second half. 

RANDOM: The video used for the random conditions was the 
1946 movie “Till the Clouds Roll By” (Figure 11). To 
counter the potential learning bias of users memorizing the 
movie, participants were required to find one particular 
scene which was placed at a random location within the 
video. For the high discernibility condition the scene was 
the easily recognizable opening credits (taking up 32 pixels 
on the timeline), and for low discernibility the scene was a 
dance number where the actors were wearing red and green 
costumes (a 3 minute scene, taking 34 pixels). 

Procedure 
The examiner began by using a sample video to show each 
of the technique/latency combinations to the participant. 
The examiner demonstrated how each worked, and 
observed the user interacting with the player to ensure that 
they understood. The trials were ordered with video type at 
the outermost level, and discernibility at the second level. 
This created 6 occasions when a new video or target type 
would be introduced. At these times the examiner would 
verbally explain the video and target to accompany the 
written description presented on the screen. Four trials with 
a 0ms latency, full resolution video player were presented 
for the user to become accustomed to the new video and 
target content, and then the balance of the trials began. 

The trial timing behavior and interaction instructions were 
the same as in the first study. 

Results 
As in the first study, the primary independent variable was 
completion time for each task. Repeated measure analysis 
of variance showed a main effect for technique (F1,11 = 
100.3, p < .0001) with means of 7.01s for swift and 12.51s 
for traditional. Additionally, significant effects were found 
for video type (F2,22 = 91.6, p < .0001), discernibility (F1,11 
= 7.15, p < .05), and sn-latency (F1,11 = 32.3, p < .0001). 

Looking at the technique pairs for each of the video 
type/discernibility/sn-latency conditions (Figure 12) we see 
that in all cases the Swift technique performed faster than 
traditional. Post-hoc analysis shows the effect to be 
significant for all pairs except the 20ms conditions in the 
sequential videos, and the 20ms/ordered/low condition. 

 
Figure 12. Results for the three video types. (Note: error 
bars report standard error). 

It is interesting to see that for each video type/discernibility 
condition, the performance of the Swift technique stayed 
relatively constant across the two latency values. With the 
traditional player the completion times increased 
significantly overall from 9.9s in the 20ms conditions to 
15.1s during the 500ms conditions (F1,11 = 40.4, p < .0001). 
Based on the increasing trend of the results from the first 
study, it is reasonable to project that the gap in performance 
would continue to increase as the latency increased. 

As in the first study, the overall task completion times 
increased as the tasks moved through the video types from 
sequential to ordered to random. As the tasks became more 
difficult, the benefit of the Swift technique became more 
pronounced, with traditional taking between 2 and 3.5 
times as long as Swift in the random/500ms conditions. So 
as not to make the study unnecessarily hard, the target 
scenes were relatively long, and the movie relatively short. 
As the total length of the movie increases and the length of 
the target decreases, the benefits of Swift would become 
even more pronounced. 
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HTML5 IMPLEMENTATION 
In this section we describe a simple HTML5 implementa-
tion of Swift, which demonstrates that the technique can 
work in today’s web browsers. Two videos are rendered 
with the HTML5 <video> tag, with the small video above 
the large video, but initially invisible. The Swift technique is 
implemented with less than 20 lines of javascript code 
(Listing 1). A custom slider is configured to make the 
small-resolution video visible when sliding begins, and 
update its position as it slides. The position of the full 
resolution video is not updated until the sliding completes. 
The small-resolution video is not hidden until the full 
resolution video has finished seeking to the desired frame, 
resulting in a seamless transition between resolutions. Our 
testing of this code indicated that by default, the small and 
large video are downloaded in parallel, resulting in a close 
to instant download of the small video. However, further 
code could be investigated to force the initial download of 
the small-resolution video. 

 
Listing 1. Javascript and HTML code for basic imple-
mentation of Swift technique. 

Unfortunately, supported codecs and input elements still 
vary from one browser to the next. The listed code is fully 
functional in Google Chrome, and minor adjustments would 
be required for other HTML5 enabled browsers. 

DISCUSSION AND LIMITATIONS 
We have presented the empirical results from two novel 
experiments related to navigating online videos. Our first 
study demonstrated that even a small amount of network 
latency (20ms) can significantly hinder performance in 
video navigation tasks. Our second study demonstrated that 
real- time, low resolution scrubbing, significantly improves 
performance, in both high and low latency environments. 
The new empirical data provided by these studies will help 

practitioners and researchers better understand the benefits 
of enabling real-time scrubbing in online video players.  

In addition to being beneficial in online environments, our 
results are applicable to desktop video players as well. 
Many such players still do not support real-time scrubbing, 
and only update their frames when a seek operation has 
completed. While transitioning to a lower resolution version 
in a desktop environment may not be necessary, this could 
actually improve the display rate of frames during a 
scrubbing operation, due to the reduced CPU load. 

An important aspect of our implementation, Swift, is that it 
limits the download capacity required to enable real-time 
scrubbing to approximately 1MB, regardless of the source 
video’s resolution, frame rate, and duration. As such, real-
time scrubbing is available almost immediately when 
viewing videos with a broadband connection. We are unable 
to verify the Netflix implementation, but we did find it 
usually takes at least 10 seconds, and often several minutes 
before real-time scrubbing is enabled. Limiting the 
download size is also important as many internet providers 
are employing download caps and pay-per-use models. 

Another advantage of Swift is its simple HTML5 compati-
bility. We demonstrated how real-time scrubbing could be 
enabled with less than 30 lines of HTML5 and javascript 
code. However, for a video sharing site to implement the 
technique, a service to create the low-resolution videos 
would be required. This should not be problematic, since 
sites, such as YouTube already have services to convert 
videos into multiple versions at different resolutions. 

One potential limitation of low-resolution scrubbing is that 
it may be impossible to discern low-granularity details 
while scrubbing. Although prior research indicates very 
little resolution is required to identify features in images, 
small text fonts for example would be unreadable. Although 
we do not believe it is common for users to be searching for 
such fine grain details while navigating videos, it should be 
noted that low-resolution scrubbing would not aid such a 
task. In our future work section, we discuss possible ways 
for which fine grain details could be represented. 

FUTURE WORK AND CONCLUSION 
There are a number of other techniques in the literature that 
aid video navigation, although most do not focus on the 
scrubbing interaction. Low-resolution scrubbing could 
potentially be used in combination with these techniques. 
For example, Pongnumkul et al.’s content-aware dynamic 
timeline control [19] could be used while scrubbing, so that 
instead of frames flashing quickly by, salient scenes could 
be displayed at a more digestible rate. Additionally, direct 
manipulation video navigation systems such as DRAGON 
[13] and DimP [7] could utilize a low-resolution overlay. 

Our implementation of Swift overlaid the low-resolution 
version of the video across the entire video player canvas. 
In contrast, the Netflix player displays multiple smaller 

var small_length = 800;
var large_length = 3999.929;
var large = document.getElementById("lmovie");
var small = document.getElementById("smovie");
document.getElementById("slider").max = small_length;

function startSlide() {
small.style.visibility = 'visible';

}

function Slide(newValue) {
small.currentTime = newValue;

}

function endSlide() {
var t = small.currentTime;
large.currentTime = ((t) * (largelength)) / small_length;

}

function Seeked() {
small.style.visibility = 'hidden';

}

<video STYLE="position:absolute;" id="lmovie" src="large.mp4"
onseeked="Seeked()" width="800" height="600" preload controls>

</video>

<video STYLE="position:absolute; visibility:hidden" id="smovie"
src="small.mp4" width="800" height="600" preload>

</video>

<input STYLE="position:absolute; TOP:608px; WIDTH:800px" type="range"
id="slider" value="0" onchange="Slide(this.value)"
onmousedown="startSlide()" onmouseup="endSlide()">



 

thumbnails centered on the canvas. We did not become 
aware of the Netflix player until our studies were 
completed, but it would be interesting in the future to 
compare these two approaches. Another alternative design 
worth exploring is displaying a small thumbnail just above 
the timeline, offset from the cursor position. Some players, 
such as Hulu, already do this when hovering over the 
timeline, but do not pre-cache these thumbnails. 

It would also be interesting to look at alternative low-data 
representations of the content while scrubbing, other than a 
literal down-sampling of the entire video. For example, the 
low resolution video could be a zoomed in view of the full 
resolution video, showing an area that has important details. 
Alternatively, metadata could be stored alongside the video 
and rendered instead of frames from the actual video. For 
example, when scrubbing through a sporting event, the 
current score or time remaining in the game could be 
overlaid. When scrubbing a movie or music video, the 
closed captions or lyrics could be displayed. 

While our implementation used a fixed 1MB file size, our 
analysis of the H.264 codec performance showed that 
representations could be made as small as 29KB. To 
support low speed connections, it could be useful to have 
multiple low-resolution files available, and possibly 
progressively download and use larger versions. 

Our study focused on scrubbing under uniform latency 
values while in practice, users may experience a range of 
latencies and this would be interesting to examine further. 

Finally, we feel low-resolution scrubbing is particularly 
suited for mobile devices, as it reduces both bandwidth and 
CPU load. Our implementation should work with minimal 
modification on HTML5 supported mobile devices, such as 
the iPad, and it would be interesting to evaluate such an 
implementation.  

To conclude, we have contributed empirical data demon-
strating the impact of latency on online-video navigation 
tasks, demonstrated that low-resolution real-time scrubbing 
can significantly improve performance, and provided a 
simple HTML5 compatible implementation. Given today’s 
prevalence of online streaming video sites, we feel these are 
important and timely contributions.  
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