
Practical Aspects of the DesignDEVS Simulation Environment

Rhys Goldstein, Simon Breslav, Azam Khan

Abstract
DesignDEVS is a simulation development environment based on the Discrete Event System Specification (DEVS) formal-
ism. This paper provides an in-depth overview of the software while focusing on the practical considerations influencing
its design. Practitioners who stand to benefit from systems engineering will approach formalism-based simulation tools
with little knowledge of the underlying theory. It is therefore important that theoretical principles, such as the separa-
tion of model and simulator, be emphasized by the user interface. Other practical aspects of DesignDEVS include the
simplicity of atomic model code, a focus on coupling for collaboration purposes, the enforcement of essential modeling
constraints, and a reliance on best practices in cases where strict enforcement might inconvenience users. In Design-
DEVS, an issue we refer to as the Insidious Pointer Problem is aggressively tackled through run-time error handling. By
contrast, the separation of output values from state transitions is left as a best practice for the sake of user convenience.
The design decisions explained in this paper are relevant to developers of other formalism-based tools seeking widespread
adoption of scalable modeling and simulation practices.

Keywords
Simulation environments, modeling formalisms, discrete-event simulation, error handling, encapsulation, best practices

1. Introduction

An overarching goal of the field of modeling and sim-
ulation is to encourage experts from a wide range of
disciplines to build communities of practice using scal-
able methods that will ultimately give rise to collabora-
tively authored predictive models of the most complex
natural and/or artificial systems that humans encounter
and/or design. Yet practitioners tend to stick with fa-
miliar programming techniques. They hesitate to ex-
plore alternative approaches that may or may not prove
beneficial once all practical considerations are taken into
account. The result is that systems engineering princi-
ples are rarely followed by the communities that have
the most to gain from them. Ad-hoc simulators are typ-
ically embedded within model-specific code, causing re-
dundancy and conflict when two or more models must
be integrated. Moreover, models are often implemented
with explicit references to one another, creating depen-
dencies that discourage the testing of new combinations
of models.

In seeking widespread adoption of scalable modeling
and simulation practices, considerable attention must be
paid to the practical aspects of theory-based simulation
tools. This paper describes the practical considerations
underlying DesignDEVS, a simulation development en-
vironment based on the Discrete Event System Specifi-
cation (DEVS) formalism1 and intended for collabora-

tive multi-disciplinary design and engineering modeling.
As outlined in previous work2, DesignDEVS reinforces
its users’ understanding of theoretical principles such as
model-simulator separation and delayed binding of mod-
els. The embedding of the Lua3 scripting language al-
lows the environment to be distributed in a small and
self-contained package, and eliminates the step of gener-
ating executable code from users’ models. In this paper
we provide examples which explain the design decisions
behind the software. One example illustrates how De-
signDEVS solves the Insidious Pointer Problem, a sit-
uation in which DEVS theory is compromised due to
the passing of data references among models. Other ex-
amples reveal why certain theoretical principles are not
strictly enforced, but merely encouraged through best
practices.

Section 2 reviews DEVS theory and DEVS-based sim-
ulation environments, while the five subsequent sections
each highlight a guideline concerning the design of such
tools. Many of these design principles are relevant to
various types of simulation environments, regardless of
the underlying formalism. The guidelines and their re-

Autodesk Research, Canada

Corresponding author:
Rhys Goldstein, Autodesk Research, 210 King Street East, Suite 500
Toronto, Ontario, Canada M5A 1J7
Email: rhys.goldstein@autodesk.com

1



2 Practical Aspects of the DesignDEVS Simulation Environment

Figure 1. The basic simulation procedure associated with the DEVS formalism.

lated sections are listed below, along with examples of
how DesignDEVS addresses each issue:

1. Theoretical principles should be emphasized in the
user interface, as this may be one of the users’ only
form of exposure to the theory. As illustrated in
Section 3, the DesignDEVS user interface empha-
sizes the separation of model and simulator.

2. Unnecessary complexity in the atomic model code
should kept to a minimum in order to avoid intro-
ducing additional barriers to the adoption of scal-
able methods. Section 4 explains how DesignDEVS
minimizes boilerplate code using extensions to the
Lua programming language.

3. Coupling is but one of many abstraction mecha-
nisms available to the user, and the manner in which
coupling is intended to be used will influence the de-
sign of the environment. As discussed in Section 5,
a model hierarchy in DesignDEVS is intended to re-
flect a functional decomposition of a system. This
intent goes hand-in-hand with a focus on collabo-
ration, as well as the principle of delayed binding
emphasized in the user interface.

4. Modeling constraints which uphold theoretical prin-
ciples should be enforced, provided they do not
place unbearable restrictions on users. Section 6
describes how metatables in Lua are used to detect

and ultimately communicate a wide range of run-
time errors.

5. In cases where the strict enforcement of convention
would inconvenience users, it may be preferable to
treat the convention as a best practice. A number of
best practices for DesignDEVS are discussed in Sec-
tion 7. The separation of output values from state
transitions is notable in that a deliberate decision
was made not to enforce the convention.

Past applications of DesignDEVS are presented in Sec-
tion 8, while Section 9 concludes general advice on how
formalism-based tools can address both practical consid-
erations and the principles of the underlying theory.

2. Background and related work

Computer simulations are actively developed across a
wide range of scientific and engineering domains. A va-
riety of programming techniques are employed in these
efforts, including acausal modeling as popularized by
Modelica4, and block-diagram editing as realized by
Simulink5 and Ptolemy II6. However many domain ex-
perts use traditional imperative programming as sup-
ported by C, C++, Java, Python, MATLAB, and even
Fortran in many cases. The DEVS formalism offers a
promising avenue for these practitioners to adopt scal-
able modeling and simulation practices. First, DEVS is
among the most general of modeling formalisms. It has



Goldstein et al. 3

DEVS-Based
Environment

DEVS
Variant

Modeling
Language

Objective

PowerDEVS Classic DEVS C++
Promote DEVS-based quantized integrators to combine
continuous and discrete models using block-diagram-like
compositions similar to Simulink, Ptolemy II.

DEVS-Suite Parallel DEVS Java
Teach a systems approach to the modeling of computer
networks and other systems, with animations of the
simulation process superimposed on the model.

CoSMoS Parallel DEVS Java
Build upon the DEVS-Suite simulator with new visual
modeling interfaces and a framework for categorizing and
managing models and model families.

CD++ Builder
Classic DEVS
+ Cell-DEVS

C++
Reduce barriers for non-developer users with a
state-diagram-like editor and other graphical modeling tools
within an extensible Eclipse-based framework.

SimStudio Classic DEVS Java
Establish a multi-layer platform to support web-based
collaborative authoring of simulation models.

VLE
Parallel DEVS
+ extensions

C++
Support heterogeneous model development and
experimentation through a broad set of DEVS extensions
and environment plug-ins.

DesignDEVS Classic DEVS Lua
Teach DEVS principles via modeling constraints enforced at
run-time, while exploring best practices that account for
scalability and user experience.

Table 1. A list of DEVS-based simulation environments indicating the underlying theory, programming language, and objective.

been shown that a multitude of other types of models
can be formally mapped into DEVS models, though the
reverse is not necessarily true7. Although the formal-
ism is most often applied to artificial systems, progress
has been made toward modeling the physics of motion
in the context of particle systems8 and fluid dynamics9.
Second, DEVS lends itself well to the imperative style
of programming familiar to virtually all scientists and
engineers. Thus even when graphical features are in-
corporated into a DEVS-based simulation environment,
the textual programming tasks that remain tend to build
upon a user’s preexisting knowledge.

At the core of the formalism are the seven elements of
DEVS atomic models. Essentially any time-based simu-
lation model can be specified by defining these elements.

〈X,Y, S, δext , δint , λ, ta〉

Here X, Y , and S are mathematical sets that restrict a
model’s allowable input, output, and state values, while
δext , δint , λ, and ta are mathematical functions invoked
by a reusable simulator. A DEVS-based simulator must
implement a procedure similar to that illustrated in Fig-
ure 1.

As seen in Figure 1, a simulation begins with the ini-
tialization of the current time t and state s. The next
step is to obtain the time text of the next input, and the
time tint of the next internally planned event. Note that
tint is derived from the model’s time advance function
ta. Depending on tint and text , one of three things may
occur. First, an input x may be received. As shown

in the first branch of the flow chart, the model’s exter-
nal transition function δext is invoked to obtain a new
state from the old state, the elapsed duration, and the
input itself. The time t then advances and the process
repeats. Second, an internal event may occur. As seen
in the second branch of Figure 1, this entails the pro-
duction of an output using the function λ, followed by a
state change determined by the internal transition func-
tion δint . Again, time advances and the process repeats.
The third possibility is that the simulation ends.

An atomic model can be assigned to a component in a
coupled model. A coupled model can also be assigned to
a component in an encompassing coupled model, forming
a model hierarchy. This coupling mechanism helps one
organize complex models. A comprehensive explanation
of the formalism, including definitions of every math-
ematical element, an abstract simulator, and a formal
description of coupled models, can be found in Theory
of Modeling and Simulation by Zeigler et al. 1 .

Numerous simulation development environments are
available which provide both textual and graphical fea-
tures for developing, debugging10, and experimenting
with simulation models. Among the simulation envi-
ronments most dedicated to DEVS theory are those
listed in Table 1: PowerDEVS11, DEVS-Suite12, CoS-
MoS13, CD++ Builder14, SimStudio15, and VLE16 (see
Franceschini et al. 17 for a more comprehensive list). As
indicated in the table, each tool is based on either the
original 1970s version of the theory, Classic DEVS, or
a 1990s variant called Parallel DEVS18, though various



4 Practical Aspects of the DesignDEVS Simulation Environment

(a) A horizontal divider bar seperates modeling features from
simulation features.

(b) Vertical divider bars separate model/simulation organiza-
tional features from model/simulation viewing and editing fea-
tures.

Figure 2. The basic layout of the DesignDEVS user interface reflects (a) the DEVS principle of model-simulator separation, and
(b) the organizational structure of users’ projects.

extensions may be supported as well. Each environment
handles atomic models implemented in a textual pro-
gramming language, usually C++ or Java. All of these
tools offer a node-link diagram editor for defining cou-
pled models.

What distinguishes each simulation environment is a
set of priorities and associated features, which we sum-
marize with brief “Objective” statements in Table 1.
Each tool will promote the concepts it most emphasizes,
such as the quantization of state in the case of Pow-
erDEVS, the management of models in the case of CoS-
MoS, or the integration of different types of graphical
models in the case of CD++ Builder. A notable feature
of CD++ Builder and similar tools is a state-diagram-
like editor that provides an alternative to imperative
programming for atomic models. Graphical models rep-
resent one strategy for promoting DEVS adoption. The
DesignDEVS environment discussed in this paper follows
a different strategy, attempting to take full advantage of
domain experts’ familiarity with procedural code.

Some environments use DEVS, but feature it less
prominently than those in Table 1. The AToM3 frame-
work19 exemplifies multi-paradigm modeling20, where
DEVS is regarded as a means of integrating models de-
veloped according to a diverse set of conventions. James
II21 also combines DEVS with other approaches. MS4
Me22 is based on DEVS, but purposely minimizes its
users’ perceived exposure to systems theory by provid-
ing alternative modeling options such as sequence dia-
grams and natural language documents. DesignDEVS
has more in common with the simulation environments
in Table 1. As illustrated in Section 3, elements of DEVS
theory are prominently exhibited in the user interface.
However, as with similar tools, the emphasis on DEVS
is not meant to downplay the importance of supporting

modeling strategies seen as closer to the users’ domains
of expertise.

3. DesignDEVS user interface

DesignDEVS features a user interface consisting of four
main quadrants separated by three adjustable divider
bars. As shown in Figure 2a, the horizontal divider bar
partitions the interface into an upper section dedicated
to models, and a lower section dedicate to simulation
runs based on those models. This structure was intro-
duced with the intent of emphasizing a key principle of
modeling formalisms in general: the separation of model
and simulator1. All DEVS-based simulation environ-
ments feature this separation at a semantic level, but
the visual partitioning of model and simulation elements
reinforces the concept.

As indicated in Figure 2b, the two vertical divider bars
separate project organization features from viewing and
editing components. The organizational features on the
left include a list of models (top left), a list of simula-
tions (bottom left), and buttons to create, open, copy,
delete, and reorder models or simulations. Reordering is
an important operation in DesignDEVS, both from an
aesthetic and functional perspective. For aesthetic rea-
sons, a user may want to reorder models or simulations
in order to cluster those that are similar to one another.
From a functional perspective, it is sometimes necessary
to reorder models in response to a DesignDEVS rule that
any model A can only be assigned to a component of an-
other model B if A appears above B in the model list.
This rule prevents circular dependencies. In particular,
it avoids a situation in which A and B are coupled mod-
els that include instances of one another, as both model
hierarchies would then be infinitely deep.



Goldstein et al. 5

Figure 3. A screenshot of the DesignDEVS user interface.

The viewing and editing components on the right of
the vertical divider bars are grouped into tabs. In the
modeling section, the tabs available depend on the type
of model selected: atomic or coupled. Coupled models
are associated with tabs named Main, Parameters & Statis-

tics, Initialization, Composition, and Finalization. The Com-

position tab is selected in Figure 3, revealing the structure
of the model. Atomic models are associated with tabs
named Main, Parameters & Statistics, Constant Initialization,
State Initialization, Time Advance, External Transition, Inter-

nal Transition, and Finalization. The Internal Transition tab
is selected in Figure 4, revealing state transition code for
an atomic model representing the classic Game of Life.

The simulations below the horizontal divider bar have
a many-to-one relationship with the models. Although
the modeling tabs depend on whether the selected model
is atomic or coupled, the simulation viewing and edit-
ing tabs at the bottom right are the same regardless of
whether the selected simulation is based on an atomic or
coupled model. The fact that atomic and coupled mod-
els share a common interface is consistent with both the
closure under coupling property of modeling and simula-
tion theory1 and the Composite Design Pattern familiar
to software engineers23.

The simulation tabs include Main, Parameters & Statis-

tics, Messages, Visualization, and Options. The Messages

tab, shown in at the bottom right of Figure 3, allows the
user to edit input messages prior to executing the simu-
lation run. To insert an input message, the user selects
a point in simulated time by clicking on the axis at the
bottom, chooses an input port from a pop-up menu, then
types in a message value. Multiple input messages can
be created for the same simulated time point. When the

Figure 4. A transition function populated with Lua code for a
classic Game of Life model (top), and a 2D visualization of the
results (bottom).

simulation is run, the user-defined input messages are
received by the model at the specified points in simu-
lated time, preserving the left-to-right order depicted in
the timeline. The Messages tab then displays both the
input messages and the resulting output messages. The
Visualization tab, seen at the bottom of Figure 4, supports
2D animations of simulation results. To use the feature,
one of the model’s ports must periodically output a 2D
array of {red, green, blue} values.

4. Atomic model development

In a typical DEVS-based simulation project, the major-
ity of the user’s code will be found in the atomic models.
To encourage the adoption of the formalism, it is impor-
tant that DEVS-based tools address the barriers facing
domain experts who must learn to organize and write
atomic model code. The first barrier is the new user’s
unfamiliarity with the various atomic model functions
and the rules that govern how they are invoked by the
simulator. DesignDEVS addresses this lack of familiar-
ity by providing the simulation procedure diagram in
Figure 5, which is accessible via the Help menu. The il-
lustration is essentially an informal version of the flow
chart in Figure 1. The DesignDEVS version uses labels



6 Practical Aspects of the DesignDEVS Simulation Environment

Figure 5. The DesignDEVS simulation procedure as illustrated
in the Help menu, depicting the flow of execution from one tab
to the next.

that appear in the user interface (e.g. Constant Initializa-

tion, State Initialization, etc.), as well as snippets of code
that may be useful in the corresponding tabs.

Another barrier facing domain experts is the inconve-
nience of reading and writing boilerplate code. Design-
DEVS strives to support rapid prototyping by keeping
atomic model focused, to the greatest extent possible, on
the user’s domain. To illustrate, Table 2 lists the source
code for three basic models implemented in a mere 2,
4, or 18 lines. The 2-line Greeting Generator performs the
same operation every time step. In this case, the re-
peated operation is the output of the string "Hello", and
the time step is 8 minutes of simulated time. The 4-line
Counting Generator incorporates a state variable (n) and a
state transition (n = n + 1). The 18-line Ideal Generator

demonstrates input messages. In this model, an input
message is passed to the output as quickly as possible.

To help new users, the models in Table 2 and sev-
eral others are included in a Generator Processor Tutorial
project packaged with the software. This sample project
features a list of models, and each model has step-by-
step tutorial instructions written into its Description field
as shown in Figure 6. To promote documentation in
general, all models and simulations have this field.

The minimization of unnecessary boilerplate code is
enabled in large part by the embedding of Lua as the
primary programming language for model development.
Lua is a high-performing yet lightweight scripting lan-
guage that has achieved popularity within the computer
game industry. Among the features that make Lua sim-
ple is the fact that it provides only one data structure:
the table. Tables are collections of key-value pairs that
are passed by reference and monitored by a garbage col-
lection algorithm. Whereas most modern languages have
separate data types for sequences (i.e. arrays or vectors)

Figure 6. A model’s description field can be used for a wide
range of documentation purposes, including offering users a tu-
torial as in the Generator Processor Tutorial sample project.

and records (i.e. tuples or structs), Lua relies on ta-
bles with integer- or string-valued keys, and has built-in
operations dedicated to these types of tables.

In Lua, when a new variable is created with an assign-
ment statement such as x = 5, the underlying effect is to
add the key-value pair ("x", 5) to a special table called
the environment table (named ENV in Lua 5.2, the ver-
sion used by DesignDEVS). DesignDEVS modifies en-
vironment tables such that newly added keys become
state variables of the DEVS model instance. Of course,
a variable that is local to a particular event should not be
treated as a state variable, and must not persist between
events. Fortunately, these local variables are inherently
supported by Lua’s built-in local keyword.

In addition to reinterpreting variable assignments, De-
signDEVS expands environment tables by adding the
modeling-specific functions in Table 3. The duration

function creates a time value from a multiplier and a
unit (e.g. duration(8, "minutes")). With a single string
argument, the duration function can produce a single
unit of the simulation’s time precision ("minimum"), the
maximum representable duration ("maximum"), or an in-
finite duration ("forever"). Other key functions include
input, used in the External Transition tab to access re-
ceived values; output used in the Internal Transition tab to
send values; and elapsed, used where needed to obtain
the time elapsed since the previous event. The input

and output functions rely on the port names specified
in the Main tab. Another function worth mentioning is
runscript, which imports custom Lua scripts from the
project folder. This is helpful for managing any atomic



Goldstein et al. 7

Model State
Initialization

Time Advance External Transition Internal Transition

Greeting
Generator
(2 lines)

return duration(8, "minutes") output("out", "Hello")

Counting
Generator
(4 lines)

n = 1 return duration(8, "minutes")
output("out", n)
n = n + 1

Ideal
Processor
(18 lines)

item = nil
inputCount = 0
outputCount = 0

local dt r =
duration("forever")

if not (item == nil) then
dt r = duration(0)

end
return dt r

local port, value = input()
if port == "in" then

item = value
inputCount = inputCount + 1

else
error("no port named ’" +

port + "’")
end

output("out", item)
item = nil
outputCount =

outputCount + 1

Table 2. Complete source code for three simple DesignDEVS models. The line counts treat multi-line instructions as one line.

Function Description

duration Construct a time duration value

tostring Convert a value (incl. table) to a string

print Print arguments on the console

const Make a table permanently read-only

copy Make a deep copy of a table

runscript Load a .lua file from the project folder

error Abort with an error message

input Input a (port, value) pair

output Output a (port, value) pair

elapsed Get time elapsed since previous event

total elapsed Get time elapsed since simulation start

remaining Get time remaining until planned event

get parameter Get parameter value

set parameter Set component parameter value

get statistic Get component statistic value

set statistic Set statistic value

Table 3. Modeling-specific functions.

models that do become complex despite the simplicity
of the Lua programming language.

5. Coupled model development

According to DEVS theory, coupled models do not ex-
pand the set of systems that can be represented. In fact,
the closure-under-coupling property assures us that for
any DEVS coupled model, a DEVS atomic model can be
defined with equivalent behavior1. The role of coupling
is to provide an abstraction mechanism by which com-
plex models can be defined as hierarchies of simpler mod-
els. This eases the development of complex simulations
by helping a single user keep his/her code organized, or
by helping a team of users collaborate. DesignDEVS
emphasizes the potential for coupled models to support
collaborative modeling efforts. This influences the types
of model hierarchies the tool is intended to support.

Broadly speaking, there are two main approaches for
decomposing a system into a hierarchy of models: the
topological approach and the functional approach24. In
the domain of architectural design, as illustrated at the
top of Figure 7, a topological approach decomposes a
system into interacting parts such as a building’s walls,
roof, windows, interior zones, and individual occupants.
Zimmermann 25 simulates buildings using strictly this
type of system decomposition. The functional approach
is illustrated at the bottom of Figure 7. Here a system
is decomposed into aspects such as building thermody-
namics or occupant behavior, which typically lack well-
defined spatial boundaries.

Whereas PowerDEVS11 and many other simulation
environments emphasize a topological approach to sys-
tem decomposition, DesignDEVS promotes the func-
tional alternative. Topological decompositions are ar-
guably more intuitive, and have an advantage in that
they promote greater numbers of simpler atomic models.
Yet based on our observations, a domain expert’s area of
expertise tends to align with one aspect of a system. For
example, there are experts in whole-building thermody-
namics and experts in occupant behavior, yet it would
be rare to find an expert dedicated to modeling all as-
pects of windows, both from thermal and occupant usage
perspectives. We envision scenarios where collaborating
experts each model one functional aspect of a building,
and the models are later integrated using an encompass-
ing coupled model. Because the component models are
developed independently of one another, users must un-
derstand and adhere to the principle of delayed binding.

In DesignDEVS, delayed binding is emphasized in the
node-link editor for coupled models. DEVS models com-
municate via messages without explicitly referring to
one another, allowing models with similar interfaces to
be interchanged. To convey this notion, a node is first
drawn, then named, and finally associated with a par-
ticular model. The model can be replaced later without
deleting the node.



8 Practical Aspects of the DesignDEVS Simulation Environment

Figure 7. Illustration of models based on topological (top) and
functional (bottom) approaches to system decomposition.

To minimize the risk of important features remaining
hidden from users, DesignDEVS places nearly all func-
tionality close to the context of their use instead of in the
menu bar at the top. The coupled model editor follows
this philosophy to an extreme degree. All node-link edit-
ing functions are embedded in the diagram, consistent
with the human-computer interaction principle of direct
manipulation26. The functions are revealed in a tooltip
depending on the cursor location. The indicated action
is executed simply by clicking; there is no drag-and-drop
interaction and no right-click menu.

When the cursor is within the coupled model, regions
of the background are filled with diagonal stripes as
shown in Figures 8 and 9. Clicking on a blue stripe
will expand the model vertically, as in Figure 8 (top), or
horizontally, depending on whether the cursor is closer
to a horizontal or vertical grid line. Similarly, clicking
on a red stripe contracts the model. Some grid cells are
solid green, indicating they are sufficiently far from ex-
isting boundaries to place a node. Hovering over a green
cell shows where a node will be placed upon clicking, as
in Figure 8 (bottom).

Once a node is created, red text indicates that it needs
a name and model. The user clicks on the red text, types
an arbitrary name for the node, and assigns a model to
the node by selecting from a pop-up menu. As men-

Figure 8. Coupled model expansion and node insertion.

tioned in Section 3, a model can only be assigned to
a node if the model appears above the coupled model
in the list shown at the top left of Figure 3. The user
can also re-order nodes by clicking on an integer in the
top left corner. Similar to many other Classic DEVS
simulators, this ordering of nodes is used in lieu of a
full-fledged Select function to sequentialize simultane-
ous events. By default, nodes are ordered according to
the sequence in which they were created. Nodes can be
deleted or moved by clicking on either the red or blue
square that appears at the top-left or bottom-right cor-
ner when hovering. It is never possible to produce over-
lapping nodes or even adjacent nodes that might conceal
their surrounding links.

Links indicate how messages flow within a coupled
model. To insert a link, one first clicks on a green rect-
angle on the boundary of a node or the coupled model
itself. With the origin of the link determined, green rect-
angles appear throughout the diagram at every possible
link destination. DEVS theory disallows links from a
component to itself, so the green rectangles do not ap-
pear around the node of origin. Once a link is placed,
the ports at either end point can be assigned. Figure 9
illustrates the placement of a link and the final model as
a result of the manipulations in both Figures 8 and 9.

Although coupling is the most prominent abstraction
technique in a DEVS-based tool, it is not the only form



Goldstein et al. 9

Figure 9. Coupled model link insertion.

of abstraction at the user’s disposal. In particular, ab-
stractions provided by the underlying programming lan-
guage remain useful. With DesignDEVS, the intent is
to use functional decompositions and coupling to pro-
mote collaboration among domain experts. Users must
still be encouraged to separate chunks of procedural code
into functions, which can be defined in the Constant Ini-

tialization section of an atomic model or in separate files
imported using runscript.

6. Modeling constraints

The DEVS formalism has a number of theoretical con-
straints which follow from its mathematical nature. For
example, a pre-transition state s is never modified, but
rather replaced by a post-transition state s′. DEVS
tools differ in how such constraints are enforced. SC-
DEVS27, one of the many non-graphical DEVS-based
simulation libraries, is particularly loyal to the theory
in that the current state (of C++ type const State&)
is immutable and the new state is a distinct object. If
the state requires a considerable amount of memory, the
more object-oriented approach of VLE and several other
DEVS-based simulators is more computationally effi-
cient. In VLE, state variables can be directly modified
by state transition member functions of model-specific

C++ classes. Member functions corresponding to the
DEVS formalism’s time advance and output functions
are declared const to prevent state changes, consistent
with the theory. Similar constraints have been enforced
using custom modeling notations28. Nevertheless, few
DEVS-based simulators fully protect the user from the-
oretical inconsistencies caused by the use of data ref-
erences, or pointers. DesignDEVS makes use of Lua’s
extension mechanisms to address the Insidious Pointer
Problem and other issues while allowing informative er-
ror messages to be delivered to users.

6.1. The Insidious Pointer Problem

As Nutaro 29 writes, an “insidious problem [our em-
phasis] with exchanging pointers is that the output object
is shared by its producer and all of its recipients. [...] In
effect, the shared object becomes a hidden channel for
communication, and its effects can be unpredictable, and
generally undesirable, as the root cause can be difficult to
pin down.” Based on Nutaro’s description, we call this
the Insidious Pointer Problem.

The Insidious Pointer Problem can be regarded as a
set of four types of scenarios, each of which contradicts
the principle that model instances should interact only
through their inputs and outputs. These four basic cases
are described below. Components A, B, and C are hy-
pothetical model instances in the context of an encom-
passing coupled model.

1. Component A retains one copy of a pointer, and
sends another copy to Component B. Component B
then modifies the data referenced by the pointer.
This operation in B changes the state of A, even if
there is no output sent from B to A.

2. Component A retains one copy of a pointer, and
sends another copy to Component B. Component B
never modifies the data referenced by the pointer,
but merely retains a copy of the pointer. At a later
stage, the data referenced by the pointer is modified
by A. This operation in A changes the state of B,
even if there is no additional output sent from A to
B to communicate the change.

3. Component A sends a pointer to Components B and
C, without necessarily retaining a copy. Compo-
nent B then modifies the data referenced by the
pointer. This operation in B may change the in-
formation that will be received by C from A.

4. Component A sends a pointer to Components B and
C, without necessarily retaining a copy. Compo-
nent B never modifies the data referenced by the
pointer, but merely retains a copy of the pointer.
At a later stage, the data referenced by the pointer
is modified by C. This operation in C changes the



10 Practical Aspects of the DesignDEVS Simulation Environment

state of B, even if there is never any output sent
from C to B.

Problems associated with the exchange of pointers are
acknowledged in the testing framework of Li et al. 30 ,
who investigate two simulators and find that both fail
at least one test related to Case 4 above.

One solution to the Insidious Pointer Problem is to
simply prohibit the exchange of pointers. This risks
frustrating a user who wants to output a large numeri-
cal array or other memory-intensive data structure while
avoiding unnecessary memory allocation and copy oper-
ations. A more practical approach is to permit the ex-
change of pointers while preventing their contents from
being modified. In C++, this can be achieved using the
const type qualifier, though there are three important
points to note about this approach. First, the qualifier
must be applied to the contents of the pointer (i.e. const

T *), not the pointer itself (i.e. T * const). Second, to
address Case 2 (in which the receiving component merely
copies the pointer without modifying its contents), the
pointer type itself must be non-copyable. Third, the
passing of an invalid pointer type should be prohib-
ited by the framework, not the modeler’s own code. A
promising way to address all three points may be to use
template meta programming to restrict all exchanged
pointers to a custom pointer type that references only
constant data and provides no publicly accessible copy
operations. After examining a number of C++ DEVS
libraries including Adevs31, CD++32, and DEVS++33,
we have not clearly seen a comprehensive solution of this
nature, though VLE best handles this issue.

The DesignDEVS approach to pointers, described in
Section 6.2 and illustrated in Section 6.3, is suitable for
dynamically typed languages, which tend to lack C-like
const type qualifiers. Our solution strives to allow the
contents of exchanged pointers to be modified in cases
where it is safe to do so, and delivers a descriptive error
message when a pointer assignment or data modification
may influence other components.

6.2. Run-time enforcement of constraints

DesignDEVS promotes consistency with DEVS theory
in large part through the run-time detection of a broad
range of errors, including but not limited to pointer-
related errors. Among the simplest errors are those in
which a Table 3 function is called in an inappropriate
context. For example, if input() appears in the In-

ternal Transition tab, the error "attempt to call ’input’

outside of External Transition" is produced. Clicking
the error message in the Console selects the relevant tab
and highlights the offending line of code. To detect the
error, input is implemented as a closure (as in functional
programming), that captures an instance-specific table,
which in turn keeps track of what code is being executed.

Other errors are detected through the use of metatables,
described below. The entire approach is comprehensive
in that no combination of value and pointer assignments
should result in undetected side effects that contradict
the mathematics of the formalism.

Lua differs from C++ in that instead of declaring vari-
ables const, one can dynamically control whether a ta-
ble is constant or mutable. More generally, one can at-
tach or modify metatables to customize the language in a
number of ways, including but not limited to controlling
“constness”.

The simplest errors are detected by metatables
attached to environment tables. These metatables are
aware of what part of a model is being executed. If
a state variable is modified in the External Transition

or Internal Transition tab, there is no error; but if one
attempts to change the variable in the Time Advance tab,
a metatable triggers the error "attempt to reassign a

state variable in Time Advance (state changes occur

in External and Internal Transitions)".

To detect not just a few clearcut errors such as those
above, but rather the vast majority of operations that
contradict DEVS theory in subtle ways, great attention
is paid to the metatables attached to tables defined by
the modeler. Recall that in Lua, these user-defined ta-
bles are passed by reference and include all sequences
and records as well as general collections of key-value
pairs. Therefore, careful handling of these tables ad-
dresses essentially every data structure and every pointer
encountered in a typical DesignDEVS model. The first
step is to assign each table one of following types: raw,
regular, state, external regular, external state, acquired
state, and constant. Tables are converted from one type
to another depending on the context. Certain operations
are prohibited based on the context and the table type.

A raw table is a basic Lua table. If a DesignDEVS-
specific operation is performed on a raw table, it is
converted into a regular table. The conversion process
triggers an error if the table contains a key value that
is another table, a function, or an object that cannot
be printed. Importantly, circular references trigger the
error "attempt to record or transmit a table with

a circular reference (simulation models require

tables that do not reference themselves, not even

indirectly)".

If a regular table is assigned to a state variable or
a table within a state variable, it is converted into
a state table. If a raw table is assigned in a similar
manner, it is silently converted into a regular table
before becoming a state table. Altering a state table
fails if done in an inappropriate context (e.g. "attempt

to modify a state variable table in Time Advance)").
This protects not only state variables from undesirable
modifications, but also objects referenced by state
variables. A related constraint is that a state table



Goldstein et al. 11

may be referenced at most once in a model’s state,
regardless of how deeply nested it occurs within the
model’s state variables. A second reference triggers
an error ("attempt to reference a modifiable table

in multiple state variables or in multiple places

within a single state variable"), preventing a change
within one state variable from affecting another. If a
state table contains a state table, and the former is
altered such that it no longer contains the latter, the
latter is converted back to a regular table.

Three types of tables occur only in input messages
received during an External Transition. Their collective
purpose is to solve the Insidious Pointer Problem
whereby a received data reference—a Lua table, in our
case—creates a “hidden channel for communication”29.
When a regular table is received, it becomes an external
regular table which, to avoid influencing other recip-
ients, cannot be altered ("attempt to modify a table

just received from another model instance"). This
addresses Case 1 and Case 3 of Section 6.1. However,
an external regular table can be stored in the recipient’s
state. The table then becomes an acquired state table,
and can be modified in a future External Transition or
Internal Transition. If a state table or acquired state table
is received in a message, it is an external state table. To
address Case 1, such tables cannot be altered ("attempt
to modify a state variable owned by another model

instance"). To address Case 2, they cannot be stored
("attempt to reference a modifiable table in state

variables of multiple model instances").

Importantly, when an external regular table is ac-
quired by one component and becomes an acquired state
table, it is regarded by all subsequent receiving compo-
nents as an external state table. This means that a table
can only be acquired by at most one receiver, address-
ing Case 4. The policy relies on the fact DesignDEVS
processes all events in sequence. The external events as-
sociated with a single message are executed according
to the user-defined ordering of components—the same
ordering used to resolve simultaneous internal events. A
more general approach would be to use a full-fledged
Select function to order both types of events.

State table acquisition complies with DEVS theory in
the sense that, if it occurs error-free in a DesignDEVS
model, the components influence one another only via
messages and the message values are unaffected. Al-
though one receiving component can influence another
by converting the received table into a state table, this
interaction will either (a) have no effect, or (b) invalidate
the model by producing an error. Nevertheless, transfer-
ring the ownership of a table should be regarded as an
advanced optimization technique, and used sparingly.

Any table can be converted to a constant table using
the const function. Once made constant, a table can
never be altered (though it can be copied, and the copy

can be modified). Multiple references to constant tables
can exist both within a single model instance and among
communicating instances.

If desired, the user can avoid memory sharing by copy-
ing a table using the copy function. Some DEVS tools
address the Insidious Pointer Problem by performing
such deep copies by default. For sake of computational
efficiency, DesignDEVS accommodates a variety of com-
munication patterns involving pointers, yet still circum-
vents their problematic effects. The solution is unique,
and provides a means to inform users about the con-
straints being enforced.

6.3. Illustration of run-time enforcement

Figure 10 illustrates how the various types of tables col-
lectively address the Insidious Pointer Problem. The
diagram provides a simplified representation of the two
hypothetical atomic models assigned to Components A
and B. The lines of code shown are not necessarily con-
secutive and would not necessarily appear in the same
section of either model. The image is merely intended
to show the types of operations that trigger table con-
versions or table-related errors.

Let us start at the top of Figure 10, in Component A.
Line 1 is a basic Lua instruction that creates a raw ta-
ble and stores it in the variable X. Because DesignDEVS
overrides Lua’s print function, Line 2 converts the raw
table into a regular table. Here an error would be gen-
erated if the table does not meet certain requirements,
such as the absence of circular references. Line 3 adds
the regular table to the state variable state var 1. This
causes it to be converted into a state table.

To understand how Cases 1 and 2 of the Insidious
Pointer Problem are handled, consider the first output
in Figure 10. It is received by Component B on Line 4.
Upon receipt, the state table is treated as an external
state table. As illustrated on Line 5, an attempt to
modify an external state table triggers an error. Other-
wise Component B would alter the state of Component A
in contradiction with DEVS theory (see Case 1 of Sec-
tion 6.1). Also, as seen on Line 6, Component B cannot
store the external state table as doing so would allow its
own state to be modified by Component A without any
subsequent message (Case 2).

To observe the handling of Cases 3 and 4 of the In-
sidious Pointer Problem, we shift our attention back to
Component A. On Line 7 the state table is removed from
the state, and is therefore converted back into a regular
table. Let us assume that the variable X exists and main-
tains a reference to this table. When the regular table is
received by Component B on Line 8, it becomes an ex-
ternal regular table. As indicated on Line 9, an external
regular table may not be modified as such a change could
influence other recipients of the same output (Case 3).
For example, if the same output were subsequently re-



12 Practical Aspects of the DesignDEVS Simulation Environment

Figure 10. An illustration of various atomic model operations, the types of tables they produce, and how the type of table restricts
further operations as a means of addressing the Insidious Pointer Problem.

ceived by a Component C (not shown), then Line 9 in
B would threaten to influence C. Although an external
regular table may not be modified, it can be stored as
shown on Line 10. In that case it is converted into an
acquired state table. An acquired state table also cannot
be modified; however, at the end of the External Transi-

tion it will be converted into a state table, allowing for
subsequent modifications. Because only one component
can acquire a table, these future modifications will not
affect other components (Case 4). For example, if the
same output were subsequently received by a Compo-
nent C, then C would regard the table as an external
state table that can be neither modified nor stored.

Finally, at the bottom of Figure 10, Line 11 explic-
itly converts the table into a constant table. The table
is thereafter permitted to be referenced in any context,
but never modified. A constant table can be exchanged
freely among components, and stored in multiple state
variables, without triggering errors.

7. Best practices

In any theory-based simulation tool, practical consider-
ations such as user convenience and computational ef-
ficiency sometimes conflict with the underlying formal-
ism34. Accordingly, we find that some DEVS principles
are appropriate to enforce through constraints such as
those in Section 6, whereas other principles can be en-
couraged by defining and communicating a set of best
practices. An analogy can be made with object-oriented
programming. It is widely acknowledged that an object’s

data should be encapsulated by declaring member vari-
ables private35. Yet language designers do not enforce
this rule. In most popular object-oriented languages,
member variables may be declared public, though soft-
ware engineers frequently declare them private in com-
pliance with a well-established best practice. Similar
types of best practices must also be considered in a mod-
eling and simulation context as an alternative to strict
enforcement.

7.1. Output function

According to DEVS theory, the output function λ and
the internal transition function δint are invoked in se-
quence; their effects are considered to be distinct, but
they occur at the same point in simulated time. This
invocation sequence can be adhered to in DesignDEVS,
but only at the user’s discretion. DesignDEVS absorbs
the output function into the Internal Transition, and ac-
commodates the production of more than one output in
a single state transition.

The motivation for merging the implementations of
λ and δint is that the two functions often involve same
intermediate calculations. If the functions are kept sep-
arate, as they are in most existing DEVS-based tools,
these calculations are likely to be performed twice in-
stead of once. Alternatively, the software can allow the
output function to make state changes, but this also con-
tradicts DEVS theory and may confuse users who real-
ize that they can move code between the two functions
without changing simulation results.



Goldstein et al. 13

It is important to note that the theoretical behavior of
a Classic DEVS model is unaffected by the co-evaluation
of λ and δint (in contrast with multiple outputs, which
does introduce a behavioral discrepancy with the the-
ory). There is no possibility of an intervening event that
(a) is processed between λ and δint , and (b) has the po-
tential to causally affect δint . This observation is partly
due to the rule that no component can send a message
directly to itself, and partly a result of the fact the the-
ory does not account for casual relationships introduced
by technological side effects.

We have observed that one important class of model is
particularly troublesome to implement with separated λ
and δint functions: numerical integrators in which out-
puts coincide with integration steps. In such models,
it is necessary to perform an integration step in order
to output the next value; the same value must then be
stored in the model’s state to be used in future integra-
tion steps. The simplest example is the classic Ramp
model of Theory of Modeling and Simulation 1, chap-
ter 4, which integrates a piecewise constant function.
The integration step (position + σ · input) appears first
in λ to supply the output value, and again in δint to
be stored. This suggests an implementation in which
the calculation is unnecessarily repeated. Complex nu-
merical integrators involving thousands of equations can
be found in a multitude of scientific disciplines, and are
among the most computationally demanding simulation
models. The experts who develop such models are un-
likely to appreciate the theoretical benefits of a separate
λ function, but they will notice the practical costs. To
achieve widespread adoption, DEVS must be regarded
as an efficient implementation technique for nearly any
time-based simulation method.

Whereas the absorption of λ is motivated by efficiency
concerns, the reason DesignDEVS permits multiple out-
puts is simply a matter of user convenience. If it is nec-
essary to output one value on one port, followed im-
mediately by another value on a different port, Classic
DEVS requires the model to be designed such that two
events are guaranteed to occur back-to-back. This re-
quires a certain amount of technical code to be added
to multiple atomic model functions. It is much easier to
write output(...) multiple times in the Internal Transi-

tion, and DesignDEVS provides this option. The outputs
are transmitted such that each is received by a separate
External Transition event, and the order of the outputs
determines the order of the receiving events.

Care must be taken not to frustrate domain experts to
the point that they abandon formalism-based tools and
revert to ad-hoc simulation development approaches. At
the same time, such tools must promote theoretical prin-
ciples to enough of an extent that they are worth adopt-
ing in the first place. Furthermore, the tools must be
suitable for formal methods experts and students, users

who may want to respect and/or learn theory-based con-
ventions. We therefore propose a best practice intended
for experienced and aspiring DEVS experts.

1. Formulate the atomic model specification accord-
ing to Classic DEVS conventions. In mathematical
form, the separation of λ and δint is not troubling
from an efficiency standpoint. The use of a distinct
λ simplifies mathematical analyses such as a proof
that an atomic model is formally legitimate. Legit-
imacy means that in the absence of inputs, simu-
lated time necessarily advances towards ∞ without
stopping or converging1. Note that the formula for
legitimacy, shown below, depends on δint but not λ.

∞∑
i=0

ta(si) =∞ for all s0 ∈ S

where for i > 0, si = δint(si−1)

2. Still adhering to Classic DEVS, transform the spec-
ification such that operations that would be com-
putationally expensive are only invoked once. This
may require that a succession of two or more in-
ternal transitions are triggered at the same point
in simulated time. Ideally one would prove that the
original and optimized specifications are equivalent.

3. In DesignDEVS, draw a horizontal line through the
Internal Transition. In Lua, the token -- initiates a
comment. It follows that a horizontal line of hy-
phens (---------------) is itself a comment, and
can be inserted on any line.

4. Translate the λ of the specification in Step 2 into
Lua code, and place the code in the Internal Transition

above the horizontal line. The resulting code should
contain no state changes, and the output function
should be invoked either just once or not at all. If
there is an invocation of output, it should occur at
the end, just above the horizontal line. These self-
imposed restrictions honor the fact that according
to DEVS theory, λ can result in either a single out-
put or ∅ (no output).

5. Translate the δint of the specification in Step 2 into
Lua code, and place the code in the Internal Transition

below the horizontal line. Here state changes are
permitted, but the output function is never called.
Any local variable declared in the λ section above
the horizontal line should not be referenced in the
δint section below the horizontal line.

Note that the horizontal line in Step 3 helps the ad-
vanced user voluntarily separate λ and δint . Had De-
signDEVS enforced this convention, the code above and
below the horizontal line would instead appear in sepa-
rate tabs.



14 Practical Aspects of the DesignDEVS Simulation Environment

Model State
Initialization

Time
Advance

External Transition Internal Transition

Convenient
(14 lines)

n = 0
x = 50
y = 10
delay = time step

return delay
local port, value = input()
x = value
delay = delay - elapsed()

y = call me once per count(n, x, y)
output("B", y)
output("C", x)
output("D", n)
n = n + 1
delay = time step

Conventional
(44 lines)

n = 0
x = 50
y = 10
delay = time step
phase = 1
deferred x = nil

return delay

local port, value = input()
if phase == 1 then

x = value
else

deferred x = value
end
delay = delay - elapsed()

local port, value = nil, nil
if phase == 2 then

port, value = "B", y
elseif phase == 3 then

port, value = "C", x
elseif phase == 4 then

port, value = "D", n
end
if phase > 1 then

output(port, value)
end
-----------------------------------------
if phase == 1 then

y = call me once per count(n, x, y)
delay = duration(0, "seconds")
phase = 2

elseif phase == 2 then
delay = duration(0, "seconds")
phase = 3

elseif phase == 3 then
delay = duration(0, "seconds")
phase = 4

elseif phase == 4 then
n = n + 1
delay = time step
phase = 1
if not deferred x == nil then

x = deferred x
deferred x = nil

end
end

Table 4. A Convenient model that takes advantage of DesignDEVS features is shown alongside an equivalent Conventional model
that adheres to best practices according to DEVS theory.

The example in Table 4 illustrates both the separation
of λ and δint as well as the reason why DesignDEVS
does not strictly enforce this convention. Observe in
the Convenient model a state variable n which counts in-
ternal transitions, and a computationally intensive func-
tion call me once per count that should never be invoked
twice with the same arguments. At every time step, the
model evaluates this function, then outputs its result y,
followed by the value of the previous input x, followed by
n. By permitting repeated invocations of output within
the Internal Transition, the model can be implemented in
14 reasonably intuitive lines of code.

Equivalent to Convenient in terms of how a sequence of
(simulated time, value) input pairs is translated into out-
puts, the Conventional model adheres to best practices
by separating the implementations of λ and δint . The
Internal Transition features a horizontal line, above which
there are no state changes and below which there are no
calls to output. To achieve the desired behavior, the In-

ternal Transition must be executed four times in quick suc-
cession with different operations on each pass. A state
variable named phase is added to ensure the operations
unfold in the proper order. When phase = 1, the output

function is skipped such that call me once per count can

be called first. The next three passes (phase = 2, phase
= 3, phase = 4) each call output with the appropriate
port and value combination. At the end of the phase =

4 pass, the state variables are updated.

Another complication with the Conventional model is
the possibility the output("C", x) call is preceded by
an input. To prevent the input from altering behavior,
it is temporarily stored in a variable called deferred x,
and only assigned to x at the end of the phase = 4 pass
through Internal Transition. By directly supporting mul-
tiple instantaneous outputs, as shown in the Convenient
model, DesignDEVS shields domain experts from the
inconvenience of deferring inputs in this manner. As a
trade-off, these users may be somewhat less likely to ac-
quire a deep understanding of the formalism unless they
study the literature and adopt best practices.

It should be observed that the example in Table 4
depicts a worst-case scenario for Classic DEVS conven-
tions. The best practice of separating λ and δint will not
typically result in a 3-fold increase in code. Nevertheless,
DEVS-based tool developers must remain aware that do-
main experts will appreciate only the practical benefits
of applying the theory. If the formalism’s positive at-
tributes appear overwhelmed by its perceived inconve-



Goldstein et al. 15

Model Components Initialization

Bank

1. Machine Lineup
(Model: Customer Lineup)

2. Machine
(Model: Bank Machine)

3. Teller Lineup
(Model: Customer Lineup)

4. Teller
(Model: Bank Teller)

Line 1| exponential = runscript("statistics.lua").exponential
2|
3| local capacity ml = get parameter("Machine Lineup Capacity")
4| set parameter("Machine Lineup", "Capacity", capacity ml)
5|
6| local dt average m = get parameter("Machine Average Service Duration")
7| set parameter("Machine", "Average Service Duration", dt average m)
8|
9| local rate ex = get parameter("Exchange Rate")

10| set parameter("Machine", "Exchange Rate", rate ex)
11| set parameter("Teller", "Exchange Rate", rate ex)
12|
13| local naccts = get parameter("Number of Accounts")
14| local average = get parameter("Average Balance")
15| balances0 = {}
16| for account=1,naccts do
17| balances0[account] = math.floor(exponential(average) + 0.5)
18| end
19| const(balances0)
20| set parameter("Machine", "Initial Balances", balances0)
21| set parameter("Teller", "Initial Balances", balances0)
22|
23| local capacity tl = get parameter("Teller Lineup Capacity")
24| set parameter("Teller Lineup", "Capacity", capacity tl)
25|
26| local dt average t = get parameter("Teller Average Service Duration")
27| set parameter("Teller", "Average Service Duration", dt average t)

Table 5. The components and initialization code for a DesignDEVS coupled model representing a bank machine, a bank teller,
and two customer lineups at a bank.

niences, as they do in the Table 4 example, practitioners
may turn away from theory-based approaches and revert
to the ad-hoc modeling practices that continue to domi-
nate most scientific and engineering domains. The issues
emphasized in this example do arise on occasion, in our
experience.

Simulation environments based on Parallel DEVS
must take a different approach, since in this formalism
an invocation of λ does not always precede δint . Yet the
problem of intermediate calculations is still relevant, and
deserves attention. Part of the motivation for Parallel
DEVS is to achieve greater parallelism than is possible
under Classic DEVS. This practical benefit is put at risk
if a computationally expensive function must be invoked
to both produce an output and complete the subsequent
state change. Both Classic and Parallel DEVS environ-
ments require best practices to guide users on how such
situations should be addressed.

7.2. Parameters and statistics

Given the popularity of object-oriented programming,
domain experts may understand encapsulation even if
they are unfamiliar with other DEVS-related principles.
The DEVS formalism’s inputs and outputs encapsulate
the state of an atomic model during a simulation. Most
DEVS-based tools incorporate parameters, which encap-
sulate state at the beginning of a simulation. Design-
DEVS also includes statistics, which provide information
at the end of a simulation without exposing the state.

Unfortunately, the inclusion of parameters and statis-
tics may lead users to place configuration and analysis

code in their models, contradicting the theoretical prin-
ciple that experiment-related elements be confined to
an experimental frame 1. In DesignDEVS, the principle
of encapsulation is given priority and enforced through
modeling constraints, whereas the separation of model
and experiment relies on the users’ adherence to best
practices. We begin this discussion by describing how
parameters and statistics are treated in DesignDEVS.

Many simulation environments allow users to directly
modify the parameters of the components of a coupled
model. Unfortunately, this violates the principle of en-
capsulation by exposing the composition of a coupled
model in an external context. DesignDEVS takes a dif-
ferent approach, enforcing encapsulation by giving ev-
ery coupled model an Initialization tab. The modeler
may read the parameters of the coupled model (using
get parameter) and derive the parameters of the compo-
nents (using set parameter). With this mechanism, it
is possible to centralize pre-simulation processing opera-
tions, as well as ensure that two components receive the
same parameter value where needed.

Table 5 gives a simple example of how parameters are
handled in DesignDEVS coupled models. Here Bank is a
coupled model consisting of four components: Machine
Lineup, Machine, Teller Lineup, and Teller. As shown on
the right of Table 5, the parameters of the four com-
ponents are automatically derived from the parameters
of the encompassing Bank model through its Initialization

code. In many cases, a coupled model parameter is sim-
ply redirected to one of the components. For example,
the Bank model’s "Machine Lineup Capacity" parameter
becomes the Machine Lineup component’s "Capacity" pa-



16 Practical Aspects of the DesignDEVS Simulation Environment

rameter. Similarly, the Bank model’s "Teller Lineup

Capacity" parameter becomes the Teller Lineup com-
ponent’s "Capacity" parameter. Yet not all parame-
ters have a one-to-one mapping. The Bank model’s
"Exchange Rate" parameter is assigned to both the Ma-
chine and Teller components. Observe that the Bank
model’s "Average Balance" parameter is used to ran-
domly generate initial account balances, which are then
sent to both the Machine and Teller.

In a DesignDEVS atomic model, parameters are avail-
able only in the Constant Initialization tab. A parameter
can be assigned to a constant, if desired, or otherwise
constants can be computed from the parameter values.
These constants are actually mutable within the tab, but
are automatically fixed prior to State Initialization.

In the same way that parameters encapsulate the state
and composition of models at the beginning of a simu-
lation, statistics support encapsulation at the end. In a
DesignDEVS atomic model, statistics are assigned in the
Finalization tab, which mirrors a similar element in Pow-
erDEVS. As with a C++ destructor, Finalization code
may be used to release access to resources, though its
primary purpose in DesignDEVS is to support statis-
tics. Not all users require statistics, but those that do
benefit from a built-in reporting mechanism. Without
statistics, one concern is that some users will resort to a
hack in which state information is written to a file and
loaded by a separate process, breaking encapsulation.
The risk is increased due to the difficulty of capturing in-
formation about a model’s final state, including the final
elapsed duration, in a regular output message. Similar
to parameters, the statistics of a coupled model’s com-
ponents cannot be accessed directly; instead, they are
used to derive the coupled model’s own statistic values.

Although DesignDEVS incorporates parameters and
statistics in a manner that completely encapsulates the
state of an atomic model and the composition of a cou-
pled model, these conventions do make it convenient for
users to mix experiment- and model-related code in con-
tradiction with the tenets of the formalism. The treat-
ment of statistics is of particular concern, as it is hard to
distinguish between an experiment-independent statistic
and one specific to a particular application of the model.
This leads us to suggest the following best practice.

1. Users should distinguish between system models,
configuration models, analysis models, and experi-
ment models.

2. A system model is the most standard type of model:
one that represents a system. It should have no
statistics and no experiment-specific elements.

3. A configuration model produces input data specific
to an experiment and a system, but independent of
how the system is modeled. It is analogous to a

Figure 11. A dataflow representation of the DesignDEVS ini-
tialization function of Table 5, as illustrated by Maleki et al. 36 .

generator model in classic experimental frame ex-
amples1. It should have no statistics.

4. An analysis model processes output data in a man-
ner that is specific to an experiment and a system,
but independent of how the system is modeled. It
is analogous to a transducer model in classic exper-
imental frame examples1. It may have statistics.

5. An experiment model is a coupled model that con-
tains a configuration, system, and analysis model
connected in sequence. It represents a simulation-
based experiment, and may have statistics.

If best practices are followed, the DesignDEVS ap-
proach to parameters and statistics should lead to both
well-organized experimentation code and fully encapsu-
lated model compositions. However, experience apply-
ing DesignDEVS reveals that coupled model initializa-
tion code, such as that in Table 5, can be tedious to
write. This was part of the motivation for the work of
Maleki et al. 36 , who explore data flow programming37

in the pre- and post-simulation phases of a digital exper-
iment. Figure 11 illustrates what a user interface might
look like with data flow elements incorporated into a cou-
pled DEVS model. This work represents a new direction
for DEVS-based simulation environments that prioritize
the principle of encapsulation as well as modeler conve-



Goldstein et al. 17

nience. The benefits of data flow programming are also
discussed by Doore et al. 38 in the context of modeling
and simulation education.

7.3. Time resolution

In DesignDEVS, every model and every simulation has
a Time Resolution field which defaults to N/A, but can be
changed by the user to 106 years, 103 years, years, days,
hours, minutes, seconds, 10−3 seconds, 10−6 seconds, [. . .],
10−36 seconds. The Time Resolution of a coupled model
cannot be coarser than that of any of its components.
The Time Resolution of a simulation cannot be coarser
than that of its associated model.

A simulation’s Time Resolution acts as a precision level
to which all time durations are rounded, even if the
submodel that produced the duration has a coarser
Time Resolution. The modeler can control the rounding
method by supplying an optional third argument to the
duration function: "floor", "ceil", "halfup" (default),
"halfdown", "halfeven", or "halfodd". This rounding of
time values is not to be confused with time discretiza-
tion. Discrete-time simulation implies a common time
step separating consecutive events. Rounding is simply
an unavoidable consequence of the fact real-valued du-
rations cannot all be represented on a computer.

OMNeT++39 and ns-340 are similar to DesignDEVS
in that they use a fixed-point representation of simu-
lated time, and the time precision is associated with the
simulation. The difference is that DesignDEVS allows
each model to impose a bound on the precision level,
preventing time-related rounded errors from surpassing
a certain degree of severity. If a model is included in a
simulation, the simulation’s time precision can be finer
than that of the model, but no coarser.

There are a number of reasons why DesignDEVS does
not dispense with explicit time resolution/precision lev-
els by incorporating a floating-point representation of
simulated time. Floating-point time values produce
rounding errors in the simulator, where they must be
added and subtracted. This unnecessarily denies users
the option of performing error-free discrete-event simula-
tions in applications where errors can be avoided41. Vi-
cino et al. 42 list many other problems with floating-point
time representations. OMNeT++ was originally devel-
oped using floating-point time, yet switched to a fixed-
point representation for similar reasons as explained by
Varga 39 : “Why did OMNeT++ switch to int64-based
simulation time? double’s mantissa [the coefficient, ex-
cluding the sign and hidden bits] is only 52 bits long,
and this caused problems in long simulations that re-
lied on fine-grained timing, for example MAC [media
access control] protocols. Other problems were the accu-
mulation of rounding errors, and non-associativity (of-
ten (x+y)+z 6= x+(y+z), see Goldberg 43) which meant
that two double [64-bit floating-point number] simulation

times could not be reliably compared for equality.”.
The idea of associating a model with an explicit mea-

sure of time granularity was recommended more than
20 years ago44. Yet attention must be given to how
DesignDEVS users should choose a model’s Time Resolu-

tion. The best practice is to start by applying a theory,
and the most relevant theoretical method was developed
by Goldstein et al. 41 in conjunction with the Design-
DEVS software. The method involves the derivation of
a model’s optimal time quantum from its formal speci-
fication, a procedure that may require induction proofs
and other mathematical techniques that are likely too
unfamiliar and too time-consuming for most domain ex-
perts. Fortunately, a simple rule takes the place of such
analyses for models with the following property.

ta(si) ∈ {∆t0,∆t1, . . . ,∆tm, 0,∞, ta(si−1)− ê} (1)

In (1), si−1 is a state (si−1 ∈ S), si is a state that
can possibly succeed si−1 (either si = δint(si−1) or si =
δext(si−1, e, x) for some e and x where 0 ≤ e ≤ ta(si−1)
and x ∈ X), and the variables ∆t0,∆t1, . . . ,∆tm are
positive rationale numbers representing duration-valued
constants known at the outset of a simulation run. The
variable ê is the duration of simulated time elapsed in
state si−1 before the model transitions to si (ê = e for
external transitions; otherwise ê = ta(si−1)). The sim-
ple rule mentioned above is that, if a model satisfies
(1), its optimal time quantum is the greatest common
divisor (GCD) of ∆t0,∆t1, . . . ,∆tm. Hence a discrete-
time simulation model obeying ta(si) = ∆ts has an op-
timal time quantum equal to its time step ∆ts. A classic
processor model, as defined by Zeigler et al.1, satisfies
ta(si) ∈ {∆tr,∞, ta(si−1) − ê} where ∆tr is a fixed re-
sponse duration separating an input from its processed
output. Since this property adheres to (1), the optimal
time quantum is ∆tr. Where feasible, the Time Resolu-

tion in DesignDEVS should be the coarsest option that
evenly divides the optimal time quantum.

Only the optimal time quantum at the topmost level of
a closed system is guaranteed to evenly divide all elapsed
durations ê and time advance durations ta(si). Models
similar to the classic processor have finite positive op-
timal time quanta that, due to the unknown timing of
inputs from external sources, do not necessarily divide
the real-valued durations they experience. The optimal
time quanta for such models are nevertheless useful for
calculating the optimal time quantum of an encompass-
ing coupled model, which can then be used for calcula-
tions at the next level up, and so on. The optimal time
quantum of a DEVS coupled model is simply the GCD
of that of its component models. Accordingly, the Time

Resolution of a DesignDEVS coupled model should be the
finest Time Resolution of any submodel, which is also the
GCD due to the restricted set of allowable resolution
levels. The finest Time Resolution will then propagate up-



18 Practical Aspects of the DesignDEVS Simulation Environment

ward toward the simulation level, which is essentially a
closed system on top of the model hierarchy.

Some models have an optimal time quantum of in-
finity. In the vast majority of cases, these are models
for which the Time Advance function would return either
duration(0) or duration("forever"). The best practice
is to assign these models a Time Resolution value of N/A.

Whereas models such as the classic processor experi-
ence non-quantized durations only due to external influ-
ences (assuming parameters such as ∆tr are rational),
certain models do so of their own accord. Typical ex-
amples include generators that produce outputs at ran-
domly sampled intervals, and quantized integrators. For
such a model, which has an optimal time quantum of
zero, the best practice is to select a Time Resolution well
below its time scale. It is reasonable for instance to ap-
proximate the time scale based on intuition, divide by
one million, and round down to the next allowable op-
tion. Consider a model that produces outputs at inter-
vals randomly generated from an exponential distribu-
tion with a 20-nanosecond mean duration. The optimal
time quantum is zero, but the time scale can be regarded
as 20 ns. Dividing by one million and rounding down, the
Time Resolution of the model would be set at femtosec-
onds. It is worth noting that in this case, the longest
representable duration is exactly 9.007199254740991 sec-
onds, the value given by duration("maximum"). Choosing
an excessively fine precision constrains the length of a
simulation run.

An alternative to the best practice is to select a fine
Time Resolution for any model, regardless of its optimal
time quantum. In that case a discrete-time model with a
time step of 5 seconds might be given a microsecond Time

Resolution. If this were the best practice, then the label
“precision” would be more appropriate than “resolution”
(see Goldstein et al. 41 for definitions of these terms).
The fact it is called Time Resolution may remind users
that they are free to supply this field with a discrete-
time model’s uniform time step, or the largest factor of
that time step that is available as an option.

8. Applications

Although the software has no discipline-specific features
and can be applied to any domain, the name “De-
signDEVS” reflects an early focus on building design
projects. Similar to other application areas, modern
architectural design is characterized by a diverse set
of mostly independent simulation-based analysis tools.
Theory-based approaches have the potential to support
the development of an array of next-generation predic-
tive models that can be readily integrated in various
combinations. Here we list several simulation efforts sup-
ported by DesignDEVS, all of which have a relationship
with architecture.

(a) DesignDEVS results from Breslav et al. 45 . Left: A visu-
alization showing a building floor with motion sensors triggered
by occupants. Right: A model hierarchy reflecting the cognitive
components involved in occupants’ decision-making processes.

(b) A simple thermal model of a building developed by Goldstein
et al. 24 using state quantization. The results from DesignDEVS
are shown plotted with Matplotlib46.

(c) A virtual hotel simulated by Goldstein et al. 47 using De-
signDEVS and visualized with Maya48. The indoor temperature
distribution (surface coloring) influences the window-opening be-
havior of occupants (cylinders), which in turn affects indoor tem-
perature.

Figure 12. Applications of DesignDEVS.



Goldstein et al. 19

Breslav et al. 45 use DesignDEVS to simulate the effi-
cacy of an occupant sensor network as a function of the
density of motion detectors in a building environment.
This project combines a 2D cellspace model of a build-
ing’s floor plan and occupant locations (Figure 12a, left)
with a hierarchical human behavior model inspired by
human cognition research (Figure 12a, right).

Goldstein et al. 24 present a number of simple De-
signDEVS models illustrating different approaches for
solving heat transfer equations in the context of build-
ings with active and passive heating/cooling. One ap-
proach, referred to as a speculative strategy, involves
models which communicate future predictions multiple
times per time step before converging on a set of mu-
tually consistent values. This allows longer time steps.
The quantized state approach is also demonstrated for
the coupled thermodynamics and occupancy model de-
picted in Figure 7 of Section 5, the results of which are
shown in Figure 12b.

Gunay et al. 49 apply DesignDEVS to explore the ef-
fect of time steps on stochastic models involving oc-
cupants, offices, and temperature control. The results
demonstrate the advantages of discrete-event simulation
over the conventional discrete-time approach.

The most complex DesignDEVS model to date is a
discrete-space, discrete-event hotel simulation developed
by Goldstein et al. 47 . A 3D animation of the results is
shown in Figure 12c. The merging of λ and δint is ex-
ploited by a submodel representing heat diffusion. A
fine-resolution array of temperatures is computed once,
stored in the submodel’s state, and communicated to an-
other submodel responsible for occupant comfort. The
initialization function of the overall coupled model cen-
tralizes the loading of datasets, which are then dis-
tributed in memory to multiple submodels. These prac-
tical features helped the modelers remain focused on
domain-specific modeling tasks.

9. Conclusion

The DesignDEVS simulation environment contributes
to the ongoing exploration of how to best incorporate
modeling and simulation theory into practical tools. Its
focus is on discrete-event simulation, and in particular
the DEVS formalism which generalizes numerous other
modeling formalisms. The guidelines that emerge from
a detailed look at DesignDEVS are worth considering re-
gardless of the tool developers’ paradigm of interest. The
first guideline is to express elements of the theory, such
as the separation of model and simulator, in the design
of the user interface. The second guideline emphasizes
the minimization of unnecessary boilerplate code. Third,
the model coupling interface should be based on a vision
for how this key abstraction mechanism is intended to
be applied. Fourth, modeling constraints should be used

where appropriate to enforce and communicate aspects
of the theory. The fifth guideline is to recommend a set
of best practices for theoretical principles that are either
impossible or impractical to strictly enforce.

A decision on whether to address a theoretical prin-
ciple using strict enforcement or using a best practice
requires thorough and deliberate consideration. Al-
though it is tempting to base such a decision on the
ease with which the principle of interest can be enforced,
we strongly recommend that simulation tool developers
consider the tradeoffs from the user’s perspective. It
would not have been difficult to separate output values
from state transitions, as indicated by the theory. Yet
we chose to leave this separation as a best practice for
users who appreciate the theoretical benefits of this con-
vention. By contrast, the Insidious Pointer Problem was
very difficult to circumvent, yet we incorporated a solu-
tion for both theoretical and practical reasons. Develop-
ers of future DEVS-based simulation environments may
well choose to keep the output function separate from
the internal transition. In that case, our advice is to
establish best practices on how to avoid redundant cal-
culations, especially for numerical integrators in which
integration steps and outputs coincide. Future tools may
also permit the unrestrained sharing of pointers among
models. In that case, best practices are needed to reduce
the likelihood of producing invalid results due to the ac-
cidental sharing of memory. Attention to the practical
aspects of formalism-based simulation environments will
help increase the utilization of scalable modeling and
simulation practices in the disciplines that need them
the most.

References

1. Zeigler BP, Praehofer H, and Kim TG. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems.
Academic Press, San Diego, CA, USA, second edi-
tion, 2000.

2. Goldstein R, Breslav S, and Khan A. DesignDEVS:
Reinforcing theoretical principles in a practical and
lightweight simulation environment. In Proceedings
of the Symposium on Theory of Modeling & Simula-
tion (TMS/DEVS), 2016.

3. Ierusalimschy R, De Figueiredo LH, and Celes W.
Passing a language through the eye of a needle.
Communications of the ACM, 54(7):38–43, 2011.

4. Fritzson P and Bunus P. Modelica – a general object-
oriented language for continuous and discrete-event
system modeling and simulation. In Proceedings of
the Annual Simulation Symposium (ANSS), 2002.



20 Practical Aspects of the DesignDEVS Simulation Environment

5. MathWorks. Simulink: Dynamic System Simulation
for MATLAB. 2000.

6. Ptolemaeus C, editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

7. Vangheluwe HLM. DEVS as a common denominator
for multi-formalism hybrid systems modelling. In
IEEE International Symposium on Computer-Aided
Control System Design (CACSD), 2000.

8. Goldstein R. DEVS-based dynamic simulation of de-
formable biological structures. Master’s thesis, Car-
leton University, 2009.

9. Van Schyndel M, Wainer GA, Goldstein R, Mogk
J, and Khan A. On the definition of a computa-
tional fluid dynamic solver using cellular discrete-
event simulation. Journal of Computational Science,
5(6):882–890, 2014.

10. Van Mierlo S, Van Tendeloo Y, Mustafiz S, Barroca
B, and Vangheluwe H. Explicit modelling of a Par-
allel DEVS experimentation environment. In Pro-
ceedings of the Symposium on Theory of Modeling
& Simulation (TMS/DEVS), Alexandria, VA, USA,
2015.

11. Bergero F and Kofman E. PowerDEVS: A tool for
hybrid system modeling and real-time simulation.
Simulation: Transactions of the Society for Model-
ing and Simulation International, 87(1-2):113–132,
2011.

12. Zengin A and Sarjoughian H. DEVS-Suite simula-
tor: A tool teaching network protocols. In Proceed-
ings of the Winter Simulation Conference (WSC),
2010.

13. Sarjoughian HS and Elamvazhuthi V. CoSMoS: A
visual environment for component-based modeling,
experimental design, and simulation. In Proceed-
ings of the International Simulation Tools and Tech-
niques Conference (SIMUTools), 2009.

14. Bonaventura M, Wainer GA, and Castro R. Graph-
ical modeling and simulation of discrete-event sys-
tems with CD++Builder. Simulation: Transactions
of the Society for Modeling and Simulation Interna-
tional, 89(1):4–27, 2013.

15. Traoré MK. SimStudio: A next generation mod-
eling and simulation framework. In Proceedings of
the International Simulation Tools and Techniques
Conference (SIMUTools), 2008.

16. Quesnel G, Duboz R, and Ramat E. The Virtual
Laboratory Environment – an operational frame-
work for multi-modelling, simulation and analysis of
complex dynamical systems. Simulation Modelling
Practice and Theory, 17(4):641–653, 2009.

17. Franceschini R, Bisgambiglia PA, Touraille L, Bis-
gambiglia P, and Hill D. A survey of modelling
and simulation software frameworks using Discrete
Event System Specification. In Proceedings of
the Imperial College Computing Student Workshop
(ICCSW), 2014.

18. Chow ACH and Zeigler BP. Parallel DEVS: a paral-
lel, hierarchical, modular modeling formalism. In
Proceedings of the Winter Simulation Conference
(WSC), 1994.

19. de Lara J and Vangheluwe H. AToM3: A tool for
multi-formalism and meta-modelling. In Kutsche
RD and Weber H, editors, Fundamental Approaches
to Software Engineering, volume 2306 of Lecture
Notes in Computer Science, pages 174–188. Springer
Berlin Heidelberg, 2002.

20. Vangheluwe H, de Lara J, and Mosterman PJ. An
introduction to multiparadigm modelling and simu-
lation. In Proceedings of the Simulation and Plan-
ning in High Autonomy Systems Conference (AIS),
2000.

21. Himmelspach J and Uhrmacher AM. Plug’n simu-
late. In Proceedings of the Annual Simulation Sym-
posium (ANSS), 2007.

22. Seo C, Zeigler BP, Coop R, and Kim D. DEVS
modeling and simulation methodology with MS4 Me
software tool. In Proceedings of the Symposium on
Theory of Modeling & Simulation (TMS/DEVS),
2013.

23. Gamma E, Helm R, Johnson R, and Vlissides
J. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA,
USA, 1995.

24. Goldstein R, Breslav S, and Khan A. Using gen-
eral modeling conventions for the shared develop-
ment of building performance simulation software.
In Proceedings of the International Building Simula-
tion Conference, 2013.

25. Zimmermann G. A new approach to building simu-
lation based on communicating objects.

26. Shneiderman B. The future of interactive systems
and the emergence of direct manipulation. Be-
haviour & Information Technology, 1(3):237–256,
1982.

27. Madlener F, Molter HG, and Huss SA. SC-DEVS:
An efficient SystemC extension for the DEVS model
of computation. In Proceedings of the Design, Au-
tomation, and Test in Europe Conference (DATE),
2009.



Goldstein et al. 21

28. Barroca B, Mustafiz S, Van Mierlo S, and
Vangheluwe H. Integrating a neutral action language
in a devs modelling environment. In Proceedings of
the International Simulation Tools and Techniques
Conference (SIMUTools), 2015.

29. Nutaro JJ. Building Software for Simulation: The-
ory and Algorithms with Applications in C++. John
Wiley & Sons, Hoboken, NJ, USA, 2011.

30. Li X, Vangheluwe H, Lei Y, Song H, and Wang W.
A testing framework for DEVS formalism implemen-
tations. In Proceedings of the Symposium on Theory
of Modeling & Simulation (TMS/DEVS), 2011.

31. Nutaro J. adevs Documentation. Online API, 2013.

32. Wainer G. CD++: A toolkit to develop DEVS mod-
els. Software: Practice and Experience, 32(13):1261–
1306, 2002.

33. Hwang MH. DEVS++: C++ open source library of
DEVS formalism, v.1.4.2 edition, 2009.

34. Goldstein R, Breslav S, and Khan A. Informal DEVS
conventions motivated by practical considerations
(WIP). In Proceedings of the Symposium on The-
ory of Modeling & Simulation (TMS/DEVS), 2013.

35. Meyers S. Effective C++. Addison-Wesley, West-
ford, MA, USA, 2005.

36. Maleki M, Woodbury R, Goldstein R, Breslav S, and
Khan A. Designing DEVS visual interfaces for end-
user programmers. Simulation: Transactions of the
Society for Modeling and Simulation International,
91(8):715–734, 2015.

37. Davis AL and Keller RM. Data flow program graphs.
Computer, 15(2):26–41, 1982.

38. Doore K, Vega D, and Fishwick P. A media-rich
curriculum for modeling and simulation. In Proceed-
ings of the ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation (PADS), 2015.

39. Varga A. OMNeT++ User Manual (Version 4.6),
2014.

40. nsnam.org. ns-3.20 (Discrete-Event Network Simu-
lator) documentation. Online API, 2014.

41. Goldstein R, Breslav S, and Khan A. A quantum
of continuous simulated time. In Proceedings of the
Symposium on Theory of Modeling & Simulation
(TMS/DEVS), 2016.

42. Vicino D, Dalle O, and Wainer G. A data type for
discretized time representation in devs. In Proceed-
ings of the International Conference on Simulation
Tools and Techniques (SIMUTools), 2014.

43. Goldberg D. What every computer scientist should
know about floating point arithmetic. ACM Com-
puting Surveys, 23(1):5–48, 1991.

44. Hitz M, Werthner H, and Ören TI. Employing
databases for large scale reuse of simulation models.
In Proceedings of the Winter Simulation Conference
(WSC), 1993.

45. Breslav S, Goldstein R, Doherty B, Rumery D, and
Khan A. Simulating the sensing of building occu-
pancy. In Proceedings of the Symposium on Simula-
tion for Architecture and Urban Design (SimAUD),
2013.

46. Hunter JD. Matplotlib: A 2D graphics environment.
Computing In Science & Engineering, 9(3):90–95,
2007.

47. Goldstein R, Breslav S, and Khan A. Towards voxel-
based algorithms for building performance simula-
tion. In Proceedings of the IBPSA-Canada eSim
Conference, 2014.

48. Autodesk Inc. Maya. Computer graphics software
(www.autodesk.com/products/maya/overview-dts).

49. Gunay B, O’Brien L, Beausoleil-Morrison I, Gold-
stein R, Breslav S, and Khan A. Coupling stochas-
tic occupant models to building performance sim-
ulation using the Discrete Event System Specifica-
tion (DEVS) formalism. Journal of Building Perfor-
mance Simulation, 7(6):457–478, 2014.

Author biographies

Rhys Goldstein is a Principal Research Scientist at
Autodesk Research specializing in simulation theory and
its application in architectural design. He received best
paper awards at the IBPSA-USA 2010 and SpringSim
2016 conferences, and has served on the organizing com-
mittees of the SimAUD (Simulation for Architecture and
Urban Design) and TMS/DEVS (Theory of Modeling
and Simulation) symposia.

Simon Breslav is a Principal Research Scientist at Au-
todesk Research. Specializing in computer graphics, his
current research interests include information visualiza-
tion, simulation, and human-computer interaction.

Azam Khan is Director, Complex Systems Research at
Autodesk. He is the Founder of the Parametric Human
Project Consortium, SimAUD: the Symposium on Sim-
ulation for Architecture and Urban Design, and the CHI
Sustainability Community. Azam has published over 50
articles in simulation, human-computer interaction, ar-
chitectural design, sensor networks, and sustainability.


	Introduction
	Background and related work
	DesignDEVS user interface
	Atomic model development
	Coupled model development
	Modeling constraints
	The Insidious Pointer Problem
	Run-time enforcement of constraints
	Illustration of run-time enforcement

	Best practices
	Output function
	Parameters and statistics
	Time resolution

	Applications
	Conclusion

