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Abstract—While multi-joint continuum robots are highly dex-
terous and flexible, designing an optimal robot can be challenging
due to its kinematics involving curvatures. Hence, the current
work presents a computational method developed to find optimal
designs of continuum robots given reachability constraints. First,
we leverage both forward and inverse kinematic computations to
perform reachability analysis in an efficient yet accurate manner.
While implementing inverse kinematics, we also integrate torque
minimization at joints such that robot configurations with the
minimum actuator torque required to reach a given workspace
could be found. Lastly, we apply an estimation of distribution
algorithm (EDA) to find optimal robot dimensions while consid-
ering reachability, where the objective function could be the total
length of the robot or the actuator torque required to operate
the robot. Through three application problems, we show that the
EDA is superior to a genetic algorithm (GA) in finding better
solutions within a given number of iterations, as the objective
values of the best solutions found by the EDA are 4-15% lower
than those found by the GA.

Index Terms—Soft Robot Applications, Methods and Tools for
Robot System Design, Kinematics, Optimization and Optimal
Control

I. INTRODUCTION

CONTINUUM ROBOTS, also called soft robots, are
composed of joints that bend continuously along their

lengths (Fig. 1). The design of such manipulators are inspired
by animal appendages such as elephant trunks or octopus
tentacles. They are highly dexterous and flexible, thus ideal
for working in cluttered environments. Furthermore, compared
to traditional rigid manipulators, continuum robots offer bet-
ter adaptability to and interaction with their surroundings.
However, due to their flexibility, analyzing their reachability
requires a more complex kinematic model than traditional
manipulators and it is difficult to conceptualize the effect of
design changes on the workspace of these robots. Even with
3D computer-aided design tools, designing a continuum robot
that can reach the entire target workspace can take weeks of an
engineering team’s time, and the chance of finding an optimal
design (e.g., with the minimal total length) is low.

To address this challenge, we present a method for op-
timizing the design of multi-joint continuum robots while
satisfying reachability constraints given a desired workspace.
The method involves two main parts: 1) kinematic computation
to evaluate the reachability of potential designs and 2) an
optimization algorithm to find the optimal robot design.
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Fig. 1. A three-joint spatial continuum robot. Each joint consists of a base,
top, and spine. The spine can bend continuously along its length about two
orthogonal axes.

For the first part, we combine both forward and inverse kine-
matics to perform reachability analysis in an efficient manner.
Since the former can be executed considerably faster than the
latter, a large set of randomly sampled robot configurations
with forward kinematics is used to quickly estimate the robot’s
reachability. Then, for the points not deemed to be reachable,
inverse kinematics is employed to check whether those points
can actually be reached or not, further improving the accuracy
of the reachability analysis. In addition, we integrate torque
minimization as part of the inverse kinematics computation
such that given a target point, the robot configuration with the
minimal actuator torque to reach that point can be identified.

The optimization problem considering reachability is chal-
lenging because computing the sensitivity of the reachability
function with respect to the design variables involved is not
possible. Also, the feasible region is likely non-contiguous
since different combinations of robot dimensions could sat-
isfy the reachability constraint. To solve such a problem,
derivative-free or black-box optimization algorithms can be
used, e.g., evolutionary algorithms. For the current work, we
use an estimation of distribution algorithm (EDA), which finds
optimal solutions by estimating and sampling a probability
model of promising designs. EDA is chosen because it has
been shown to outperform a genetic algorithm, the most widely
used evolutionary algorithm, in a number of prior studies [1],
[2], [3], [4], [5]. Also, the problem knowledge in the form of
probabilistic models learned as part of the optimization could
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be conveyed to the user, which is not an inherent feature of
most evolutionary algorithms.

The rest of the paper is organized as follows. First, we
present related work on continuum robots and EDAs. Next,
problem formulation and the method developed to solve the
problem are presented. We then provide the results of the
experiments conducted to validate our optimization method,
followed by a summary and conclusions.

II. RELATED WORK

A. Kinematics of Continuum Robots

Unlike traditional robot manipulators, continuum robots
are made of sequentially actuated deformable links (joints)
exhibiting some levels of compliance depending on their
design and the applications destined for them. Therefore, the
conventional parameters (e.g., joint lengths and joint angles)
used for describing the kinematics of rigid-link robots are
not applicable to continuum robots. A thorough review of
different techniques for modeling the kinematics of such robots
can be found in [6], [7], [8]. A common practice adopted in
analyzing continuum robots is to assume that each of their
joints deforms as a constant-curvature arc (e.g. [9], [10], [11],
[12], [13], [14]). This turns the robot’s configuration space
from an infinite to a finite dimensional space and facili-
tates fast closed-form computations of the robot kinematics.
Following this presumption, several kinmeatic models have
been proposed. In [9], the well-known Denavit-Hartenberg
procedure is modified to determine the kinematics of planar
robots resembling an elephant’s trunk. Another approach is to
model each continuum joint as a combination of prismatic and
revolute joints [10]. In [12], the motion of planar robots are
characterized by splitting it into pure bending and extension.
The robot’s kinematics can also be configured by incorporating
quaternions to define the rotation of the robot’s joints [13].
Despite the inherent differences among the various kinematic
models, it is demonstrated that they often lead to identical
results in many different scenarios [8]. In the current work,
the robot’s three-dimensional kinematics is determined using
its joints’ length, bending radius and angle, thus bearing some
similarities to what is used in [8].

B. Optimal Design of Continuum Robots

Optimal design of continuum robots has been actively
researched in the past few years. Early on, much of the
work was on optimizing concentric tube robots for biomedical
applications. These robots are similar to the robots considered
in the current work as they also require constant-curvature
kinematics and can involve multiple joints. For example,
generalized pattern search is used to optimize robots with
minimal curvature and length while being able to reach the
workspace [15], [16]. In another work, the Nelder-Mead algo-
rithm is implemented to find optimal designs while considering
volume-based workspaces [17]. Also, a particle swarm algo-
rithm is employed to perform design optimization for dual-arm
concentric tube robots [18].

Recently, evolutionary algorithms have been widely applied
for optimal design of continuum robots. For instance, Hiller

et al. uses a genetic algorithm to distribute soft materials in
a compliant structure [19]. Runge et al. [20] incorporates a
genetic algorithm to optimize a single-joint soft robot while
considering its mechanics. Cheney et al. [21] uses a variant of
the NEAT algorithm (NeuroEvolution of Augmenting Topolo-
gies) to find the optimal volumetric structure and material
choice for a contiguous soft robot. Finally, most similar to
our work, Bodily et al. [22] applies a genetic algorithm to op-
timize a multi-joint continuum robot considering reachability,
dexterity, and manipulability.

C. Estimation of Distribution Algorithms

EDAs are population-based, derivative-free optimization
methods that use probability distributions estimated from a
population of candidate solutions to sample new solutions
at each iteration of optimization [23], [24]. They have been
shown to be more effective at finding optimal solutions with a
fewer number of function evaluations than genetic algorithms
for several benchmark problems [1], [2], [3], [4], hence
motivating the application for the current work.

EDAs have been applied to solve various engineering design
problems [25], including vehicle suspensions [26], [5] and
multi-speed gearboxes [27], [28]. In robotics, EDAs have been
used to solve problems such as inverse displacement [29], gait
generation [30], [31], and cable-driven parallel robot design
[32]. However, no prior work has explored applying an EDA
for optimal design of multi-joint continuum robots.

For the current work, we have considered various continu-
ous EDAs [23] since the design variables involved in optimiza-
tion, e.g., the dimensions of joints in a continuum robot, are
continuous. Specifically, we have applied a univariate normal
distribution algorithm inspired by [33].

III. PROBLEM FORMULATION

The design of a multi-joint continuum robot is defined as
the following optimization problem.

min
D

f(D)

s.t. di,lb ≤ xi ≤ di,ub ∀xi ∈ D
Θ(D,S) ≥ α

(1)

Here, D represents a set of design variables xi, such as the
dimensions of a robot, and S denotes a set of state variables
that define the configuration of a robot, such as the joint
angles or radii. For the objective function f(D), the current
work considers two different types – the total length of the
robot and the minimum actuator torque required to reach a
given workspace. Each design variable xi has lower and upper
bounds, di,lb and di,ub, respectively, indicating the limits on
robot dimensions. Finally, Θ(D,S) computes the percentage
of the workspace that can be reached by a robot, and this value
must be greater than the threshold α.

In order to compute Θ(D,S), a given workspace is dis-
cretized into a set of target points in the 3D space. Then, its
value can be calculated by

Θ(D,S) = Nreached

Ntarget
(2)



where Ntarget represents the number of target points in the
workspace and Nreached is the number of such points that can
be reached by a robot. Nreached is determined based on

‖pj − ~re(D,Sj)‖ ≤ ε for j = 1, ...,m (3)

in which pj is each of the m target points considered and
~re(D,Sj) computes the corresponding position of the robot’s
end-effector as shown later. ε is the tolerance allowed.

IV. METHODS

First presented is the formulation of kinematics used to
perform the reachability analysis, followed by the optimization
method using an estimation of distribution algorithm.

A. Reachability Analysis

As shown in [22], to estimate the reachability of a robot,
one could randomly sample a large number of robot con-
figurations and use forward kinematics to compute the end-
effector position for each configuration. Then, the set of
end-effector positions is compared against the set of target
points in the workspace to estimate the reachability. Note that
computing forward kinematics is quite fast and therefore one
could sample a large number of configurations within a given
time budget. With a large enough sample size, a reasonable
estimate of the reachability could be obtained.

On the other hand, one could employ inverse kinematics
to assess the reachability of a robot. For instance, for each
target point in the workspace, one could solve for the robot
configuration that would result in the end-effector position
coinciding with the target point. The percentage of the target
points for which solutions are found would then indicate the
reachability. While this approach can provide a more accurate
assessment of the reachability, computing inverse kinematics
for all target points can take a significant amount of time.

The current work therefore uses a hybrid approach. First,
random sampling of robot configurations with forward kine-
matics is performed. Then, for target points that have not been
reached during this first step, inverse kinematics is used to
check whether those points can actually be reached or not.
In this section, we present the forward and inverse kinematic
models employed, while the exact implementation of the
hybrid approach is described in the Experiments section.

We assume that a robot consists of several non-extensible
mutually tangent constant-curvature arcs that can spatially
deform. Each joint is composed of a base, top and spine as
depicted in Fig. 1. The base and top sections are straight and
rigid links, whereas the spine can bend about two orthogonal
axes, thus giving each joint two degrees of freedom (DOF).
Depending on the joint design, one may need to model the
spine as a spatial beam including its longitudinal, bending and
torsional deformations altogether [34].

Given the robot’s base position ~rb, tangent ~tb and normal
~nb (Fig. 2a and Fig. 2b), the robot kinematics can be fully
configured using its joints’ radius R (R > 0) and rotation
θ (0 ≤ θ ≤ 2π). The latter specifies the rotation of a joint
with respect to its respective base normal, so it determines
the bending plane of each joint. These parameters, also called

state variables, are illustrated in Fig. 2. In order to assess the
reachability of a robot, one needs to solve the forward and
inverse kinematic equations laid out as follows.

1) Forward Kinematics: In a forward kinematic (FK) prob-
lem, the goal is to find the spatial position and orientation
at different points on the robot, particularly the end-effector,
given a set of state variables (i.e. joint radii and rotations).
Employing the parametrization introduced earlier and utilizing
the Rodrigues’ rotation formula [35], the vectors ~ti and ~̃ni
depicted in Fig. 2c for Joint i (i ≥ 2) read

~ti = ~ti−1 cos (φi−1) + ~ni−1 sin (φi−1)

~̃ni = ~ni−1 cos (φi−1)− ~ti−1 sin (φi−1)
(4)

in which φi−1 = ls,i−1/Ri−1; and lb,i, ls,i and lt,i represent
base, spine and top lengths of Joint i, respectively. Therefore,
referring to Fig. 2c and using Eq. 4 one can express ~ni by

~ni = ~̃ni cos(θi) +
(
~ti × ~̃ni

)
sin(θi)

=
(
~ni−1 cos(φi−1)− ~ti−1 sin(φi−1)

)
cos(θi)

+
(
~ti−1 × ~ni−1

)
sin(θi)

(5)

Defining ~bi := ~ti × ~ni, the three vectors ~ti, ~ni and ~bi form a
Cartesian coordinate frame at the base of each Joint i. Through
employing Eq. 4 and Eq. 5, vector ~bi is stated as

~bi = ~ti × ~ni =
(
~ti−1 sin(φi−1)− ~ni−1 cos(φi−1)

)
sin(θi)

+~bi−1 cos(θi)
(6)

Also, for Joint 1 connected to the ground we have

~t1 = ~tb, ~̃n1 = ~nb, ~n1 = ~̃n1 cos(θ1) +
(
~t1 × ~̃n1

)
sin(θ1) (7)

The position of the bottom node of each joint ~rb,i(i ≥ 2),
considering Fig. 2, Eq. 4 and Eq. 5 can be formulated as

~rb,i = ~rb,i−1 + lb,i−1~ti−1 +Ri−1

(
~ni−1 − ~̃ni

)
+ lt,i−1~ti

= ~rb,i−1

+ (lb,i−1 +Ri−1 sin(φi−1) + lt,i−1 cos(φi−1))~ti−1

+ (Ri−1 −Ri−1 cos(φi−1) + lt,i−1 sin(φi−1))~ni−1
(8)

with ~rb,1 = ~rb. Given the joint radii and rotations, Eq. 4-
Eq. 8 provide the FK model of a multi-joint continuum robot
that upon solving recursively, vectors ~ti, ~ni, ~bi and ~rb,i for
all the points on the robot including the end-effector are
found. For a three-joint robot, as the one in Fig. 2, vector
~rb,4 determines the end-effector position. Also, vectors ~t4, ~n4
and ~b4 define the orientation at that location. Note that when
Ri tends to infinity, φi = ls,i/Ri moves towards zero meaning
that Joint i becomes a straight line. In this case, utilizing the
aforementioned equations, we conclude

~ti = ~ti−1,

~ni = ~ni−1 cos(θi) +~bi−1 sin(θi)

~bi = ~bi−1 cos(θi)− ~ni−1 sin(θi)
~rb,i = ~rb,i−1 + ~ti−1 (lb,i−1 + ls,i−1 + lt,i−1)

(9)



End-effector

Robot's base 
position vector

Robot's base
tangent vector

Robot's base
normal vector

X Y

Z

(a)

Joint 1

Joint 2

Jo
in

t 
3

X Y

Z

(b)

Joint 3
tangent

Joint 2
tangent

Joint 1
tangent

Joint 3
normal

Joint 2
normal

Joint 1
normal

(c)

Joint 2
rotation

Joint 3
rotation

Joint 1
rotation

Joint 1
radius

Joint 3
radius

Joint 2
radius

(d)

Fig. 2. Simplistic representation of a three-joint continuum robot with the proposed parametrization. (a) The tangent vector at the base defines the direction
towards which the first joint is pointing at, and the normal vector determines the bending plane of that joint. (b) The tip of each joint coincides with the
bottom of the subsequent joint. (c) θ of each joint is defined as the rotation of ~̃n about that joint’s tangent ~t leading to ~n determining the bending plane of
that joint. (d) Given each joint’s radius R and θ, the robot can be fully configured in space.

2) Inverse Kinematics: Inverse kinematics (IK) is the in-
verse of FK where the goal is to find a set of state variables
such that the desired end-effector’s position and orientation
are achieved. In other words

~q = ~f−1FK(~re) (10)

where ~fFK is the forward kinematic equations presented
earlier and ~q denotes the vector of state variables (joints’
radii and rotations). Since in this work only the reachability
of the robot is considered, vector ~re is a three-dimensional
vector determining the end-effector’s position. Referring to the
previous section, for a robot containing m joints, since each
joint has two DOF, the robot has 2m DOF in total. This means
that a robot with only two joints is a redundant manipulator,
so Eq. 10 may have an infinite number of solutions. Many
techniques are developed for solving Eq. 10 such as the
pseudo-inverse, Jacobian transpose or damped least-square
method [36]. In this work, the last approach is adopted.

A significant advantage of having redundancy in a robot
is that other types of performance criteria (e.g., collision
avoidance, actuator torque or energy minimization) can be in-
corporated in the IK routine. In this paper, minimizing the total
actuator torque applied at the base of each continuum joint is
selected as the secondary performance measure. Therefore, Eq.
10 is re-formulated as

min
~q

(
1

2

∑
i

‖~τi(~q)‖2
)

s.t. ~fFK(~q) = ~re
~lb ≤ ~q ≤ ~ub

(11)

where ~τi is the static actuator torque at the base of Joint i.
Also, ~lb and ~ub specify respectively the desired lower and
upper bounds for the joints’ radius and rotation. The problem
in Eq. 11 can be solved using a gradient-based constrained
optimization method [37]. In this work, the constrained trust
region algorithm implemented in Python’s Scipy package is
used. The objective function in Eq. 11 is the total torque
required to hold a given payload at the end-effector location.

B. Optimization Using an EDA

As stated earlier, an EDA uses a probability model to
estimate and sample promising candidate solutions at each
iteration. The detailed procedure of the algorithm is as follows.

1) Generation of Initial Population: An initial population
of solutions P is randomly generated at the start. A solution is
a particular instantiation of the design variables xi ∈ D while
respecting the dimensional limits per di,lb ≤ xi ≤ di,ub.

2) Evaluation and Selection: Solutions in the population
are evaluated by computing the objective and constraint func-
tions. Here, we use a penalty method [38] to quantify the
constraint violation and combine it with the objective function
to formulate a single fitness function as follows

fitness := f(D) + σmax(0, α−Θ(D,S)) (12)

where σ is a penalty coefficient. Evaluated solutions are ranked
based on their fitness values. Then, a subset of the population,
S, representing the top N solutions is selected from P. The
truncation rate is defined as |S|/|P|.

3) Estimation of Probability Distribution: From S, the
probability distribution of promising solutions are estimated.
For the current work, a univariate normal distribution is used.

p(D) =
|D|∏
i=1

p(xi), xi ∈ D (13)

where p(xi) ∼ N (µi, σ
2
i ), which assumes that the probability

of an optimal design can be independently computed with
normally distributed p(xi). Hence, the estimation of the prob-
ability distribution involves computing the mean µi and the
variance σ2

i for each variable xi. While more complex prob-
ability distributions such as multivariate normal or Gaussian
mixture models could be used [33], preliminary experiments
showed that a simple model worked better for our case.

4) New Population Generation via Sampling: A new pop-
ulation of the size |P| is generated by sampling from the
probability distribution estimated from the previous generation
of population. This can be performed in a straightforward
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Fig. 3. The robot’s location/orientation and the workspaces that must be reached for each application problem. For (a) and (b), the end-effector must reach
the entire workspace volumes while for (c), it must reach a series of points along the periphery of the car panel.

manner using the Box-Muller transform [39] and the values
of µi and σ2

i . Note that if necessary, we clip the values
of sampled solutions such that the dimensional limits per
di,lb ≤ xi ≤ di,ub in Eq. 1 are respected.

If the objective function can be computed quickly, such as
the total length of the robot, we could repeat sampling until
the objective value of each solution in the new population is
less than the best objective value found so far. In other words,
we only accept a sampled solution for the next generation if

f(Dsampled) < fbest (14)

We call this strategy as select generation and evaluate its
effect on the algorithm’s convergence rate in the Experiments
section.

5) Iterate Steps 2-4: Steps 2 to 4 are repeated with the
newly generated population until meeting a convergence cri-
terion or a maximum number of iterations allocated.

V. EXPERIMENTS

The optimization method is evaluated using three applica-
tion problems. The first two are problems given to Otherlab
Inc. (the last author’s affiliate) by its clients while the last
problem is created to test the torque minimization capability
of the method. The workspaces of each problem can be seen
in Fig. 3. All dimensional units in this section are in cm.

A. Application Problems

The first application is a two-arm dexterous manipulation
on a mobile platform. For this application, two arms are
symmetrically mounted on the sides of a vehicle with a camera
equidistant away from them along the line of symmetry. The
workspace is in the camera’s field of view. Fig. 3a represents
the workspace that must be reached by one of the arms,
while the workspace for the second arm (not shown) would
be the mirror image of the workspace shown. The envelop
dimensions of the workspace including the robot arm’s origin
are 80×32×51. The arm’s base is positioned at (0, 0, 0) with
the tangent direction of the base pointing at (0, 1, 0).

The second application is deep sea mining. The workspace
can be seen in Fig. 3b. The robot arm is on a vehicle
orientated such that it is pointing towards the ground. The
vehicle traverses the ocean floor and the arm picks up nodules
rich in rare earth metals and deposits them in a collector. For
this application, we represent the workspace as two disjointed
volumes; the wide short cylinder being a space above the
ocean floor and the thin long cylinder being the collector. The
robot only needs to be able to reach each of the volumes
but not necessarily the space in between them. The envelop
dimensions of the workspace including the both workspace
volumes and the arm’s base are 51×86×61. The arm’s origin
is positioned at (0, 0, 0) with the tangent direction of the base
pointing along (0, 0, 1).

The third application is an industrial automation application
in which there is a series of points that need to be welded on a
car panel. The 3D rendering of the car panel can be seen in Fig.
3c. This application differs from the previous applications be-
cause the target workspace is a series of points located on the
periphery of the car panel boundary. Thirty-two evenly spaced
points are identified along the boundary, with their positions
in the ranges of ([13.7, 37.7], [10.9, 70.3], [0.0,−120.8]). The
robot’s base is positioned at (75.0, 45.0,−70.0) with its tan-
gent direction at (−1, 0, 0).

For all three application problems, we consider a three-joint
continuum robot. The following set of design variables are
considered – the lengths of the first bottom base lb,1, first spine
ls,1, second bottom base lb,2, second spine ls,2, third bottom
base lb,3, third spine ls,3, and third top base lt,3 representing
the end-effector. The imposed dimensional constraints on the
design variables are

4 ≤ lb,1 ≤ 30; 2.675 ≤ ls,1 ≤ 32.1

4 ≤ lb,2 ≤ 30; 2.173 ≤ ls,2 ≤ 26.076

4 ≤ lb,3 ≤ 30; 2.173 ≤ ls,3 ≤ 26.076; 36 ≤ lt,3 ≤ 60

(15)

Note that the top bases for the first and second joints are
ignored and assigned zero lengths for optimization, as they are
redundant design variables with respect to the bottom bases
of the second and third joints.



In addition, minimum bend radius constraints must be
imposed on each joint’s radius (R1, R2 and R3).

10.22 ≤ R1; 8.3 ≤ R2; 8.3 ≤ R3 (16)

A minimum bend radius is the smallest allowed radius that
a joint can take while bending, due to its physical limits.
These constraints are to be respected during the reachability
analysis. For instance, when sampling random configurations
with forward kinematics, the values of Ri should be greater
than those imposed above. Also, when finding the robot
configuration that can reach a particular point using inverse
kinematics, the above constraints restrict the possible values
of Ri considered.

For the first two problems, the objective function is the total
length of the arm, i.e., the sum of all design variables, which
is equivalent to having a lightweight robot. The threshold
for the reachability constraint is set to 0.95, i.e., the robot
must be able to reach 95% of the target points representing
the workspace. For the last problem, the objective function
is the total minimum actuator torque required to reach all
welding points. The torque is for resisting the gravity load
due to the welder device’s mass (1 kg) at the end-effector
and joints’ mass (1 kg each) at their centroids. This torque
minimization problem is solved through Eq. 11 and summing
up the minimum actuator torque values

∑
i ‖~τi(~q)‖ for all the

welding points. We require that all 32 welding points must be
reachable by the robot, i.e., 100% reachability.

B. Rechability Analysis
The 3D workspace for each application problem is created

using CAD software and exported as an STL model. For the
first two application problems, we convert their STL models
into 3D voxels (capturing the interior volumes) with each
voxel sized at 3cm × 3cm × 3cm. Using forward kinematics,
if the end-effector’s position is within a particular voxel, we
conclude that the target point represented by that voxel can be
reached. As for inverse kinematics, we solve for possible robot
configurations that would result in the end-effector’s position
coinciding with the center of each target voxel with the
tolerance ε of 1cm. The lower tolerance is used for the inverse
kinematics because more accurate evaluation of reachability is
desired for solutions that are close to the feasibility threshold.

For the first two application problems, we use the hybrid
approach of incorporating both forward kinematics and inverse
kinematics to estimate the reachability (illustrated in Fig. 4).
First, three million robot configurations (as recommend in
[22]) are generated by randomly sampling the values of Ri and
θi, and forward kinematics for each configuration is performed
to estimate the reachability of a given candidate solution. Then,
inverse kinematics is used if the estimated reachability by the
forward kinematics approach does not meet but is close to
the required threshold. Here, we utilize inverse kinematics to
check on the points that are not reached during the forward
kinematics simulation if the estimated reachability is between
0.9 and 0.95 (the required threshold). This hybrid approach
prevents the algorithm from unnecessarily penalizing a feasible
solution, the reachability of which could be underestimated if
only the forward kinematics approach is used.

(a) (b)

Fig. 4. Reachability analysis performed using the hybrid approach. (a)
First, the reachability is estimated using forward kinematics with randomly
generated configurations. (b) Then, inverse kinematics is used to check
the reachability of those points not reached during the forward kinematics
simulation. Dark blue boxes indicate the points deemed unreachable within
the workspace by the forward kinematics simulation. Red boxes indicate the
missed points confirmed as reachable by the inverse kinematics simulation.

For the last application problem, the 32 welding points are
identified along the boundary of the 3D car panel model. We
use inverse kinematics to check whether all welding points
can be reached or not, while simultaneously solving for the
minimum torque required to reach all those points.

C. Algorithms Compared

We compare the EDA based on a univariate normal distribu-
tion against a genetic algorithm (GA) for all three application
problems. The GA is considered as the benchmark method
because it was used in prior work to optimize a multi-joint
continuum robot considering reachability [22]. The cross-over
and mutation operators used for the GA are the same as those
in [22], with the cross-over and mutation rates of 0.9 and
0.1, respectively. For selection, both algorithms incorporate
the same truncation method with the truncation rate of 0.5.

For the first two application problems, we test two versions
of each EDA/GA. The first version of each algorithm uses the
standard generation procedure at each iteration. On the other
hand, the second version of each algorithm incorporates the
select generation strategy described in the Methods section.
The strategy involves accepting new solutions – sampled from
probability distributions for the EDA vs. created using genetic
operators for the GA – only if their objective value is smaller
than the best objective value found hitherto. Select generation
is repeated until the required population size is met or the
maximum number of trials (=10000) is reached, at which
point the standard generation procedure is used to fill the
remaining population.

For the last application problem, the evaluation of the ob-
jective function requires computing inverse kinematics for all
target points, which is much more expensive than computing
the total length as in the first two problems. Hence, we do not
examine the select generation strategy and compare the EDA
against the GA only with the standard generation procedure.

For all algorithms, the population size of 100 is used. The
maximum iteration number allocated is 20 for the first two
problems and 30 for the last one. The penalty coefficient used
for the reachability constraint is 0.33 for all three problems.



1 3 5 7 9 11 13 15 17 19
Iteration number

90

100

110

120

130

T
ot

al
ro

b
ot

le
n

gt
h

(c
m

)

EDA

EDA select

GA

GA select

(a) Mobile platform

1 3 5 7 9 11 13 15 17 19
Iteration number

90

100

110

120

130

T
ot

al
ro

b
ot

le
n

gt
h

(c
m

)

EDA

EDA select

GA

GA select

(b) Deep sea mining

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Iteration number

20

40

60

80

100

T
ot

al
to

rq
u

e
at

jo
in

ts
(k

N
m

)

EDA

GA

(c) Spot welding

Fig. 5. Summary of optimization results for the application problems. Reported in the y-axis are the objective values of the best feasible solution at each
iteration, averaged from 20 runs for each algorithm. The algorithms with ”select” notation indicate the usage of select generation. In all cases, the final
objective values are significantly lower for the EDA compared to the GA.

Each algorithm is repeated 20 times, starting with the same
randomly generated initial population for each run. For the
results, the average objective values of the best feasible
solution (i.e., the solution that meets the reachability constraint
with the lowest objective value) at each iteration are reported.

D. Results

Fig. 5 summarizes the optimization results and Table I
reports the mean objective values and their standard deviations
found at the end of optimization runs. For all three application
problems, the EDA outperforms the GA in terms of the quality
of the best solutions found at the end. The final objective
values found are significantly lower with the EDA than the
GA (p < 0.0001 for all cases, including with or without
select generation). Note that the standard deviations of the final
objective values found by the EDAs are very low, indicating
a convergence to optimal solutions at the end.

In general, the select generation strategy seems to improve
the convergence rate for both the EDA and the GA, as shown
in Fig. 5. However, for the first application problem, it causes
the EDA to get stuck in a local minimum and the version
with standard generation finds better solutions in the end (p <
0.0001) than the version with select generation. For the second
application problem, the select generation strategy resulted in
significantly lower final objective values for the GA compared
to the standard generation strategy (p < 0.0001).

TABLE I
FINAL OBJECTIVE VALUES FOUND FOR EACH SETTING

Mobile platform Deep sea mining Spot welding
mean
(cm) SD mean

(cm) SD mean
(kNm) SD

EDA 90.3 0.64 92.5 0.69 17.0 1.8
GA 105.3 3.6 104.6 3.0 20.1 2.5

EDA-select 93.4 3.0 92 0.20
GA-select 101.2 5.2 95.9 2.6

In terms of computation time, each optimization run takes
about 3.5 hours for the first two problems and 1.7 hours for
the last problem, on a single desktop computer with two Intel
Xeon CPUs (E5-2650 v2 2.60 GHz) and 32GB of RAM. Note
that because the EDA/GA is a population-based algorithm,

we could run 16 evaluations in parallel during optimization
runs. The computation time for both the EDA and the GA are
roughly the same because the majority of the time is spent on
evaluating solutions vs. other procedures in the algorithms.

In summary, the overall results of our experiments demon-
strate the effectiveness of the EDA compared to the GA
in finding optimal designs of continuum robots considering
reachability constraints. In addition, the select sampling strat-
egy has shown the potential in improving the convergence rate,
although it could lead to premature convergence in some cases.

VI. SUMMARY AND CONCLUSIONS

The current work has presented a computational method to
find optimal designs of continuum robots while considering
reachability constraints. To assess the reachability of a given
robot design, the method takes advantage of both forward
kinematic and inverse kinematic approaches. The former with
randomly sampled robot configurations is used to quickly
estimate the reachability, while the latter is used to further
assess the reachability so that a feasible solution could be
more accurately identified during optimization.

In addition, our implementation of inverse kinematics can
incorporate the minimization of secondary performance cri-
teria, specifically in the current work the minimum torque
required to reach a target point. This capability allows us to
find an optimal design with the total minimum actuator torque
required to reach the workspace.

Lastly, the optimization method is based on the estimation of
distribution algorithm (EDA), a population-based, derivative-
free optimization method that uses a univariate marginal
distribution to estimate and sample promising candidate solu-
tions. It also features a penalty method to handle reachability
constraints and a select generation strategy to increase the con-
vergence rate. Through three application problems, the EDA is
shown to be superior to the genetic algorithm implemented in
finding better solutions within a given number of iterations. In
practice, the method could find optimal solutions in 2-4 hours
rather than the typical 1-2 weeks taken for the manual work
performed by an engineering team. This would drastically
decrease the overall design time and also allow the team to
consider a greater number of alternatives for the final design.



Future work includes considering other performance criteria
of continuum robots, such as their dexterity and manipulabil-
ity. The scalability of the proposed method should be investi-
gated as well, e.g., optimizing robots with more joints. Also,
other derivative-free optimization algorithms or reinforcement
learning techniques can be explored for solving the problem.
Lastly, the current method using the EDA could be extended
to solve other optimal design problems found in robotics.
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