
Kitty: Sketching Dynamic and Interactive Illustrations
Rubaiat Habib Kazi1, Fanny Chevalier2, Tovi Grossman1, George Fitzmaurice1

1Autodesk Research 2INRIA
rubaiat.habib@gmail.com, fanny.chevalier@inria.com, {tovi.grossman, george.fitzmaurice}@autodesk.com

Figure 1: Example of a dynamic interactive illustration authored with Kitty. (a) Objects in the scene are interactive: the egg held

by the cook can be dragged down, as if falling into the pot, triggering subsequent animations, such as soup splashes (b) and closing
of the cat’s eyelids (c). Turning the knob increases the fire and steam (d). The resulting dynamic illustration captures the living

nature of the scene, where the gas stove flames burn and steam emits from the pot.

ABSTRACT
We present Kitty, a sketch-based tool for authoring
dynamic and interactive illustrations. Artists can sketch
animated drawings and textures to convey the living
phenomena, and specify the functional relationship between
its entities to characterize the dynamic behavior of systems
and environments. An underlying graph model,
customizable through sketching, captures the functional
relationships between the visual, spatial, temporal or
quantitative parameters of its entities. As the viewer
interacts with the resulting dynamic interactive illustration,
the parameters of the drawing change accordingly,
depicting the dynamics and chain of causal effects within a
scene. The generality of this framework makes our tool
applicable for a variety of purposes, including technical
illustrations, scientific explanation, infographics, medical
illustrations, children’s e-books, cartoon strips and beyond.
A user study demonstrates the ease of usage, variety of
applications, artistic expressiveness and creative
possibilities of our tool.

Author Keywords
Sketching; interactive illustrations; causal animation.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
Interfaces – Graphical Interface.

“Dynamic pictures will someday be the primary medium for
visual art and visual explanations” – Bret Victor [24]

INTRODUCTION
Due to the recent advances in mobile devices and web
technologies, there is a growing demand for interactive
illustrations to enrich the content found on mediums such as
websites, e-books, and teaching materials. In contrast to
static pictures and videos that are consumed by a passive
observer, interactive illustrations respond to a user’s input,
providing a more playful or informative experience. For
example, an interactive illustration of a mechanical system
invites exploration through interaction as users investigate
hypotheses, which may help develop insights about
significant relationships and causal patterns [11].

Traditionally, crafting such interactive illustrations is
achieved through programming or scripting. This requires
the artist to work with abstract textual representations of
visual entities, their interactive behavior, and their
relationships to other entities. To alleviate these prerequisite
programming skills, researchers and practitioners have
developed notable tools for authoring interactive
illustrations, relying on techniques such as drag-and-drop
interaction [18], sketching [14] or visual programming [24].
While powerful, these tools are usually tailored for special
purpose applications (e.g. simulating blood flow [25]).

In this paper, we present Kitty, a sketch-based tool for
authoring a wide range of interactive dynamic illustrations
(Figure 1). Kitty builds upon Draco [7], a recent system that
allows users to create dynamic illustrations – timeless,
continuous animated textures that capture the living quality
of a scene. Dynamic illustrations are driven by parameters,
encoding visual, spatial, temporal and quantitative
information of the entities. Kitty extends Draco to
incorporate interactivity and functional relationships
between these parameters into the illustrations.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org
UIST ‘14, October 05 - 08 2014, Honolulu, HI, USA
Copyright © 2014 ACM 978-1-4503-3069-5/14/10…$15.00
http://dx.doi.org/10.1145/2642918.2647375

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

395

http://dx.doi.org/10.1145/2642918.2647375

Kitty supports both an authoring and presentation mode. An
artist (author) can produce illustrations to be interacted
with, while a viewer (user) can directly manipulate an
entity’s' parameters (e.g. turn the knob in Figure 1) which
causes subsequent changes of the parameters of the related
entities and animations (e.g. flames burn more intensely).

To specify the interactive behavior of entities, Kitty relies
on an underlying relational graph structure, where nodes
correspond to the entities and edges represent the functional
correspondence between the entities’ parameters. Kitty
displays this graph in the context of the illustration, and
authors can specify edges and their associated functions
through freeform sketching. This enables an intuitive
interaction, without requiring any programming or scripting.

Before presenting the Kitty user interface, we describe a
general framework that can support the authoring of
interactive dynamic illustrations. The generality of this
framework makes our tool applicable for a variety of
purposes, including technical and medical illustrations,
scientific explanation, infographics, children’s e-books,
cartoon strips and beyond. A user study demonstrates the
ease of usage, variety of applications, artistic
expressiveness and creative possibilities of our tool. We
conclude by discussing limitations and future opportunities.

RELATED WORK
The breadth of related works in crafting dynamic
illustrations is large. Here, we focus our review on prior
representative tools for authoring animated illustrations,
explanatory illustrations, and sketch-based user interfaces.

Crafting Dynamic Illustrations
Many tools for crafting various types of dynamic graphics
have been proposed, including tools for creating animations
(e.g., Flash, Maya, 3D Studio Max), presentations (e.g.,
PowerPoint, Keynote), and visualizations (e.g., [2,5]). Of
particular relevance are tools that provide support to specify
relationships between entities and interactivity.

Support for Relational Dynamics
In Flash and visualization toolkits [2,5], entities’ parameters
can be accessed as variables in scripts that enable
coordination between them. Other professional animation
tools allow users to specify procedural relationships
between the attributes of visual entities by scripting
‘Expressions’ with equations. Other systems enable
constrained deformation of shapes using an underlying
model [16] or mesh [14]. While powerful, these tools’ lack
of interactive graphical support to ease the manipulation of
the relationships between entities, and require users to deal
with abstract textual representations. Scratch [18] is another
system relying on visual programming for children to create
their own animations with programmable constructs. Rather
than relying on pre-defined models or programming, Kitty
provides an interface where relationships can be defined by
directly manipulating the underlying relational graph,
displayed in the context of the illustration.

Support for Interactivity
Flash and SLIGHTY [26] enable the creation of interactive
media, but again, this is achieved through programming like
in visualization toolkits [2,5]. Traditional presentation tools
(e.g. PowerPoint) also support interactivity, though they are
typically limited to triggers which progress an animation
through a linear global timeline. Kitty capitalizes on
freeform sketching, and allows artists to directly sketch the
correspondence function between visual parameters. Such
an approach not only facilitates the authoring of expressive
relational patterns, the entities in the resulting interactive
dynamic illustrations can also be directly manipulated.

Systems for Explanatory Illustrations
Static explanatory illustrations (i.e. diagrams) are effective
for communicating design ideas, technical assembly and
scientific concepts [21]. Tools have been proposed to
manually [25] or automatically [13] generate such
diagrams. To depict dynamics, they rely on arrows and text,
which do not convert timing and manner of movements and
require users to infer relations rather than perceive them.

When carefully designed, animated diagrams can yield
benefits beyond their static counterparts [22]. Most of the
tools to create dynamic diagrams rely on physical modeling
[20] or are designed for special-purpose applications, such
as explaining medical phenomena [23] and illustrating
dynamic fluid systems [25], which limits variety of usage.

These tools often employ a graph model to represent the
dynamics of a system [13,25], an effective conceptual
representation to encode relationships. Kitty uses a similar
model, which the artist can directly manipulate through
sketching. The generality of this approach makes our tool
expressive, and applicable to diverse application domains.

Sketch-Based User Interfaces
Sketching is a powerful tool for rapid design and visual
thinking, and many sketch-based applications have been
explored for domains such as interface prototyping [8, 15],
mathematical expressions [9] and data storytelling [10].
Sketching for animation has first been introduced by Baeker
[1], and several subsequent tools have been developed since
[3,7,14]. Most relevant to our work, K-Sketch [3] and
Draco [7] are tools designed to ease animation authoring
through freeform sketching. While Draco allows users to
create rich animation effects, the resulting artifacts are not
interactive and do not capture the functional relationship
between the visuals, whereas in K-Sketch, the relationship
of (non interactive) animated entities are manually authored
through synchronization along a global linear timeline.

Kitty builds on and extends Draco to depict the dynamic
relationships and make them interactive. Kitty relies on the
sketch-based paradigm, and provides a general framework
for the creation of a variety of types of interactive dynamic
illustrations. To our knowledge, this is the first system that
allows authoring of interactive illustrations and functional
relationships between objects through direct manipulation.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

396

Figure 2: Example domains that could benefit from dynamic and interactive illustrations. (a) An infographics with a bubble set

depicting the US budget allocation, in New York Times, (b) a children’s e-book illustration of a monster scene, (c) a medical
illustration explaining blood circulation of the heart, and (d) a technical illustration showing how a mechanical watch works.

MOTIVATION: APPLICATIONS AND PRINCIPLES
With the current growth and advancement of multimedia
devices and web technologies, there are a number of
domains where dynamic and interactive illustrations could
be valuable or are already being deployed, such as
interactive infographics and children’s e-books (Figure 2).
Dynamic illustrations have numerous advantages over static
representations. They can be more compelling and more
engaging, and they can also help depict situational
dynamics of phenomena [22]. The associated authoring
tools, however, often come with a complex interface and
typically require programming skills, which greatly limits
the targeted audience and require a tedious process that may
discourage even the most experienced users. We aim to
alleviate this challenge, by providing an easy-to-use, yet
expressive tool for authoring interactive dynamic
illustrations through freeform sketching and direct
manipulation.

A dynamic illustration consists of visual entities, driven by
parameters representing information that changes over time.
This information is consumed and assimilated by observers
to build knowledge. In order to provide an effective tool for
authoring dynamic illustrations, we need to understand how
our brain processes a visual scene and what types of
information is absorbed. This understanding is imperative
to provide effective support to construct the visual entities,
parameterize the visuals and capture the dynamics.

The Visual Thinking Process
In his influential work The Back of the Napkin [19], Roam
illustrates a simple perceptual framework depicting how our
brain processes information, based upon prior neurological
findings [17]. Roam breaks down the visual thinking
process into the “six W’s” as follows:

• Object Who and What
• Quantity How many and how much
• Position in Space Where
• Position in Time When
• Relations How
• Interpretation Why

When processing a visual scene, we first identify the
objects – visually distinguishable entities, e.g. a dog, a
doorknob – involved, and in which quantity they appear.
Each of these objects and collections of objects occupies a

specific location in the scene, e.g. the dog on the right, the
trees in the background. Given a spatial referential, objects
configuration can be characterized by transformations with
regard to the origin (i.e. translation, rotation and scale). In a
dynamic representation, the objects themselves and their
position can change over time. Our vision system also
tracks these temporal variations, e.g. the dog walks to the
left. Such changes are usually depicted using simple
animation. All three above components (what, where and
when) can effectively define a dynamic visual scene. But
there is much more that the human brain processes than the
individual behavior of objects: we also extract functional
relations between objects, including coordination and
cause-and-effect (e.g. throwing a pebble in a pond results in
water splashes and ripples).

The last two points of Roam’s framework refer to such
relations (how) and subsequent knowledge we construct
through interpretation (why). In other words, when a
particular event occurs and triggers a chain effect, we infer
functional relationships and the impact of one thing upon
another, resulting in new knowledge about causal patterns.

Interactivity
Prior literature on education and learning suggests that
correlations and cause-and-effect relationships are best
apprehended when the observer is given control over the
pace of the animation [11, 22]. Thus, not only is it
important for dynamic illustrations to accurately convey
information, this information will also be best assimilated if
the observer can manipulate the entities directly.

To summarize, a dynamic visual scene consists of visual
entities with spatial and temporal properties. Most research
efforts have been devoted to facilitating the authoring of
such parameters at the individual level of objects and object
collections, while editing functional relations between them
– though critical to the understanding of a dynamic scene –
has not been directly addressed. In traditional animation
tools, the artist is required to manually coordinate temporal
events on a linear global timeline, a tedious process that
leaves little opportunities for interactive exploration of
individual relations. Kitty rather focuses on the importance
of depicting and presenting functional relationships
between visuals entities and depicting knowledge in an
interactive fashion. In the following, we describe the
framework that we designed to meet these goals.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

397

BACKGROUND: DRACO KINETIC TEXTURES
Before describing our new framework, we first provide
necessary background information on the Draco system [7]
which Kitty is built upon. Draco introduced kinetic textures,
an animation component that encodes collections of objects
and their motion. This section recalls these concepts.

A kinetic texture consists of a patch and motion properties.
The patch is a set of representative objects for the
collection. The motion properties – global motion and
granular motion – define an object’s movement. Draco
introduced two types of kinetic textures: emitting textures
and oscillating textures (Figure 3).

Figure 3: Kinetic textures: (a) Emitting texture, defined by a
source patch, emitter (blue), global motion paths (red) and
granular motion, and (b) oscillating texture, defined by a
source patch, brush skeleton (brown), oscillating skeleton

(orange), and granular motion. Figure taken from [7].
Emitting Textures
Emitting textures continuously emit a stream of objects,
following a global motion trajectory guided by motion
path(s) (e.g. fish swimming) (Figure 3a). The objects
emanate from an emitter, and follow a global motion
trajectory, which is guided by an underlying motion vectors
field. This field is computed from a set of motion path(s).
Additional emitting texture attributes include a texture
outline and mask(s). Objects are removed when they cross
the outline, and hide as they pass through a mask. Emission
velocity controls velocity of the objects and the emission
frequency controls the frequency of emissions.

Oscillating Textures
Oscillating textures consist of a duplicated collection of
elements from the patch along a brush skeleton (e.g. leaves
along the stem of a plant) (Figure 3b). The global motion of
an oscillating texture is defined by the oscillatory
movement between the initial brush skeleton and a target
oscillating skeleton. Oscillating textures can also have a
texture outline and mask(s). Additionally, an oscillating
texture has a velocity attribute which defines the speed of
the global oscillations.

Granular Motion
Granular motions can also be applied to individual objects
of the collection: translation defines a two-dimensional path
that the individual objects move within (Figure 3a) and
rotation defines a pivot point and path that the objects rotate
about (Figure 3b). The final trajectory and orientation of
individual objects in the collection results from the
combination of the global and granular motions.

DYNAMIC INTERACTIVE ILLUSTRATIONS: FRAMEWORK
With respect to our motivation, Draco’s kinetic textures
satisfy a subset of the visual thinking process, but provide
no interactivity. Based on these remaining open challenges,
we designed a framework to further support the visual
thinking process and also provide interactivity. Our
framework consists of 1) the objects and collections which
serve as the visual entities in a scene, 2) the parameters
defining the visual properties of these entities, 3) a
relational graph structure which defines the functional
relationships between the entities, and 4) interactivity of the
elements in the dynamic illustration. The key innovations
beyond Draco lie in visualizing and defining the relational
graph and associated correspondence function, configuring
interactivity, and the interactive presentation mode.

Objects and Collections (What and How Much)
A visual scene comprises one or multiple identifiable visual
entities characterized by attributes that define their visual
(e.g. color, shape) and spatial (e.g. location, scale)
properties. In dynamic illustrations, visual entities can be
animated, which adds a set of temporal attributes (e.g.
motion). In our framework, we refer to individual animated
entities as objects, defined by a set of strokes and their
attributes. An individual animated object can have a
continuous ambient motion, e.g. a boat rocking on the sea,
and also global motion, e.g. the same boat moving forward.

Our framework supports collections of objects using kinetic
textures [7] as described above. Both emitting textures and
oscillating can possess both global and granular motion.

Objects and kinetic textures form the base components in
dynamic illustrations. They are characterized by attributes
that define their visual and temporal properties. We also use
a subset of these attributes as parameters in functional
relations and for input control.

Parameters (Where, When, and How Much)
We refer to an attribute as a parameter if its value can be
changed in response to user interaction, or based on other
visual entities’ behaviors. Parameters are used as the basis
of our system to create a dependency mapping between the
visual entities. While any attribute could possibly be
considered as a parameter, we discuss here only the subset
of attributes that we will use for our implementation. Our
choices were guided by informal pilot studies and usage
scenarios curated from various sources such as “how it
works” textbooks, interactive infographics and storybooks,
This helped us identify the type of content and effects to be
supported and subsequently, the attributes that would be the
most useful to have control upon in our framework.

The parameters of individual objects are: translation (along
a trajectory), rotation (about a pivot), scale, opacity and
ambient speed of the object’s continuous ambient motion.

The global parameters for the kinetic textures include
opacity, emission frequency, and emission speed for
emitting textures and opacity and skeleton length for

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

398

oscillating textures. The skeleton length defines how long
the brush skeleton extends. The granular velocity serves as
a single local parameter.
Relational Graph (How and Why)
In a dynamic scene, visual entities can interact with one
another, depicting the coordination and cause-and-effect
relations between them. Similar to prior work on
explanatory illustrations [13, 25], we use an underlying
relational graph to capture such information, where nodes
correspond to visual entities and edges encode the
functional relations between entities’ parameters (Figure 4).

Figure 4: A simplified version of Figure 1 (left) and its

associated relational graph (right).

Nodes
Nodes in the relational graph represent the visual entities –
objects and kinetic textures. The graph of Figure 4 has five
nodes, corresponding to two objects (green nodes), two
emitting textures (blue) and one oscillating texture (orange).
Each node has an associated set of parameters that can be
used to create a functional dependency with other nodes.

Edges
Edges in the relational graph capture the functional
relationship between the parameters of a source node and a
target node. Each edge is directed, and has an associated
functional mapping – a correspondence function that
encodes the dependent behavior from a specific parameter
of the target node to a specific parameter of the source
node. For example, in Figure 4 the steam intensity
(emission frequency parameter) is a function of the rotation
of the knob (global rotation parameter): the more the knob
is turned, the higher the emission frequency will be.

Two types of events could cause a source parameter to
change. If the source entity is interactive, then the
associated parameter could be directly manipulated.
Alternatively, the source parameter itself could be the target
of another relation, making it an intermediary parameter in
a chain effect. In both cases, the target parameter will also
change, as defined by the edge’s functional mapping.

Functional Mapping
To specify the dependent behavior of a target parameter
based on the status of a source parameter, we rely on a one-
dimensional function as follows:

tp = f (sp)
where sp and tp denote the value of the source and the target
parameters of the linked visual entities.

Figure 5: Functional relationship between the translation path

of the egg and the emitting frequency of soup splashes.

For example, in Figure 4 the egg is interactive. Moving the
egg into the pot causes the soup to splash. Here, the relation
involves the translation of the egg as the source parameter
sp, and the emission frequency of the soup splashes as the
target parameter tp. The associated mapping function f is
such that emission frequency is highest when the egg hits
the surface (Figure 5).

Chain Effects
Multiple edges can be combined in sequence, resulting in a
chain of relations across the parameters. In Figure 4, the
global rotation parameter of the knob (object) impacts the
scale parameter of the fire (oscillating texture), which in
turn impacts the emission frequency of the steam (emitting
texture). The resulting chain effect is such that when
turning the knob, the fire increases in intensity, which
causes more intense steam from the pot.

Figure 6: Chain effect with functional relationships.

Interactivity (How and Why)
The interactivity of a visual entity is defined at the node
level. Each node can have one of its parameters assigned
for input control, to enable manipulation. For example, in
Figure 4, the egg’s global translation parameter, and the
knob’s global rotation parameter are both interactive. Note
that a visual entity does not necessarily have to be involved
in a relation to be interactive.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

399

KITTY: IMPLEMENTATION
We designed and implemented Kitty, a sketching tool to
author interactive dynamic illustrations. Artists can create
animated objects and textures and specify how the
parameters of an illustration’s visual entities are related and
respond to each other. Artists can also define how these
objects respond to user interaction. Figure 7 shows the Kitty
user interface, consisting of a main canvas, as well as global
and contextual toolbars. In addition to supporting authoring,
Kitty also provides a presentation mode for both authors
and subsequent viewers to interact with the illustrations.

Figure 7. Kitty user interface comprising: (a) the main canvas,

(b) the global toolbar and (c) contextual toolbar.

Global Toolbar
The global toolbar is comprised of the main drawing tools
and tools for creating animated objects (Figure 7b). It also
provides access to a graph mode, where the artist can define
the underlying relational graph, and to an interaction mode.

The ink tool is the primary drawing tool, and has an
associated color widget, brush thickness slider, and opacity
slider. Artists can select a group of ink strokes with the
lasso stroke selection tool to move or delete them. A pencil
tool is also available to draw a rough outline of an
illustration, which can be deleted with the eraser tool.

Dynamic and interactive entities are created using the
object tool, emitting texture tool, and oscillating texture
tool. The artist can also select an existing visual entity with
the entity select tool and subsequently edit its properties
using the tools in the contextual toolbar (Figure 7c).
Creating Visual Entities
Kitty supports three types of animated visual entities:
objects, emitting textures and oscillating textures.

Creating and Editing Objects
To create an object, the artist starts by sketching the set of
strokes defining the object using the ink tool (Figure 8a).
She then defines these strokes as components of a new
object, by clicking on the object tool in the global toolbar
and selecting the strokes with a lasso (Figure 8b).

The object contextual toolbar allows the artist to further
configure the created object: the translation path tool is
used to sketch a global translation path; the mask tool is

used to draw a mask region where the object is hidden; and
the ambient rotation and ambient translation tools allow
the artist to define continuous motion. For ambient rotation,
a pivot point can first be dragged to set the origin of
rotation (Figure 8c). Specifying ambient rotation and
translation is done through direct manipulation of the
associated object (Figure 8d).

Figure 8: Creating and editing objects. (a) The artist sketches
an egg with the ink tool and (b) defines the strokes as a new
object. (c) Upon creation, the bounding box (green outline)

and default pivot point (in red) are displayed.
The artist drags the pivot point to a new location, and (d)

specifies a continuous motion through direct manipulation
using the ambient rotation tool.

Creating and Editing Emitting and Oscillating Textures
We used similar interactions to Draco’s for authoring
kinetic textures. We refer the reader to the Draco system for
a complete description of the interactions [7]. Sketching the
example strokes and an emitter creates an emitting texture,
while sketching example strokes and a brush skeleton
creates an oscillating texture. The example strokes are also
displayed in a small patch widget which can be used to add
granular motions.

Similar to objects, the artist can edit the components of the
currently selected texture through the contextual toolbar.
For an emitting texture, she can edit the motion paths and
emitter. For an oscillating texture, she can define or edit the
oscillating skeletons. In addition, for both types of kinetic
textures, the artist can define a mask and outline, and induce
granular motion to the texture by directly manipulating the
strokes in the example patch widget.

Defining Functional Relationships
To create functional relationships between the visual
entities, the artist is required to enter the graph mode from
the global toolbar. The system animates to an abstract graph
view of the visual entities and their relations, displayed in
the context of the illustration canvas (e.g. Figure 4). Each
entity in the illustration is automatically associated to a
node in the relational graph.

We use a force-directed layout algorithm [3] to guarantee
minimal distance between nodes, facilitating their selection.
The nodes are also color-coded to distinguish between
objects (green nodes), emitting textures (in blue), and
oscillating textures (in orange). When exiting the graph
mode, visual entities snap back to their original location in
the illustration. Creating a functional relationship between
two visual entities follows a three-step process.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

400

Figure 9: (a) Sketching a path between the source object node (the egg) and the target emitting texture node (soup splash), creates a
relation between the two visual entities. (b) Upon creation, the relation control widget (radial menus and mapping function widget)

are made visible. (c) The artist selects the parameters for the relation, then (d) directly sketches the mapping function.

Step 1: Specify the source and target nodes.
To connect two nodes in the graph, the artist simply
sketches a stroke from the source to the destination node
(Figure 9a), creating an edge between them. All edges are
directed, but if desired, bi-directional edges can be created
by specifying two separate edges in opposite directions.

Figure 10: The parameter radial menus for an object (left), an

oscillating texture (middle) and an emitting texture (right).

Step 2: Select parameters.
Upon creation of an edge, Kitty displays all candidate
parameters of the source and target nodes in radial menus
(Figure 9b). Figure 10 illustrates the radial menus and
parameters associated which each of the three node types.
The artist can select the pair of particular parameters for the
functional mapping by clicking on the corresponding icons
on the menus (Figure 9c). Each edge is associated to one
source parameters sp and one target parameter tp. Creating
multiple edges between the same nodes allows an author to
define mappings for additional pairs of parameters.

Step 3: Specify the functional mapping.
When an edge is created or selected, a function mapping
widget visualizes the functional correspondence between
the associated source parameter sp (x axis) and the target
parameter tp (y axis). By default, this function is set to
identity (tp = sp), which the artist can overwrite by directly
sketching a new curve within the widget (Figure 9d). The
widget is equipped with an exploration cursor that the artist
can drag within the mapping space to help identify relevant
mapping points: when moving this cursor, the visual
entities are automatically updated to preview the
corresponding source and target parameter values.

Kitty also allows an artist to load a mapping function from
an external quantitative data file (csv format), enabling
precise functional relationships between visual entities.
This can be particularly useful in infographics.

Editing Edges and Nodes
Existing edges and nodes can be selected to adjust their
associated parameters and mapping functions. A selected
edge (and associated functional relations) can also be
deleted using the delete tool in the global toolbar.

Setting Interactivity
The interactivity of objects can also be specified in the
graph mode by tapping on a node and selecting the desired
interaction parameter in the radial menu (or the none icon
for no interactivity). In the resulting interactive illustration,
all visual entities with a defined interaction parameter are
considered to be interactive and can be manipulated.

Presentation Mode
The artist can switch to the presentation mode to test the
interactive dynamic illustration. The presentation mode is
also used by subsequent viewers of a saved illustration.

Figure 11: Interaction guides as the user hovers over the

canvas. a) Direct manipulation is used for spatial parameters,
such as rotating the windmill. b) Swiping gestures are used for

non-spatial parameters, such as increasing the wind speed.

Kitty displays red visual cues when the user hovers over an
interactive visual entity with a mouse or stylus, or when the
user taps the screen when using direct touch. These guides
indicate the possible interactive gestures (Figure 11). For
spatial parameters (e.g. rotation and translation), the
expected direct manipulations are used, such as directly
rotating the windmill (Figure 11a). For other parameters,
such as emission frequencies, a swiping gesture towards
and away from the entity will decrease and increase the
parameter value respectively. Figure 11b shows an example
of increasing the wind emission speed.

As the user performs a gesture, the corresponding
parameter’s value changes, and all subsequent dependent
parameters in the illustration are updated in real-time

Chain effects are carried out by traversing the relational
graph, starting at the node of interaction. Any edge which
would induce a cycle is not traversed. This prevents infinite
loops while still allowing for bi-directional relationships.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

401

Resulting Interactive Dynamic Illustrations
Inspired from the examples that motivated us to develop
Kitty (Figure 2), we authored several interactive dynamic
illustrations using our tool (featured in Figure 13-Figure 15
and in the accompanying video): a weather infographics, a
technical illustration without kinetic textures showing how
car steering operates, a comic-style animation illustrating
the passing of time, and a children’s illustration. These
results help demonstrate the creative capabilities and
expressive power of Kitty.

USER EVALUATION
We conducted a user evaluation with both professional and
amateur animators and illustrators, to gain insights about
the capabilities and potential applications, and identify any
limitations or opportunities for future advancements. This
study was also used to gather feedback on how our system
compares to existing approaches, although we do not
perform any sort of formal comparison to existing
commercial tools.

Participants
We recruited eight participants (2 female) aged 24-45 for
our study. Participants completed a questionnaire about
their background before the study began: all participants
have moderate to good experience with sketching and
illustration and are proficient with sketch-based digital
painting tools. Two were professional animators (P5, P8),
and the six other participants had little to moderate
experience with animations.

Study Protocol
The study was conducted using the Wacom CINTIQ 21ux
tablet display at our laboratory or at the professional
animators’ studios. The evaluation lasted for approximately
60 minutes, consisting of the three following steps.

Overview and training (20-25 minutes). Participants
completed five training tasks designed to familiarize them
with the system’s drawing tools, kinetic textures, visual
entities functional relationships, and interaction modes. The
facilitator provided light guidance during these tasks.

Exercise task (15-25 minutes). At the end of the training,
participants were given an exercise task (Figure 4) to
reproduce with Kitty. The exercise task required
participants to author five visual entities, including two
objects (egg, knob), two emitting textures (soup splash,
emitting smoke) and one oscillating or emitting texture
(fire) on top of a provided background image. Participants
were also required to coordinate and create the four
functional relationships between the entities. A video of the
target scene was prompted in a separate display to facilitate
the task. The facilitator recorded observations but did not
intervene during the exercise task.

Freeform usage (20-25 minutes). After completing the
exercise task, participants were free to explore the tool on
their own to craft illustrations. Participants then completed
a questionnaire about the system.

Results
In general, participants responded positively to the user
interface and functionality of Kitty. Participants commented
that crafting visual entities and specifying their
functionalities was easy to learn and use. On a 5-point
Likert scale (1=very difficult to 5=very easy), participants
rated 4.4 on average for the ease of crafting visual entities
(min: 4) and also 4.4 for the ease of specifying functional
relationships (min: 4).

All participants commented that specifying and sketching
the functional relationship was simple to comprehend and
easy to use. We were encouraged to see that all of them
were very quick at picking up the mechanisms behind the
graph structure and the mapping function. The visualization
in the graph mode (color coded nodes, radial menus, edges)
facilitated the association between the graph elements and
their corresponding visual entities (objects and textures).

Participants commented that crafting interactive
illustrations using the conceptual relational graph in Kitty
would be tedious and time consuming with other tools. Our
participants were proficient with Flash (all but P1 and P2),
ToonBoom Harmony (P8) Maya (P2, P5), PowerPoint (P1,
P6, P7), After Effects (P4) and Lightroom (P5) to create
animated and interactive contents.

P1: “Very nice to use, fluid interaction; can create results that
I cannot imagine doing any other way.”

P6: “Just four tools to do anything, I cannot get myself lost!
For the use I have of animation [Note: presentations], it’s
more than enough and give me finer control than timeline.”

P8 [pro]: “I only bothered adding interactivity to animations
for my website. I know how to make them with Flash, but
programming the most basic interactions takes me forever.
I’m really impressed I made this [exercise task] so quickly.”

P1 pointed out that functional relations in Kitty provide an
elegant alternative way to coordinate animations,
conceptually easier to create and manipulate in contrast to
timeline based 2D animation systems that require planning.
P5 and P7 also found that the timeless nature of Kitty
alleviates planning requisites, enabling a more spontaneous
and playful authoring.

P1: “I use PowerPoint to create animated technical diagrams,
having a timeline with relative events starting one after
another. So, if I have to change anything, I have to re-order
all the transitions […] this [system] is much more flexible to
co-ordinate between the animations.”

P3: “I like the ability to create functional animated graphics
in a matter of minutes… It’s almost like being able to do Flash
stuff without learning ActionScript and being bothered by
timeline… I have to prepare a day to figure out how to do this
(exercise task) with Flash.”

P6: “If I had this tool in PowerPoint, I would put interactive
illustrations everywhere in my presentations. For now, I
merely create very basic animations, because it takes me too
much time to craft something satisfying.”

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

402

Exercise Task Performance
All the participants were able to complete the exercise task
without assistance. On average, the participants took 22
minutes (min 9:30, max 34:00) to complete the exercise
task. This is encouraging to us, indicating that after only a
short training period, participants could accomplish realistic
tasks is reasonable time duration. During the studies, our
eight participants encountered 10 errors in total. Errors
include drawing an edge in wrong direction (twice by one
participant), tool mix-up when participants created an
emitting texture when the intended effect was an oscillating
texture (twice), and choosing the wrong parameter (three
times, the task required to select emission, but the
participant chose velocity). A common mistake was that
participants did not initially specify the interactivity of the
nodes (8 times). This was easily resolved in all cases, but
participants had assumed that interactivity was
automatically specified. Several participants accidently
added ambient rotation to the knob, causing the knob to
rotate continuously.

Observed strategies
Participants used different strategies to author the entire
illustration. Three participants broke down the process into
three phases, first drawing all of the visual entities involved
in the illustration, then setting interactivity for all of them,
and finally specifying the relationship with repeated
switches between the graph mode and the presentation
mode for fine tuning. The other five participants broke
down the process by relations instead. For each of the three
relations, they started with the creation of the source and
the target nodes, then directly entered the graph mode to
specify the relation before checking the result in the
presentation mode. Almost all the participants used control
points to coordinate the animations and the functional
relationships, which they commented was a useful addition
for quick exploration of the mapping space.

Overall, the strategies used demonstrate that Kitty requires
little planning: we observed the participants complete the
subtasks as they came to mind. This suggests that the
underlying graph abstraction was a suitable design.

Follow-Up Usage
Two of the participants volunteered to continue to use the
tool after the study and sent us sample illustrations which
they created (Figure 16 and Figure 17).

DISCUSSION
Our evaluation indicates that users are able to quickly grasp
the concepts of the Kitty system and author their own
illustrations after only a short training period. Our
observations of user strategies demonstrated that the system
is flexible to a variety of effective workflows. The sample
content created by two of our participants, in addition to the
samples which we have created, demonstrates that Kitty
successfully provides a sketch-based interface for authoring
a variety of rich interactive and animated effects.

While these are all encouraging results, there are also a
number of limitations and opportunities for future
improvements that warrant discussion.

Limitations

Grouping of Visual Entities
Currently, Kitty does not support the definition of groups of
visual entities. Objects and kinetic textures are the atomic
components of our system and cannot be grouped into
collections. Such hierarchal groupings would allow for
richer animation expression, and could also speed up
repetitive operations. In particular, grouping visual entities
into hierarchal-objects would allow the coordinated
movement of multiple animated elements that together form
some higher level object (P5, P6).

Grouping objects or relations would also allow authors to
apply common parameters to a set of visual entities in a
single interaction. Participants said it would be helpful if
they could replicate the same mapping function across
relations (P7, P8). One participant wanted a smoke emitting
texture to follow the global motion of a car (P5), which is
not currently supported.

Time-varying parameters
Kitty occupies an interesting space between the timeless
dynamic illustrations composed of looping animated
textures, and traditional animations based on a global
timeline. The timeless nature of Kitty’s visual entities is at
the root of the underlying conceptual framework. However,
some participants mentioned that they would like to have
controls for more sophisticated storytelling, such as
deformations over time, or the redefinition of the motion
paths and masks of visual entities according to an another
entity’s parameter (P2, P7, P8).

Sophisticated effects
Kitty does not support sophisticated effects such as inter-
object interactions, temporal relationships and underlying
physics (momentum, gravity), which would enable to create
substantially complex scenes with natural dynamics. In the
future, it would be interesting to explore the combination of
sketch-based and physics-based animation effects.

While designing Kitty, we chose expressiveness and
simplicity over sophistication, offering an alternative to
complex professional tools. We feel the existing system
supports sufficient complexity to allow for a wide range of
content. New features would make it more powerful, but at
the detriment of ease of usage.

Scalability
Our system has an upper bound on the number of nodes,
depending on the screen size. As the number of nodes and
edges increases, the graph gets complicated. Grouping
objects as discussed above could partly address these
scalability limitations. Layers and storyboarding are other
traditional ways of decomposing complex (spatio-temporal)
visual content into sub-components that are more
manageable for manipulation.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

403

Applications
Participants pointed out a number of potential application
scenarios apart from artistic use cases, including technical
and scientific diagrams, presentations, education material,
interactive comics, e-books, prototyping, data journalism,
point-and-click games, and more broadly, visual media for
the web. Currently, we use our own file format to store
interactive illustration authored with Kitty. The ability to
export dynamic illustrations in an HTML5 format (P8)
would certainly contribute to the adoption of Kitty.

CONCLUSION
We have presented Kitty, a sketching tool to author
animated and interactive illustrations driven by parameters.
Kitty enables artists to create functional correspondence
between visual entities with freeform sketching, offering a
new way to author dynamic systems. Kitty is particularly
beneficial in that dynamic and interactive illustrations can
be authored in the matter of minutes, without any scripting
or programming prerequisites. Overall, participants found
the associated framework to be simple, yet expressive. We
believe tools like Kitty requiring no programming language
might place crafting high quality interactive and dynamic
contents in the hands of a broader audience.

ACKNOWLEDGEMENTS
We thank Guia Gali and Mathieu Nancel for their
illustrations. The cat in Figure 1 is drawn in likeness of
Simon's Cat, used with permission of Simon's Cat Ltd.
Copyright © 2009-2014.

REFERENCES
1. Baecker, R.M. (1969) Picture-Driven Animation. AFIPS

Spring Joint Computer Conference, 273-288.
2. Bostock, M., Ogievetsky, V., & Heer, J. (2011). D³ data-

driven documents. Visualization and Computer
Graphics, IEEE Transactions on, 17(12), 2301-2309.

3. Davis, R. C., Colwell, B., & Landay, J. A. (2008). K-
sketch: a ‘kinetic’ sketch pad for novice animators.
ACM CHI, 413-422.

4. Fruchterman, T. M., & Reingold, E. M. (1991). Graph
drawing by force-directed placement. Software: Practice
and experience, 21(11), 1129-1164.

5. Heer, J., Card, S.K., Landay, J.A. (2005). prefuse: a
toolkit for interactive information visualization. ACM
CHI, 421-430.

6. Igarashi, T., Moscovich, T., & Hughes, J. F. (2005). As-
rigid-as-possible shape manipulation. ACM Trans. on
Graphics 24(3): 1134-1141.

7. Kazi, R. H., Chevalier, F., Grossman, T., Zhao, S. &
Fitzmaurice, G. (2014) Draco: Bringing Life to
Illustrations with Kinetic Textures. ACM CHI, 351-360.

8. Landay, J. A. & Myers, B.A. (2001).Sketching
Interfaces: Toward More Human Interface
Design.Computer 34(3):56-64.

9. LaViola, J. J., & Zeleznik, R. C. (2007). MathPad 2: a
system for the creation and exploration of mathematical
sketches. SIGGRAPH courses.

10. Lee, B., Kazi, R. H., & Smith, G. (2013). SketchStory:
Telling more engaging stories with data through
freeform sketching. IEEE TVCG, 19(12), 2416-2425.

11. Lowe, R. (2003). Animation and learning: selective
processing of information in dynamic graphics.
Learning and instruction, 13(2), 157-176.

12. Miller, T., & Stasko, J. (2001). The InfoCanvas:
information conveyance through personalized,
expressive art. ACM CHI Extended Abstracts. 305-306.

13. Mitra, N. J., Yang, Y. L., Yan, D. M., Li, W., &
Agrawala, M. (2010). Illustrating how mechanical
assemblies work. ACM Trans, on Graphics, 29(4), 58.

14. Moscovich, T. (2001). Animation sketching: An
approach to accessible animation. Master's Thesis, CS
Department, Brown University.

15. Newman, M. W., Lin, J., Hong, J. I., & Landay, J. A.
(2003). DENIM: An informal web site design tool
inspired by observations of practice. Human-Computer
Interaction, 18(3), 259-324.

16. Ngo, T., Cutrell, D., Dana, J., Donald, B., Loeb, L., &
Zhu, S. (2000). Accessible animation and customizable
graphics via simplicial configuration modeling. ACM
SIGGRAPH, 403-410.

17. Ramachandran, V.S., & Blakeslee, S. (1998). Phantoms
of the brain: Probing the mysteries of the human mind.

18. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., & Kafai, Y. (2009).
Scratch: programming for all. Communications of the
ACM, 52(11), 60-67.

19. Roam, D. (2008). The back of the napkin.
20. Scott, J., & Davis, R. (2013, October). Physink:

sketching physical behavior. ACM UIST adjunct. 9-10.
21. Suwa, M., & Tversky, B. (2002). External represen-

tations contribute to the dynamic construction of ideas.
Diagrammatic representation and inference. 341-343.

22. Tversky, B., Heiser, J., Mackenzie, R., Lozano, S., &
Morrison, J. (2008). Enriching animations. Learning
with animation, 304-356.

23. Vainio, T., Hakkarainen, K., & Levonen, J. (2005).
Visualizing complex medical phenomena for medical
students. ACM CHI. 1857-1860.

24. Victor, B. (2009). Drawing Dynamic Visualizations.
CUSE.

25. Zhu, B., Iwata, M., Haraguchi, R., Ashihara, T.,
Umetani, N., Igarashi, T., & Nakazawa, K. (2011).
Sketch-based dynamic illustration of fluid systems.
ACM Trans. on Graphics, 30(6), 134.

26. Zongker, D.E., & Salesin, D. (2003). On creating
animated presentations. ACM SIGGRAPH, 298-308.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

404

APPENDIX: AUTHOR AND PARTICIPANT GENERATED EXAMPLES

Figure 12 [author generated]: Animated weather infographics which updates dynamically as the user slides the calendar marker.

Figure 13 [author generated]: An interactive mechanical diagram illustrating how car steering operates.

Figure 14 [author generated]: An interactive comic-style animation. Time passes as the user drags the plant or the clock hand.

Figure 15 [author generated]: An interactive children’s illustration. Animations respond to user interactions.

Figure 16 [participant generated]: A user drags the elephant across the horizon, and the sun rises.

Figure 17 [participant generated]: Dr. Frankenstein’s Laboratory comes to life when the user pulls the lever.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

405

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Crafting Dynamic Illustrations
	Support for Relational Dynamics
	Support for Interactivity

	Systems for Explanatory Illustrations
	Sketch-Based User Interfaces

	MOTIVATION: APPLICATIONS AND PRINCIPLES
	The Visual Thinking Process
	Interactivity

	BACKGROUND: DRACO KINETIC TEXTURES
	Emitting Textures
	Oscillating Textures
	Granular Motion

	DYNAMIC INTERACTIVE ILLUSTRATIONS: FRAMEWORK
	Objects and Collections (What and How Much)
	Parameters (Where, When, and How Much)
	Relational Graph (How and Why)
	Nodes
	Edges
	Functional Mapping
	Chain Effects

	Interactivity (How and Why)

	KITTY: IMPLEMENTATION
	Global Toolbar
	Creating Visual Entities
	Creating and Editing Objects
	Creating and Editing Emitting and Oscillating Textures

	Defining Functional Relationships
	Step 1: Specify the source and target nodes.
	Step 2: Select parameters.
	Step 3: Specify the functional mapping.
	Editing Edges and Nodes

	Setting Interactivity
	Presentation Mode
	Resulting Interactive Dynamic Illustrations

	USER EVALUATION
	Participants
	Study Protocol
	Results
	Exercise Task Performance
	Observed strategies
	Follow-Up Usage

	DISCUSSION
	Limitations
	Grouping of Visual Entities
	Time-varying parameters
	Sophisticated effects
	Scalability

	Applications

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX: AUTHOR AND PARTICIPANT GENERATED EXAMPLES

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 19.69, 315.94 Width 29.97 Height 61.65 points
 Origin: bottom left

 1
 0
 BL

 6
 AllDoc
 7

 CurrentAVDoc

 19.6933 315.935 29.9681 61.6487

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 11
 10
 11

 1

 HistoryList_V1
 qi2base

