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ABSTRACT 
An instructional approach is presented to improve human performance in 
solving Bayesian inference problems. Starting from the original text of the 
classic Mammography Problem, the textual expression is modified and 
visualizations are added according to Mayer’s principles of instruction. These 
principles concern coherence, personalization, signaling, segmenting, 
multimedia, spatial contiguity, and pre-training. Principles of self-explanation 
and interactivity are also applied. Four experiments on the Mammography 
Problem showed that these principles help participants answer the questions 
at significantly improved rates. Nonetheless, in novel interactivity conditions, 
performance was lowered suggesting that more interaction can add more 
difficulty for participants. Overall, a leap forward in accuracy was found, with 
more than twice the participant accuracy of previous work. This indicates that 
an instructional approach to improving human performance in Bayesian 
inference is a promising direction. 
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 INTRODUCTION 
Human decision making under uncertainty has been studied for decades. Due to poor 

accuracy in answering these kinds of problems, researchers have investigated two primary 
modifications to early works in Bayesian inference in hopes of improving human judgment: 
the use of frequency formats in the textual descriptions of the problems, and the addition 
of visualizations of the numeric values and/or the structure of the problem. The classic 
Mammography Problem (Eddy, 1982) is often used in studies as a representative instance 
of a class of Bayesian inference problems and we adopt this problem in our decision 
making study as well. 

The Mammography Problem is a good testbed problem for studying judgement 
performance as it hits a number of interacting challenges for people. The high level of 
difficulty typically yields a low performance for correct responses of only 20%, yet the 
results have been replicated many times without significant variation. While a base-rate 
bias (Tversky & Kahneman, 1981) and the numeric format of probabilities (Gigerenzer & 
Hoffrage, 1995) have been proposed as major barriers keeping people from correctly 
answering the problem, the underlying cognitive mechanisms at play in this vexing 
problem are still unknown. 

The high level of adoption of the frequency format in the study of Bayesian inference 
problems (e.g., “10 out of 100”), over the use of normalized probabilities (e.g., “0.1”) or 
percentages (e.g., “10%”), indicates the general acceptance of frequency format as a useful 
modification in problem formulations (Gigerenzer & Hoffrage, 1995) albeit with some 
contradictory evidence (Ayal & Beyth-Marom, 2014; J. S. Evans, Handley, Perham, Over, 
& Thompson, 2000). However, despite the large number of studies on the augmentation of 
Bayesian problems with visualizations, there has not been a single type of graph or chart 
that has generally been adopted as a useful modification (Khan, Breslav, Glueck, & 
Hornbæk, 2015; Micallef, Dragicevic, & Fekete, 2012). 



In addition to numeric format and accompanying visualizations, as two classes of 
modifications to the expression of Bayesian problems, we propose the adoption of the 
Principles of Instruction as a third avenue of worthwhile investigation. A significant body 
of research was amassed on human information processing in learning that Richard Mayer 
summarized into ten principles to help guide the design of multimedia learning (Mayer, 
2008). 

In this paper, we contribute new designs of the textual, graphical, and interactive 
expression of the classic Mammography Problem by applying instructional science 
principles. We evaluate these designs through a series of crowdsourcing experiments that 
demonstrate novel insights into the expression of Bayesian inference problems. 
Specifically, we apply the instructional principles of coherence, personalization, signaling, 
segmenting, multimedia, spatial contiguity, and pre-training as defined by Mayer (Mayer, 
2008). We also apply a form of the Self-Explanation Principle (Wylie & Chi, 2005) and a 
proposed Interactivity Principle (Wang, Vaughn, & Liu, 2011). By using established 
guidelines, our approach provides the benefit, over ad hoc methods, of probing the problem 
and developing novel expressions of the problem in a systematic way. And as the Principles 
of Instruction are based on the Cognitive Theory of Multimedia Learning (Mayer, 2005), 
exploring these principles on Bayesian inference problems may provide new insights into 
the cognitive demands of this class of decision making problem. 

 RELATED WORK 
The classic Mammography Problem began with Casscells et al. (1978) and Eddy (1982) 

to test understanding of probabilistic reasoning in medicine. The surprisingly poor 
performance of medical students and professionals in answering this question led to the 
broader interest in this problem in the decision making and visualization communities. One 
common version of the textual form of the problem is:  

At age forty, when women participate in routine screening for breast cancer, 10 out of 1000 will have breast 
cancer. However, 8 of every 10 women with breast cancer will get a positive mammography, and 95 out of 
every 990 women without breast cancer will also get a positive mammography. 

Given a new group of women at age forty who got a positive mammography in routine screening, how 
many of these women do you expect to actually have breast cancer? 

While the Mammography Problem may seem to be very specific, it represents an 
important class of Bayesian inference problems that occur for many people in daily life. 
As will be shown, by adopting an instructional approach we come much closer to helping 
people solve this important problem in real-world critical decision making scenarios 
including medical and financial decision making. 

As this class of problem has been studied by many researchers for decades, it should be 
noted that it generally follows the original scenario which does not explicitly state any prior 
beliefs to be updated. Therefore, even though this problem class is often said to test 
“Bayesian reasoning”, it has been recommended that this problem be called “statistical 
inference” (Mandel, 2014). However, as this dismisses the applicability of the mechanics 
of Bayes Theorem in understanding and calculating an answer, we adopt the hybrid name 
“Bayesian inference” for the Mammography Problem class. 



 
 

 Textual and Numeric Format 
Previous work has shown how various ways of transforming the textual representation 

and the numeric format of the problem can affect Bayesian inference performance (J. S. 
Evans et al., 2000; Gigerenzer & Hoffrage, 1995; Ottley et al., 2016). This paper also 
presents a number of transformations to the Mammography Problem and questions what 
effect these changes may have. So, to preserve a meaningful way to measure the effect of 
these changes compared to previous work, we do not change the format for the numeric 
answer that participants are asked to provide. We therefore present participants with the 
traditional frequency format of numeric information to support direct comparisons to 
previous work (e.g., “ (subset)  out of  (set) ”) (Gigerenzer & Hoffrage, 1995). In this way, 
we avoid introducing a confounding factor by asking a different question from the 
traditional Bayesian inference question. 

 Visualization 
The use of static graphs, charts, and diagrams to augment Bayesian inference problems 

has been studied in human-computer interaction (Brase, 2008; Breslav, Khan, & Hornbæk, 
2014; Cole, 1989) and information visualization (Micallef et al., 2012; Ottley, Metevier, 
Han, & Chang, 2012) but with generally poor performance (Calvillo, DeLeeuw, & Revlin, 
2006). Furthermore, in a recent study, it was shown that static visualizations in these 
problems offer no benefit over completeness of information in a text-only form (Khan et 
al., 2015). That is, while visualizations generally provide increased performance over text 
alone, this same level of performance increase can be achieved by providing a table of all 
the values involved in finding the correct answer without any type of diagram.  

An ongoing debate (Brase, 2008) between frequency coding proponents and nested-set 
proponents, together with the questionable benefits of static visualization (Khan et al., 
2015), motivates the focus of the current paper. In this work, we examine an alternate 
direction in improving Bayesian inference by examining the problem from an instructional 
perspective. 

 Principles of Multimedia Instruction 
We review the ten principles of multimedia instruction (Mayer, 2008) (see Figure 1) 

and describe how they may apply to problems involving Bayesian inference. Note that we 
focus on instruction for problem comprehension and are not testing learning per se, for 
example retention or generalization to novel problems. As our target population of interest 
is the general public receiving medical or financial information on which to base critical 
decisions, our focus is on improving naïve statistical inference in untrained participants 
given only a single problem instance.  

Principle Definition 
Reducing Extraneous Processing 

Coherence Reduce extraneous material. 
Signaling Highlight essential material. 
Redundancy Do not add on-screen text to narrated animation. 
Spatial Contiguity Place printed words next to corresponding graphics. 
Temporal Contiguity Present corresponding narration and animation at the same time. 

Managing Essential Processing 
Segmenting Present animation in learner-paced segments. 
Pre-training Provide pre-training in the name, location, and characteristics of key components. 



Modality Present words as spoken text rather than printed text. 
Fostering Generative Processing 

Multimedia Present words and pictures together rather than words alone. 
Personalization Present words in conversational style rather than formal style. 

Figure 1: Principles of Multimedia Instruction (Mayer 2008) 

We chose not to include narration or animation in our treatment of the Mammography 
Problem. Therefore, we did not apply the Principles of Redundancy, Temporal Contiguity, 
or Modality. For the remaining Principles, we adapted them from the original multimedia 
context to our decision making purposes. 

Coherence: While it may seem that extra supportive information in a lesson would be 
beneficial to learning, it has been shown that better learning outcomes are achieved when 
extraneous material is excluded. In the Mammography Problem, several opportunities exist 
to simplify the classic problem text using coherence. On the other hand, adding 
visualization and interactivity into the problem may cause extraneous processing thereby 
reducing participant performance. 

Signaling: When it is not possible to further remove material, it may still be possible to 
highlight essential material with headings or other methods to emphasize critical 
information. In the Mammography Problem, we apply bold styling to text that could be 
emphasized and to essential numbers. We also use Signaling to visually highlight, through 
a yellow flash, an area of the screen where content has changed. For example, in the 
experiments presented here, when the “Next Step” button is pressed, the next question and 
answer area are displayed and the background of that area is briefly drawn in a bright 
yellow color to help indicate which screen content has changed guiding the attention of 
participants toward essential material. 

Spatial Contiguity: Poor layout can also cause extraneous processing in participants. 
When captions or labels are not placed together with the object to which they apply, a split-
attention effect occurs as the participant must attend to both locations and conceptually 
integrate the presentation. In the double-tree diagram (see Figure 6) that we employed in 
both static and interactive experimental conditions, we placed the labels inside boxes 
representing the nodes in the tree. In this way, the labels were always with the node to 
which they refer, avoiding the typical arrow pointing from a displaced label to a part of the 
diagram. 

Segmenting: When the learning material is too complex, essential processing could 
overwhelm the participant thereby reducing learning performance. Segmenting breaks 
down a continuous presentation into a number of individual segments, consisting of one or 
two sentences each. At the end of each segment, a “Next” button appears that the 
participant can press to advance the lesson and have the next segment presented.  This 
allows the participant to control the pace of the lesson so that they can cognitively fully 
represent each part before moving on to the next part. We use this within a single page, 
cumulatively revealing new parts of the problem. 

Pre-training: Describing each component before describing a whole system can be 
beneficial to learning. Participants who are already familiar with the components can 
apply more cognitive capacity to building a cause-and-effect model of the system. We use 
this principle in the design of the interactive diagram we present later where the nodes are 
interactively placed into a double-tree diagram. In this way, participants can focus on each 
node label while forming a mental model of the whole system. 



 
 

Multimedia: This principle states that participants learn better from words and 
pictures than from words alone. We use this principle in the design of our experimental 
conditions and in the development of our hypotheses. 

Personalization: Participants learn better when words are in a conversational style 
than in a formal style. This principle recommends the transformation of “the” to “your” 
in text and narration, and the use of less formal terms. We apply this principle to the 
Mammography Problem text in reducing technical jargon, using subjective phrasing and 
making the text gender-neutral. We also modified implied connotations. For example, 
“positive mammography” may sound desirable if it is not known that a mammography is 
a test for breast cancer. Also, there is disagreement in the use of terms such as “chance” 
and “probability” and whether participants interpret terms as representing single-event 
probabilities or as frequencies. As Brase (Brase, 2008) showed that either may be used, we 
preferred “chance” as other terms could be too technical. 

In summary, by considering the Mammography Problem from an instructional 
perspective, a number of potential issues may be revealed and controlled. Other research 
has commented on how sensitive the problem may be to the specific wording (Ottley, et 
al., 2016) and how the text and format of both the problem and the question is often 
“deliberately altered in a number of respects” (J. S. Evans et al., 2000). In particular, Ottley 
et al. (2016) studied problem representation and the effect of individual differences, for 
example, spatial abilities, and tested how these issues influence Bayesian inference 
performance. But by adopting the Principles of Instruction, we introduce a more controlled 
approach to justify alterations to the text as part of the intentional design of the 
experimental conditions. Furthermore, by modifying the problem according to these 
principles, we show how they may be used as a set of guidelines to simplify any given 
problem text. 

 Interactivity 
It has been proposed that an Interactivity Principle be considered together with the 

multimedia Principles of Instruction as the work of Mayer involved interactivity in some 
studies but that it was not discussed at length (Wang et al., 2011). A beneficial interactivity 
effect has been reported (C. Evans & Gibbons, 2007) but it was found to be more 
pronounced for learning transfer than retention. Furthermore, cognitive limits are the 
foundation of the Principles of Instruction implying that when these limits are passed, 
learning will be decreased despite adding more learning activities (Mayer, Heiser, & Lonn, 
2001). On the topic of Bayesian inference, simple interactivity has been touched upon in a 
single study. When participants could show or hide four problem subsets visualized on an 
otherwise static frequency grid, performance increased significantly (Tsai, Miller, & Kirlik, 
2011). However, the Mammography Problem was not tested and the question format was 
not disclosed so results cannot be compared to previous work. 

The concept of interactivity has been discussed in the instructional multimedia domain 
(C. Evans & Gibbons, 2007), the information visualization community (Yi, Kang, Stasko, 
& Jacko, 2007), and is a central topic in the field of human-computer interaction (HCI). In 
cognitive modeling research, related to multimedia learning, the term “interactivity” is 
loosely related to the level of interactivity between the participant and the multimedia 



system, but is more broadly used to describe interactions between sub-models in a 
cognitive architecture (Domagk, Schwartz, & Plass, 2010; Reed, 2006).  

For our purposes, we employ low-level HCI interactivity to add value to otherwise static 
visualizations. Specifically, we use simple highlighting and focus (the Signaling Principle) 
(Dix & Ellis, 1998), control of pace (the Segmenting Principle), and control of objects (the 
Pre-training Principle) (Paas, Van Gerven, & Wouters, 2007; Wang et al., 2011). In 
contrast, high-level interactivity includes control of parameters and complex analysis 
functionality (Wang et al., 2011). 

The interactivity techniques of highlighting and pace control are used throughout the 
experiments presented here and will be described in the following section. However, 
control of objects is only employed to add interactivity to an otherwise static diagram, and 
so, will be described in a later section. We also applied the Principles of Multimedia 
Learning (Wylie & Chi, 2005) in an interactive focus task design (see Figure 8) to be 
discussed in Section 6. 

 EXPERIMENTAL DESIGN 
Four experiments were designed to evaluate the benefits of applying instructional 

principles to the Mammography Problem. In this section we will briefly outline our 
procedure and variables. See our Supplemental Material for a more detailed discussion of 
the experimental design and limitations. 

 Procedure 
The experiment was carried out using Mechanical Turk (MTurk), a crowd-sourcing 

service. We used a between-subjects design, with each participant completing a single trial 
to control against learning effects and fatigue. Each experiment contained two conditions, 
for each condition the participant was shown four pages. First, an introduction page was 
shown describing the rules of experiment and a button to enter the Full Screen mode of the 
browser. 

The second page contained the content of the specific condition being tested. For this 
page we follow the guidelines for page layout, screen resolution and window size to ensure 
legibility and visibility of all content (no scrolling) (Khan et al., 2015). We used 
Segmentation and broke down the problem and question presentation into a number of 
steps. All steps were shown on a single page so each step simply revealed more of the page. 
In this way, participants controlled the pace of the presentation through simple interaction 
by using the “Next Step” button. During each step, the participants had to completely fill 
out the exercise before moving on to the next step. As mentioned previously, we used 
Signaling through highlighting to direct the participants’ attention to the area of the screen 
where the new content appeared (Khan, Matejka, Fitzmaurice, & Kurtenbach, 2005).  

The third page contained a catch question based on the recommendations for 
crowdsourced studies of Downs et al. (Downs, Holbrook, Sheng, & Cranor, 2010) where 
39% of participants were disqualified. On average, in our study, the catch question 
disqualified 32% of participants per condition. The final page requested demographics 
information including gender, level of education, category of occupation, level of statistics 
training, and general comments.  

We kept our survey active until approximately 100 participants per condition completed 
the survey and correctly answered the catch question. Participants were compensated $1.00 



 
 

USD for their participation. The qualification requirement for the study included a Human 
Intelligence Tasks (HIT) Approval Rate ≥ 95% and Number of HITs Approved ≥ 50. 
MTurk workers were restricted to only one trial and only one of the HITs.  In total 1,107 
unique participants were tested across four experiments, however, analysis is reported only 
on 749 of these participants, those who answered the catch question correctly. Each 
participant performed a single test from a single condition. Average completion time across 
the entire group of participants was 5 minutes 19 seconds. 

 Limitations 
A key limitation of using a crowd-sourcing service in an experiment is control of the 

experimental environment, including the time and place that the experiment is actually 
performed by participants. The process starts with the posting of an experiment and 
requesting the number of participants desired. While the time of the posting may be 
controlled, the time of day when a participant will actually perform the experiment cannot 
be. Furthermore, it is difficult to place restrictions on this as participants from multiple 
time zones may be involved.  

Also, the question of generalization is a limitation of the present study. That is, while 
we feel the results presented here are compelling to support the further investigation of 
instruction in Bayesian inference problems, we have only tested the Mammography 
Problem in a number of different forms. To test how the results presented here may 
generalize we could investigate other Bayesian inference problems that have appeared in 
the literature such as the Cab Problem and the Economics Problem (Micallef et al., 2012). 

 Variables  
In all experiments, the independent variable was the condition. An exact answer is the 

value directly entered by the participant. A combined final probability answer is calculated 
by dividing the exact numerator with the exact denominator. The weakness of the 
combined answer is that incorrect thinking may still result in a correct combined answer. 
For simplicity of reporting the results, we only report exact answers, as they most clearly 
convey correct thinking. Thus, the main dependent variable measured is EXACT ∈ { true, 
false }, and is true when the numerator = 8 and the denominator = 103.  

 Results Overview 
We present the results overview here to avoid duplication throughout the paper (Figure 

2). It shows the overall findings of the four experiments as well as the relation between the 
conditions, where some are extended to form other conditions. The most striking aspect of 
the results is that the application of the principles of instruction tripled performance in the 
text-only conditions (experiment 1, from 5% to 16%) and, when a static diagram was added 
to the new text, performance tripled again (experiment 2, 16% to 51%). We discuss the 
results further in the sections of each experiment.  



 
Figure 2: Overview of results for all 4 experiments. Column N shows total number of participants, Column Exact 
shows the number of participants that answered correctly and column  Exact (%) shows the number as a bargraph 
as a percentage of N. Error bars in the column Exact (%) represent 95% confidence interval. Column 𝝌𝝌𝟐𝟐 shows 
Chi-square test with Yates’ continuity correction, * indicated statistical significance with p < 0.05. Column 𝝓𝝓 
shows phi coefficients. Time reports mean and std. dev. of time taken in seconds to fill out the main page of the 
survey. 

 EXPERIMENT 1: TEXT ONLY 
The purpose of the first experiment was to test if changing the text of the problem and 

question used in previous work would impact participant performance. The experiment 
consisted of two conditions, each containing different versions of the text. The first 
condition, TEXT-ONLY, used text taken directly from Micallef et al. (Micallef et al., 2012), 
and the second condition, NEW TEXT-ONLY, used the modified version of the text (see 
Figure 4 and Figure 5). 

To create the text used in the NEW TEXT-ONLY condition, we applied the Principles of 
Instruction (Mayer, 2008) and the Set-inclusion Cue (J. S. Evans et al., 2000). In Figure 3, 
we show the principles being used together with the text changes made. Text was either 
removed, added, or styled (in bold) in a series of stages.  

 
Principle Mammography Problem and Question Text 
Original Text 
from (Micallef et 
al., 2012) 

You know the following information: 
• 10 out of every 1000 women at age forty who participate in routine screening have breast cancer. 
• 8 of every 10 women with breast cancer will get a positive mammography. 
• 95 out of every 990 women without breast cancer will also get a positive mammography. 
Here is a new representative sample of women at age forty who got a positive mammography in routine 
screening. How many of these women do you expect to actually have breast cancer? 
Your answer: ____ out of ____ 

Coherence 
Principle 
(Extraneous 
material is 
excluded. 
Consistency.) 

You know the following information: 
• 10 out of every 1000 women at age forty who participate in routine screening who have a mammography, 

have breast cancer. 
• 8 of every 10 women with breast cancer will get a positive mammography. 
• 95 out of every 990 women without breast cancer will also get a positive mammography. 
Here is a new representative sample of women at age forty who got a positive mammography in routine 
screening. How many of these women do you expect to actually have breast cancer? 
Your answer: ____ out of ____ 

Set-inclusion Cue 
(J. S. Evans et al., 
2000) 

You know the following information: 
• Of 1000 women who have a mammography, 10 women have breast cancer. 
• Of the 10 women with breast cancer, 8 women will get a positive mammography. 
• Of the 990 women without breast cancer, 95 women will also get a positive mammography. 
Here is a new sample of women who got a positive mammography. How many of these women do you 
expect to actually have breast cancer? 
Your answer: ____ out of ____ 

Personalization 
Principle 
(Remove 
technical jargon, 
Gender-neutral, 

You know the following information: 
• Of 1000 people tested for skin cancer, 10 people will actually have skin cancer. 
• Of the 10 people with skin cancer, 8 people will got a test result that says they have cancer. 
• Of the 990 people without skin cancer, 95 people will also get a test result that says they have cancer. 
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Implied 
connotations.) 

Here is a new sample of people who got a test result that says they have skin cancer. How many of these 
people do you expect to actually have skin cancer? 
Your answer: ____ out of ____ 

Signaling 
Principle 
(Highlighting 
essential material. 
Clarify misleading 
information.) 

You know the following information: 
• Of 1000 people tested for skin cancer, 10 people will actually have skin cancer. 
• Of the 10 people with skin cancer, 8 people got a correct test result that says they have cancer. 
• Of the 990 people without skin cancer, 95 people incorrectly get a test result that says they have cancer. 
Here is a new sample of people who got a test result that says they have skin cancer. How many of these 
people do you expect to actually have skin cancer? 
Your answer: ____ out of ____ 

Personalization 
Principle 
(Directed to 
reader.) 

You know the following information: 
• Of 1000 people tested for skin cancer, 10 people will actually have skin cancer. 
• Of the 10 people with skin cancer, 8 people got a correct test result that says they have cancer. 
• Of the 990 people without skin cancer, 95 people incorrectly get a test result that says they have cancer. 
Here is a new sample of people who If you got a test result that says they you have skin cancer, How many 
of these people do what are the chances that you expect to actually have skin cancer? 
Your answer The chances are: ____ out of ____ 

Result You know the following information: 
• Of 1000 people tested for skin cancer, 10 people will actually have skin cancer. 
• Of the 10 people with skin cancer, 8 people got a correct test result that says they have cancer. 
• Of the 990 people without skin cancer, 95 people incorrectly get a test result that says they have cancer. 
If you got a test result that says you have skin cancer, what are the chances that you actually have skin 
cancer? 
The chances are: ____ out of ____ 

Figure 3: Application of Principles of Instruction and Principles of Multimedia Learning to the Mammography 
Problem text. Yellow highlighting indicates changes between steps. 

 Hypothesis 
We hypothesize that changing the problem wording, by incorporating guidelines from 

instructional psychology, would make the Mammography Problem easier to understand 
and lead to more participants answering it correctly. See Figure 4 and Figure 5 for the 
screen designs. Note that each of the four segments, or steps, are revealed after the 
participant presses a “Next Step” button. 

 
Figure 4: Experiment 1 screen for the TEXT-ONLY condition (text in step 1 and 2 specific to this condition). 



 
Figure 5: Experiment 1 screen for NEW TEXT-ONLY condition (text in step 1 and 2 specific to this condition). 

 Results 
A total of 183 participants completed the experiment and answered the catch question 

correctly. The TEXT-ONLY replication condition achieved the same performance of 5% as 
in previous work (Breslav et al., 2014; Khan et al., 2015) (see Figure 2). However, the 
effect of applying the Principles of Instruction to the text is surprisingly high. The NEW 
TEXT-ONLY condition more than tripled performance with 16% correct responses. Chi-
square test with Yates’ continuity correction shows the difference is statistically significant 
(𝜒𝜒2(1, N=183) = 4.7, p < 0.05, 𝜙𝜙 = 0.18, the odds ratio is 0.3). However, the problem is 
still very difficult for participants as, overall, 84% of participants who received NEW TEXT-
ONLY and 95% of participants who received TEXT-ONLY still answered incorrectly. 
Participants did not take a statistically significant different amount of time across 
conditions (F(1, 181) = 0.24, p = 0.65). 

 Discussion: Experiment 1 
The large overall performance improvement in NEW TEXT-ONLY, going from 5% to 16% 

correct, together with a moderate effect size, indicates the importance of carefully 
designing the text in word problems. While previous work has also examined the effect of 
specific phrasing and improving the problem explanation, we cannot directly compare their 
outcomes. For example, Ottley (Ottley et al., 2016) also changed which numbers were 
provided and asked participants to answer two questions instead of one in the traditional 
“out of” form. Evans also carefully controlled text manipulations (J. S. Evans et al., 2000) 
but not on the Mammography Problem text nor those numeric values. 

This surprisingly large performance improvement indicates that inherent text difficulty 
is a critical aspect of Bayesian inference which has not previously been controlled for. By 
reducing language comprehension as a confounding factor, we can better test for statistical 
understanding. These results motivated the second experiment to probe the Multimedia 
Principle by replicating and measuring the effect of adding a static visualization. 

 EXPERIMENT 2: DIAGRAM 
The Multimedia Principle states that pictures and text together is better than text alone. 

Previous work that tested the addition of visualization to the Mammography Problem text 
(Micallef et al., 2012) found this principle to hold and so, we replicated this scenario, but 
with additional principles applied: Segmentation, with some degree of Signaling and 
Spatial Contiguity. In this way, we could also produce a meaningful comparative measure 
of the same condition using the new transformed text, given that the transformation was 
successful in the first experiment. 



 
 

 
Figure 6: Experiment 2 screen for Text-diagram condition. 

Experiment 2 consisted of two conditions, each containing different versions of the text. 
The first condition, TEXT-DIAGRAM, used text taken directly from Micallef et al. (Micallef 
et al., 2012) and the double-tree diagram taken from Khan et al. (Khan et al., 2015). The 
double-tree fully captures the double branching structure of a Bayesian problem, where the 
false-positive/true-positive and false-negative/true-negative symmetry of the problem is 
directly represented. Notably different from previous work is that we did not use color in 
the diagram except to subtly differentiate foreground from background. Previous work had 
strongly colored nodes in the double-tree to convey set containment or disbursement 
relationships. The second condition, NEW TEXT-DIAGRAM, used the transformed version of 
the text (see Figure 6 and Figure 7). 



 
Figure 7: Experiment 2 screen for New Text-diagram condition. 

 Hypotheses 
We hypothesize that the NEW TEXT-DIAGRAM condition will outperform the TEXT-

DIAGRAM condition. In Experiment 1, when the Principles of Instruction were applied, 
performance increased by 11%. Based on that result, we expect a similar increase here. 

 Results 
A total of 197 participants completed the experiment and answered the catch question 

correctly. The TEXT-DIAGRAM condition achieved 32% correct answers (see Figure 2). This 
is notably higher than previous work (20%) (Khan et al., 2015), which may be due to cohort 
makeup, the different node coloring, or the use of the Segmenting, Signaling, or Spatial 
Contiguity principles. Even more impressive is the 51% performance in the NEW TEXT-
DIAGRAM condition, performing better than expected in a seemingly multiplicative way. 
The NEW TEXT-DIAGRAM condition was significantly better performing than the TEXT-
DIAGRAM condition (𝜒𝜒2(1, N=197) = 6.3, p < 0.05, 𝜙𝜙 = 0.19, the odds ratio is 0.46). 
Participants did not take a significant different amount of time across conditions (F(1, 195) 
= 2.93, p = 0.09). 

 Discussion: Experiment 2 
Our hypothesis was confirmed that the performance of the new text diagram condition 

was 51% compared to 32% using the original text in a diagram. This is an even greater 
difference than expected. This strongly suggests that the original expression of the text 
prevented understanding by using technical jargon, not being gender-neutral, and not being 
personalized. Furthermore, from participant comments, it was clear that people really 



 
 

understood the problem when answering correctly in their rephrasing into a set-subset 
format, described below, and were not simply copying the values into the frequency format 
answer boxes without understanding the nested set relations.  

A complicating factor in interpreting the effect of the diagram is the additional 
information it presents to participants. That is, the problem text presents six numeric values 
whereas the diagram includes the complete set of nine numeric values. The effect of adding 
a complete set of numeric values to the text without a diagram was measured in previous 
work to improve performance from 4% to 17.2% (Khan et al., 2015), improving accurcy 
four fold. When a diagram was added, performance improved slightly to 20%. Our 
comparable condition achieved 32%, suggesting that the way the principles of instruction 
were applied to the overall presentation of the problem (Segmenting, Signaling, or Spatial 
Contiguity principles) also played a role in improving performance. However, the 
improvement from 32% to 51% almost doubled the benefit of the new text, suggesting that 
the transformation of the text is as important as the combined effect of providing complete 
information and a diagram. 

 EXPERIMENT 3: INTERACTIVE FOCUS 
As we established that the new text is beneficial to participants, we explored adding 

more Principles of Instruction in this experiment. We added a simple interactive Pre-
Training step, called Interactive Focus resulting in two conditions: INTERACTIVE FOCUS 
(see Figure 8) and NEW TEXT-DIAGRAM + INTERACTIVE FOCUS (Figure 9). Note, as with 
previous experiments, each of the steps were revealed one at a time after the participant 
pressed a “Next Step” button. 

The motivation behind this new Pre-training step (see Figure 10) is to encourage 
participants to form a mental model of set inclusion form (J. S. Evans et al., 2000). We 
found that set inclusion format was used in the open ended comments that participants used 
in explanatory comments in the previous experiments (40 comments overall). For example, 
participants would transpose the values (set-subset) and comment “Out of 10 people, 8 
people would have cancer”. In contrast, the traditional frequency format (subset-set) asks 
participants to answer the problem by filling in blanks in the form “____out of _____”, for 
example “8 out of 10”. We refer to the subset-set order as frequency format, but we call 
the set-subset order focus format to reflect the focusing of the larger context value down to 
the subset value, also called Two-step Frequency (Girotto & Gonzalez, 2001). 

 
Figure 8: Experiment 3 screen for Interactive Focus condition. 



 
Figure 9: Experiment 3 screen for New Text-diagram + Interactive Focus condition. 

To stress the set inclusion principle, we incorporated the Signaling Principle and used 
highlighting as an indicator that the subset of one statement becomes the containing set of 
the next statement, forming a chain. While this could be achieved in a single run-on 
sentence, we felt that Segmenting could apply here as well and we broke down the task 
into three statements, including two focus format statements. As text is entered into one of 
the text entry boxes, the related field in the next statement is immediately updated and a 
yellow background color briefly flashes to guide the participants’ attention toward 
understanding the nested set relations. In Figure 10, we show an example where a 
participant is typing “1000” in the first field, updating the value of the first blank entry of 
the next sentence. On every update (after every keystroke), the background of the field is 
immediately changed to yellow, fading back to white over a transition period of 0.4 seconds. 

 
Figure 10: Interactive Focus step of the experiment. 



 
 

The interactive focus task follows the Self-explanation Principle as a “scaffolded self-
explanation prompt” (Wylie & Chi, 2005) and, as mentioned earlier, the task is analogous 
to the “two-step frequency question” (Girotto & Gonzalez, 2001). In this work, however, 
we posed the problem part (Figure 9, Step 1 and 3) in focus format but used the frequency 
format in the question part (Figure 9, Step 4), again, for meaningful comparison to previous 
work which used this form of the question. 

 Hypotheses 
We hypothesize that adding the static double-tree diagram, in a NEW TEXT-DIAGRAM + 

INTERACTIVE FOCUS condition (Figure 9), will improve performance beyond the 
INTERACTIVE FOCUS condition. 

 Results 
A total of 188 participants complited the experiment and answered the catch question 

correctly. However, the hypothesis was not confirmed. Surprisingly, performance was 
slightly lower in the NEW TEXT-DIAGRAM + INTERACTIVE FOCUS condition than in the 
INTERACTIVE FOCUS condition, from 37% to 34%. The difference was not significant (𝜒𝜒2(1, 
N=188) = 0.04, p = 0.8, 𝜙𝜙 = 0.03, the odds ratio is 0.89), but is surprising, since although 
a double-tree diagram was added, performance was not increased. 

In Figure 11, the three text fields in the interactive focus task are labelled Focus 1, 2, 
and 3 (as they occur in reading order). Exact Focus is the percentage of participants who 
had all three fields correct. Exact Ratio is the percentage of participants who had both 
values correct in Step 4 for their final answer. Exact All means that participants had both 
focus and ratio correct.  

  
Figure 11: Exact Answers for the Ratio in Focus Study. 

All participants correctly entered the population size in Focus 1. Surprisingly, 
participants were correct in Focus 3 more often than in Focus 2 even though the three 
values form a chain of subsets. In both conditions, Exact Focus was higher than Exact Ratio. 
This indicates that the interactive focus task was helpful to most, but not all, participants 
in answering the final question. As the final question was asked in frequency format –not 
focus format– some participants may have been confused by this. On the other hand, using 
formats in the problem that are different from the format of the answer may indeed be an 
improved way to measure understanding. 

 Discussion: Experiment 3 
Doubling the participant performance, from 16% to 37%, by re-arranging the text, and 

asking for three values in the INTERACTIVE FOCUS task, indicates the high value of both the 
focus format and the principles of instruction. Considering that this intervention is neither 
graphical nor informative (no new information is provided), it is surprisingly effective. The 
same calculations must be made as in the NEW TEXT-ONLY condition and some participants 
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commented that “doing the math” was effortful. This seems to corroborate the importance 
of forming a helpful set inclusion mental model (J. S. Evans et al., 2000). 

In contrast, an informative and visual addition to the NEW TEXT-DIAGRAM + 
INTERACTIVE FOCUS condition slightly reduced performance from 37% to 34%. Adding the 
static double-tree diagram to the interactive focus task eliminates the need for any 
computation or estimation as a complete set of data is embedded in the diagram. However, 
this extra information seems to come at the cost of interpreting the diagram which, overall, 
doesn’t increase the performance. While this is consistent with the Coherence Principle, 
which states that “presenting more material results in less understanding”, we were 
surprised by the low performance on this condition.  

The most dramatic outcome is the performance cost of the combined double-tree 
diagram and focus task compared to the double-tree diagram alone; from 51% to 34%. It 
is interesting that when both representations are used, performance is reduced significantly. 
Prior work has shown that redundancy through additional on-screen text caused students 
to perform worse on tests of retention and transfer (Mayer et al., 2001).  

Although the focus task seems to help participants form a useful mental model, the 
diagram alone helps participants in a much more pronounced way. This seems to indicate 
that more than one mental model is effective in the Mammography Problem class or that 
the cost of cognitive overload is much higher than the benefit of the mental model. More 
research would be needed to elucidate these interesting implications. 

 EXPERIMENT 4: INTERACTIVE DIAGRAM 
The purpose of the final experiment was to investigate the effect of increased 

interactivity on participant performance. Specifically, we add a “control of object” task 
(the Pre-training Principle) (Paas et al., 2007; Wang et al., 2011) to the NEW TEXT-
DIAGRAM condition in Experiment 2 and NEW TEXT-DIAGRAM + INTERACTIVE FOCUS 
condition from Experiment 3. In both cases, we simply replace the static diagram with an 
interactive diagram. 

We explore the benefits, or costs, of interactivity in Pre-training through an interactive 
version of the double-tree diagram. The first condition of this experiment, Interactive 
Diagram, is very similar to New Text-Diagram condition (see Figure 5) in Experiment 2, 
except for the dragging task that asks participants to drag labeled boxes into the diagram. 
The dragging task works as follows: as a participant hovers the mouse over the labeled 
boxes, the cursor becomes an open hand icon (Figure 12a), and becomes a closed hand icon 
once the dragging begins. As the participant drags the boxes over empty white rectangles, 
they change color to gray, indicating a possible drop zone (see Figure 12).  If the participant 
releases the box onto a valid drop zone, the box snaps into place, however, if the drop zone 
is not valid for a given box, the box will animate back to the original location. Each 
participant received the same arrangement of nodes (as seen in Figure 12). Note that there 
are 8 possible valid arrangements of the nodes and any one of them could be constructed. 
After the first valid box has been placed, four arrangements are still possible. After the 
second valid box has been placed, the arrangement becomes unique and all the remaining 
boxes have unique valid positions. In order for the participant to move on to the next step, 
participants had to successfully place all the nodes into the diagram. Please see the 
Supplementary Materials for a video of the dragging task in more detail.  

 



 
 

 
Figure 12: Interactive Diagram. (a) Initial state. (b) As a participant drags a box into the tree diagram, the 
empty rectangle is highlighted in gray. Note, the gray motion path and the white arrow were added to better 
illustrate the dragging motion in this figure but did not appear to participants. 

The second condition of the experiment, INTERACTIVE DIAGRAM + FOCUS, was the same 
as the INTERACTIVE DIAGRAM, condition except it also had the INTERACTIVE FOCUS task as 
Step 3. In Experiment 3, a specific participant commented that “The diagram was 
somewhat hard for me to follow. I would have preferred to rearrange it in a manner that 
made more sense to me.” For participants who shared this impression, the interactive 
version of the diagram may be beneficial. 

 Hypotheses 
Motivated by the Pre-training Principal and the Interactivity Principle, we expect that 

adding increased interactivity, will lead to more participants answering the problem 
correctly, as they will have a better undersanding of all the different parts of the problem, 
and their relationship to each other, before attempting to answer the question. 

 Results 
A total of 181 participants completed the experiment and answered the catch question 

correctly. The addition of the focus task to the INTERACTIVE DIAGRAM condition did not 
make any material difference; the INTERACTIVE DIAGRAM condition was very similar to 
INTERACTIVE DIAGRAM + FOCUS, (𝜒𝜒2(1, N=181) = 0, p = 1, 𝜙𝜙 = 0.001, the odds ratio is 
1.002).  

 Dragging Mistakes & Box Arrangment 
We recorded all the dragging events that participants performed, to move the labelled 

boxes onto the diagram, in order to analyze the strategies that participants may have taken 
to complete the diagram. We also recorded when participants dragged a box onto a valid 



node target and the drag operation was valid, or when participants made a mistake and 
attempted to drop a box at an incorrect node target. Overall, in the two conditions of the 
experiment (N=181), participants made an average of 4 mistakes (M=4.3, SD=4.6). 
Interestingly, there was a correlation between mistakes and getting the problem correct 
(Spearman 𝜌𝜌 =  −0.2, p < 0.01) which may indicate that participants who applied some 
level of effort to understand the interactive diagram task were more likely to answer the 
problem correctly. 

Also, there was a significant difference in which boxes resulted in mistakes, see Figure 
13. For example, when dragging a box that had the “897” number in the label, a total of 
267 mistakes were made, while only 49 mistakes were made when dragging the “990” box. 
Both round numbers and single digit numbers were the easiest for participants to place. As 
previous work has not accounted for the complexity of the numbers themselves, this may 
also be an interesting area for future investigation. Incidentally, one participant commented: 
“I think I'm paying more attention to the round and/or easier numbers in the diagram than 
to "103" or "897".” Further investigation into a round number bias in this class of problem 
may be beneficial. 

 
Figure 13: Dragging mistake count for different boxes (181 participants). 

There are eight possible valid arrangements of the boxes in the double-tree diagram, and 
participants were able to arrange nodes in any of those valid arrangements. The most often 
arrangement used (35%) was the same one that we used in the previous experiments as the 
static diagram (Figure 6). As a post-hoc hypothesis, we wondered if different arrangements 
make a difference in terms of participant’s answering the question correctly, but found no 
correlations (Spearman 𝜌𝜌 =  0.05, p = 0.5).   

 Discussion: Experiment 4 
Our hypothesis was not confirmed, as adding interaction to the diagram did not help 

more participants to answer the question correctly. In fact, it appears to have made the 
problem more difficult, possible due to cognitive overload (Mayer et al., 2001). This is a 
surprising result as we expected interaction to be beneficial. This may only have occurred 
due to the high level of difficulty of the Mammography Problem in the first place, 
narrowing the band of usable cognitive effort, and calling for future investigation of the 
effects of interaction on cognitive load. 

Also interesting is the correlation between dragging mistakes and incorrect answers. 
While it is not clear if the mistakes are due to poor understanding of the problem, these 
mistakes could serve as an opportunity to hint to participants which parts of the question 
they need to focus on to better understand the scenario. 
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It may be that a higher degree of Pre-training is needed before conveying the whole 
problem. That is, a greater focus on the components may be needed, including the concepts, 
subsets, and nested-set inclusion. 

 DISCUSSION 
In summary, four experiments were performed to evaluate the application of the 

Principles of Instruction to the text of the Mammography Problem. The results overview 
section reported Chi-square tests and effect sizes between conditions in the experiments 
(Figure 2) showing moderate effect sizes when the problem text was improved and when 
the static double-tree diagram was added to both new and original text. Figure 14 shows 
Chi-square tests and effect sizes across experiments to better convey the effect of the 
interventions. It is important to note that doing so may increase the possibility of observing 
effects of chance, since different experiments were performed at different times. 
Nevertheless, given a large degree of variation between all the conditions (𝜒𝜒2(7, N=749) = 
58.8, p < 0.001), doing a further post-hoc analysis may be useful.  

 

 
Figure 14: Overview of post-hoc tests. Column Sec. gives reference to the section the itmes are discussed.  Column 
N shows total number of participants, column Exact shows the number of participants that answered correctly 
and column Exact (%) shows the number as a bargraph as a percentage of N. Error bars in the Exact (%) column 
represent 95% confidence interval. Column 𝝌𝝌𝟐𝟐  shows Chi-square test with Yates’ continuity correction, *** 
indicated statistical significance with p < 0.001, * indicated statistical significance with p < 0.05. Column 𝝓𝝓 shows 
phi coefficients.  

 Text-diagram versus Text-only 
Even with the original text of the problem, a large effect size was found in adding the 

diagram to the problem text (𝜒𝜒2(1, N=191) = 20.4, p < 0.001, 𝜙𝜙 = 0.34, the odds ratio is 
8.3). Notably, in the text-diagram condition, participant performance was 12 percentage 
points higher in our run of this condition compared to previous work (Khan et al., 2015). 
This may be due to the Principles of Instruction used in the condition design or graphical 
differences in the diagram design. 

 New Text diagram versus New Text-only 
The largest effect size is found when adding the double-tree diagram to the new text 

condition (𝜒𝜒2(1, N=189) = 23.4, p < 0.001, 𝜙𝜙 = 0.36, the odds ratio is 5.3) indicating a 
good balance between the burden and the benefit of interpreting the diagram. Clearly, 
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transforming the text, both in the problem text and within the diagram, was the most 
beneficial to participants. Even though previous work (Khan et al., 2015; Micallef et al., 
2012) indicated that visualization did not have a reliable effect on performance, the large 
effect size in this work clearly indicates that the addition of visualization can dramatically 
help participants in understanding and correctly answering the problem when the text is 
clarified. 

 Interactive Focus versus New Text-only  
INTERACTIVE FOCUS applies the principles of Pre-training, Interactivity, Self-

explanation, Segmenting, and Signaling. As this adds low-level interactivity (C. Evans & 
Gibbons, 2007), we expected that participants will be more engaged and have improved 
learning. The addition of the interactive focus task, using the new text, had a moderate 
effect size compared to NEW TEXT-ONLY (𝜒𝜒2(1, N=186) = 8.8, p < 0.05, 𝜙𝜙 = 0.23, the odds 
ratio is 3.0). This indicates that simple interaction tasks can have a pronounced positive 
effect on performance. In this case, the rate of correct answers was more than doubled.  

 Interactive conditions versus New Text diagram 
Surprisingly, adding dragging interaction to the static tree diagram did not help 

participants answer the question correctly. Participants in both the INTERACTIVE 
DIAGRAM (35%) and the INTERACTIVE DIAGRAM + FOCUS (34%) conditions performed 
worse than the NEW TEXT-DIAGRAM (51%) condition. The difference is statistically 
significant in both cases (see Figure 14). However, while some forms of interaction can 
be beneficial, others may create additional cognitive overload in understanding the 
problem. The hypothesis of cognitive overload as a cause may be supported by two 
factors. First, the interactive tasks were quite different in nature from each other yet 
posed the same cost in performance. Second, the performance achieved in these 
conditions matches the performance in other conditions (approximately 35%) indicating 
some broader cognitive limit may be at play. In future work, we intend to directly map 
these results to relevant parts of the Cognitive Theory of Multimedia Learning (Mayer, 
2005) and design further experiments to elucidate the role of the theory as applied to 
instruction for decision making. 

 Principles of Multimedia Instruction 
We applied the instructional principles of coherence, personalization, signaling, 

segmenting, multimedia, spatial contiguity, and pre-training. All but one of these principles 
seemed to contribute to improved performance. Only Pre-training was not effective, as 
used in the INTERACTIVE DIAGRAM task. This may be due to several factors. First, the 
original application of pre-training was using narration which, according to the theory, 
takes advantage of dual-channel processing, unloading the visual channel and employing 
the auditory channel for pre-training. Second, we may not have sufficiently separated the 
parts from the whole. That is, we did not introduce each object and concept separately 
before introducing the entire problem. This direction may be beneficial to investigate in 
future work. Finally, there may be many other ways to explore pre-training in Bayesian 
inference and the development of a design space may help to better explore this area in a 
systematic fashion. 



 
 

 CONCLUSION 
Bayesian inference problems are important in understanding the reasoning process in 

critical decision making. In addition to the use of frequency format and augmenting the 
problem with visualization, we have proposed the application of instructional science 
principles to the classic Mammography Problem. Considering the maturity of the 
Mammography Problem, the large improvements found in participant performance 
indicate the high value of considering the Principles of Instruction, Self-explanation, and 
Interaction in the design and understanding of Bayesian inference problems. We also 
showed the benefits of the focus format in the problem text and in an interactive task, and 
showed value in augmenting the problem with a double-tree visualization. 

The use of the Principles of Instruction also creates a foundational link between 
cognition and Bayesian inference reasoning. While some work has examined cognitive 
effort in Bayesian inference (Ayal & Beyth-Marom, 2014; Girotto & Gonzalez, 2001), 
more work is needed to explain general participant performance outcomes. Additional 
investigation borrowing from instructional science may provide insights as has happened 
in the work presented here.  

We have just scratched the surface in term of exploring the wide range of interactive 
tasks that may be explored. This work shows that benefits are available but also that 
performance costs are quickly added and that care must be taken to avoid overloading the 
participants. However, adding complexity until participants do get overloaded is also 
informative and indicative of underlying cognitive processes. The use of interactivity has 
also exposed measurable challenges in the numeric values themselves, through dragging 
mistakes. This may be another source of inherent problem difficulty that has not previously 
been discussed. 

Some conditions provided significant benefits to participants while others did not. 
Finding the right balance between the burden and the benefit of a treatment will require a 
more refined understanding of the critical factors than we have today. Investigations into 
this class of problem have, so far, focused only on the benefits of certain interventions and 
have ignored any associated burdens. Ironically, our results indicate that a more Bayesian 
approach to investigating Bayesian inference problems is needed. 
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