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Figure 1: Overview of the identification of users, recognition of activity and inference of expertise from contextual data. 

ABSTRACT 

The recent proliferation of fabrication and making 
activities has introduced a large number of users to a 
variety of tools and equipment. Monitored, reactive and 
adaptive fabrication spaces are needed to provide 
personalized information, feedback and assistance to 
users. This paper explores the sensorization of making 
and fabrication activities, where the environment, tools, 
and users were considered to be separate entities that 
could be instrumented for data collection. From this 
exploration, we present the design of a modular system 
that can capture data from the varied sensors and infer 
contextual information. Using this system, we collected 
data from fourteen participants with varying levels of 
expertise as they performed seven representative making 
tasks. From the collected data, we predict which activities 
are being performed, which users are performing the 
activities, and what expertise the users have. We present 
several use cases of this contextual information for future 
interactive fabrication spaces. 
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1 INTRODUCTION 

Fabrication and making activities have increased in 
popularity with the general population as well as in 
research [6, 12, 45, 48]. These activities have become more 
accessible to a wider range of individuals with varying 
abilities, requirements and skills, but the tools and 
environments used in the process do not sense or adapt to 
the fabrication context. 

Prior work has shown the benefits of detecting the 
workflow or expertise of a user to create adaptive 
interfaces that respond to a user’s context and situation 
[32, 40]. These interfaces can adapt to the needs and goals 
of the user [26] or provide information, feedback, or 
guidance that is more appropriate to the user’s expertise 
and tasks. Likewise, recent work has also demonstrated 
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the need for identifying users, their skill sets, and tasks in 
fabrication spaces through interviews and observation of 
approximately 85 people across 11 local workshops [10]. It 
envisions a “hybrid workshop” that can exploit contextual 
information to “create a personalized space”, “tailor 
assistance based on users’ current skill sets” and “guide 
users towards equipment, practices, and workflows”. We 
believe that having more contextual information will 
allow for novel applications not yet explored, for example, 
by monitoring the tools and activities that are occurring 
within a workshop, a manager of the space could have a 
better awareness of what is happening in the shop at any 
given time, and use the historic information for decision 
support and space planning.  

There is a large amount of work within the ubiquitous 
and pervasive computing literature that examines how to 
sense contextual information from various data sources 
[18, 19, 55]. Often this involves automatically detecting 
activities, occupancy, or usage patterns by instrumenting 
environments, objects and people with sensors [27, 35]. 
However, unlike work on physical activity recognition, 
within the domain of fabrication [14, 20, 21, 57], we 
explore sensorization by instrumenting the environment, 
tools, and users involved in fabrication to detect 
combination of activities, users and their expertise.  

This paper makes three contributions: (1) an exploration 
of how the activities, users and expertise can be detected 
by using a Random Forest classifier to evaluate a 
combination of 29 independent data streams from sensors 
located in the environment, fixed to the tools and 
equipment, and worn on the person performing the 
activities, (2) a study which evaluates the feasibility of this 
approach across seven representative fabrication tasks, 
and fourteen users with varying expertise levels, (3) a 
discussion of the relative merit of environment, tools and 
user-based sensors. Using all sensors available, the system 
predicted user identity with 93.8% accuracy, predicted the 
performed activity with 94.2% accuracy, and could predict 
the expertise with an average RMSE of 1.3 on a 7 point 
scale, which was similar to the human experts’ accuracy. 
Building on our study results, we discuss design 
implications and provide a set of sample applications 
which could make use of the contextual information 
inferred from this newly available data. 

2 RELATED WORK  

This work builds and extends upon prior work in a 
number of domains, including context and activity 
recognition, the identification of skills in physical tasks 
and user identification.  

2.1 Context and Activity Recognition 

Building from Weiser’s initial paradigm [67] of a 
ubiquitous computing environment that responds to 
user’s activities and situations, there has been a multitude 
of research investigating sensing and context recognition.  
A full review of all approaches work in the area is beyond 
the scope of this paper, but summaries can be found in 
several papers [1, 11, 16]; here we outline the more 
relevant prior work. 

Several prior research projects have examined sensing and 
instrumentation of an environment to infer context. A 
number of projects have examined being able to sense 
activities of daily living through cameras, wearable 
sensors, and sensors embedded in objects and 
environments [22, 36, 46, 49]. These approaches typically 
collect multi-dimensional data streams which are used to 
train a classifier that can later identify the context or 
activity being performed. Closer to our work, recent 
approaches have presented novel sensing mechanisms 
that can be worn on the body to detect when different 
appliances or machines or tools are being used, such as 
Ward et al. [66] and Lukowicz et al. [41] who used 
microphones and accelerometers to recognize different 
activities within a workshop context (e.g., sawing, drilling, 
etc.) This approach was extended into a car 
manufacturing context, where the wearable sensors were 
used to track subsequences in an assembly process [61]. 
More recently, generalized sensor packages, such as 
SyntheticSensors by Laput et al. have been used to detect 
several environmental states, including when some 
workshop equipment was powered on through a 
combination of sensing modalities [35]. This paper 
extends these prior approaches by considering the context 
of fabrication and analyzing how the user, tools and 
environment can be instrumented to provide different 
types of contextual information. This paper goes beyond 
identifying what activity is being carried out and attempts 
to identify how that activity is being performed and by 
who. 

2.2 Identification of Skills in Physical Tasks 

Within many domains outside of HCI (e.g., medical, 
sports, dance), there are a number of approaches used to 
measure the expertise of the individual, many of which 
are tailored to the particular domain. To evaluate a 
surgeon’s performance on a laparoscopic 
cholecystectomy, Rosen et al. recorded the force and 
torque applied to the laparoscopic instruments in 3D 
space and used these features to train Hidden Markov 
Models on novice and expert performance [54]. This 
approach is representative of many of the prior 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 324 Page 2



 
 

approaches within the medical domain where the tools or 
objects are instrumented with spatial or force sensors, and 
motion analysis is used to predict expertise [7, 29, 42]. 
Other approaches have instrumented the individual and 
tracked their bodily movements through motion capture 
of the upper body, an approach that’s common in sports 
and dance [3, 4] in addition to medicine [39, 53]. We build 
on this work by integrating sensors throughout the 
environment, in addition to on the tools and individuals, 
and extend it to a novel domain. 

More directly related to the current work is recent work 
on evaluating the skill of tradespeople [20, 21]. Enokibori 
and Mase used wearable accelerometers and gyroscopes 
[20] to measure an individual’s skill by analyzing 
movement during a metal filing task, finding a visible 
difference between coaches and learners in three 
measures computed from the sensor data. Erden and 
Tomiyama used motion analysis to find differences 
between novices and experts in the amount of speed and 
position deviation [21]. We extend these works into 
broader and more generalized fabrication tasks with a 
much richer set of data and more diverse expertise. We 
also evaluate the utility of physiological data for expertise 
inference. 

2.3 User Identification 

User identification technologies span a variety of 
techniques and technologies. Vision-based methods have 
already proved robust and accurate in user identification 
and have been applied in many authentication 
applications [50, 65], and other biometric techniques have 
drawn attention, such as the identification of users from 
body-worn accelerometers or mobile phones [25, 59, 64]. 
More recently, user identification was achieved by sensing 
the body’s electrical properties through electrical 
frequency response sensing [56]. We build on these works 
and try to identify users from their unique characteristics 
– in particular how they use tools, and their natural 
actions as they perform fabrication activities. 

3 INSTRUMENTATION FOR FABRICATION 

Prior work has explored instrumenting spaces, people and 
objects in a variety of use cases, including activity 
recognition, person identification, and identification of 
other contextual information [11]. Fabrication activities 
often occur in spaces that are transitory, dynamic, noisy, 
dangerous, and require manual dexterity [10, 31]. Given 
these considerations, identifying appropriate 
instrumentation to sense the context of these activities 
remains challenging. 

3.1 Sensor Types 

A wide range of sensors are available which may be able 
to provide contextual information in the space of 
fabrication and may have unique considerations within 
this domain. 

Vision 
Cameras provide rich information about a scene, which 
can be obtained through machine learning and computer 
vision algorithms to yield sensor-like feeds. There is a 
large body of work in video-based sensing [24, 44] to 
determine states, activities, and changes in an 
environment. While these computer vision based methods 
are powerful, we deliberately excluded cameras in this 
work since the spaces that fabrication can take place in 
can be large, transitory and dynamic, the issue of 
occlusion can cause loss of information from camera 
streams. 

Audio 
Audio data has proved useful in different context-aware 
applications [35, 41] for sensing the state of the 
environment and identifying what machinery or 
appliances are being used. While the fabrication space can 
be quite noisy (e.g., a running air compressor), we still 
chose to exploit audio data for capturing contextual 
information due to the promising results found in the 
prior work [35].    

Motion 
Inertial measurement units (IMUs) include an 
accelerometer, gyrometer and magnetometer, which can 
be used to detect orientation, movement, and even tiny 
vibrations of the instrumented objects. Recent work has 
demonstrated the unique sensing capabilities of 
accelerometers [33] that are sampled at a high frequency, 
and even at lower frequencies accelerometers can capture 
unique signatures of movement [51]. We used an 
accelerometer sampled at a high frequency to capture 
vibration signatures while different users were 
performing different tasks. We also exploited a lower 
sampling rate IMU to track the tool ‘s orientation and 
vibration.  

Ambient Environment Sensors  
Temperature, humidity, and light sensors are quite 
common in IoT devices, which can be used to monitor the 
ambient environmental conditions. As machinery is used, 
it may give off some heat or changes in how the tools are 
held may cause changes in the amount of ambient light 
that is detected. While the sensors may not be a rich 
source of information, they may provide some usable 
information at a very low cost given their integration into 
many existing electronics.  
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Biometric Sensors  
Given that fabrication tasks inherently involve an 
individual, biometric sensor (e.g., heart rate sensor, 
eyetracker) may provide unique information as the user 
performs the task. These data streams may capture a 
user’s confidence, their familiarity with the task, or other 
inherent data that may be impossible to detect with more 
indirect methods [23, 28]. Given that most biometric data 
requires direct instrumentation of the user, safety issues 
must be considered, and the sensors must not impede the 
user’s natural dexterity and operations of the hands. Thus, 
we used the off-the-shelf products (e.g., Apple Watch, 
Pupil-labs Eye Tracker) to obtain biometric data. 

3.2 Sensor Placement 

As fabrication activities are conducted by an individual, 
using a tool, within an environment, it is worth examining 
the value of placing sensors at or on each of these entities. 
Depending on the context, it may be possible to 
instrument all three of the entities, or some subset 
depending on the technology available, the environmental 
context, and other factors. 

Environment 
In several fabrication contexts (within a workshop, 
machine shop, makerspace, or on a construction site), the 
environment where fabrication takes place is relatively 
fixed. Several tools may be used within the space, and 
many different individuals may be present in the space 
performing the activities. In many instances, it may be 
possible and useful to place fixed sensors within a space to 
record what is happening inside that space (e.g., who is in 
the space, what they are doing, and what skill level they 
have). However, fixed environmental sensors may not 
have the fidelity necessary to capture the desired 
information, as sensors may be limited in bandwidth, or 
come with privacy concerns. 

Tools  
As nearly all fabrication activities require tools (manual, 
power, digital, etc.), sensorizing these tools may provide 
valuable input. By placing sensors on the tools, the system 
may be able to understand how the tool is being operated, 
what task is being completed, and how well the operator 
is performing the task. Instrumenting the tool is relatively 
unobtrusive with small sensors and electronics having 
minimal impact on the natural operation of the tools, and 
minimal impacts to privacy. However, instrumenting tools 
can be costly, with many tools being used throughout a 
fabrication process. Tools may also offer limited 
information, only able to sense how they are being 
manipulated and used, and not necessarily the 

environment or task they are being used in, or the intent 
or goals of the operator. 

Users 
As the fabrication activities of interest are carried out by 
users, it is beneficial to consider what data can be 
collected directly from the person performing the action. 
With this approach, the sensors stay with the person 
regardless of where they move throughout the 
environment or what tools they are using. This type of 
instrumentation has the potential to be the richest source 
of information, as it is closest to the user and can detect 
their focus, physiological measures, and movement. 
However, instrumenting the user requires them to 
perform additional steps prior to fabrication (e.g., 
equipping the sensor array and performing necessary 
calibrations) and has the highest impact on the user’s 
actions and dexterity. Additionally, requiring users to 
equip physiological sensors comes with additional privacy 
concerns due to the ability to monitor their activities 
outside the scope of the fabrication activities. 

4 SYSTEM IMPLEMENTATION 

A modular system was developed to record all sensor data 
in a synchronous manner. 

4.1 Sensor Selection 

A wide array of sensors is available on the market to 
measure a plethora of physical phenomena. While some 
niche sensors, such as radar or electromagnetic sensors 
[34, 37] have been used for different sensing and 
interaction techniques, we chose to focus on commercially 
available sensors that could be readily deployed in a 
relatively unobtrusive manner that would likely be able to 
detect the actions and activities of fabrication. 

Environment 
Building on prior work on environmental sensing and 
activity recognition [35], an accelerometer (MPU9250) 
sampled at 4kHz, and an acoustic microphone (ADMP401) 
sampled at 17kHz were used. These sensors are small, 
inexpensive and can be placed discreetly in the 
environment. The sampling rate on these sensors is 
sufficiently high to capture many types of activities. While 
other environmental sensors may provide useful 
information, prior work has demonstrated that many 
activities can be readily recognized using only these two 
modalities [35].  

Tools 
All tools were instrumented with a TI SensorTag [68]. 
This small, wireless sensor contains a 9-axis IMU, as well 
as ambient light, humidity, temperature, barometric 
pressure, and magnetic sensor. We use the SensorTag as it 
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contains a wide variety of sensors and it has a compact 
size, and the wireless nature would have minimal effect 
on user’s operation. For our purposes, we only used the 9-
axis IMU and ambient light sensor. The firmware was 
modified such that the 9-axis IMU was sampled at 80-
100Hz while the ambient light sensor was sampled at 
10Hz. The variable sampling rate for 9-axis IMU was due 
to changes in battery voltage, and samples were 
interpolated during post-processing to achieve a constant 
100Hz sampling rate. 

Users 
For instrumenting users, the primary consideration is 
unobtrusiveness and having minimal effect on user’s 
operation. Therefore, we use off-the-shelf wearable 
devices to capture users’ data. Each person was 
instrumented with an eye tracker from Pupil-labs [69], 
which recorded the eye position at 120Hz relative to a 
head-worn camera which captured video of the scene the 
person was looking at. Each person was also outfitted 
with two Apple watches [70] – one worn on each wrist. 
The watches recorded the movement of hands via 
accelerometers and gyrometers sampled at 100Hz, and 
recorded the heart rate, sampled at 0.2Hz. 

4.2 System Architecture 

To record and synchronize the data from the disparate 
sensor sources, a custom system was developed. Software 
written in Java ran on a laptop running Mac OSX to 
collect data from the smartwatches, environmental and 
tool sensors. Recording software for the eyetracker also 
ran on the same laptop capturing and processing the video 
and eye position data from the device. 

 

Figure 2: Overview of the data capture system, with one 
central computer integrating data from a wide range of 

sensors. 

Figure 2 shows the overview of our data capture system. 
The environmental sensors (microphone and 
accelerometer) are soldered to a custom PCB, where they 
were sampled by a Teensy 3.2 [71], which communicated 
with the laptop via USB. Each SensorTag instrumented on 
the tools communicated via BLE to an Apple iPhone, 
which transmitted the data back to the laptop via WiFi. 
The smartwatches were each connected to Apple iPhone, 
where a custom application which read the data from the 
sensor and relayed that to the laptop via WiFi. The 
eyetracker transmitted video and eye position data via 
USB. 

5 DATA COLLECTION EXPERIMENT 

A study was conducted to collect data for representative 
fabrication tasks. 

5.1 Participants 

We solicited participation from a broad audience within 
our institution and asked them to complete a screening 
questionnaire. This questionnaire was used to collect 
demographic information, handedness, vision, overall 
expertise with fabrication, and expertise on the seven 
specific fabrication tasks that were being tested. From the 
25 responses to this questionnaire, participants were 
selected based on their self-assessed expertise to maximize 
the range of skills that participants had. Finally, 14 
participants were selected who were right handed (13) or 
ambidextrous (1), had normal (9), or corrected to normal 
vision using contact lenses (5). All respondents to the 
questionnaire were entered for a draw to receive a $25 gift 
card. 

All participants (12 male, 2 females; 20-35 years old) had 
on-site workshop safety training, as required by our 
institution, were aware of the risks of using power tools, 
and provided informed consent to participate in the study. 
All 14 participants received a $25 gift card for completing 
the study. 

5.2 Apparatus 

The experiment was conducted within an active 
workshop, using the system described previously. The 
workshop is approximately 1000 sqft, and contains a 
number of 3D printers (FDM, SLA, SLS), a CNC machine, 
electronics equipment, and a wide variety of hand tools. 
While data was being collected, the rest of the workshop 
was open to its users and other tools and equipment were 
in use. 

Participants were outfitted with the wearable sensors 
described previously – a mobile eye tracker, and Apple 
watches worn on both wrists. 
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Six different tools were instrumented and used in the 
study. Sensors were placed on each tool in a location that 
minimized their interference with the natural operation of 
the tool. Different locations on the tool may influence the 
signals, though we empirically tested several locations and 
found little difference in readings, likely as a result of the 
tools having rigid structures which transfer vibrations and 
movements without dampening. A DeWalt 18V cordless 
drill/driver was used for the drilling and screwing tasks, 
with the SensorTag fixed to the base of the tool. A 15” 
Stanley handsaw was used for the sawing task, with the 
SensorTag fixed to the side of the blade, near the handle. 
A YIHUA 907F soldering iron was used for the soldering 
task, with the SensorTag fixed to the iron, near the cable. 
A swivel-head deburring tool was used for the deburring 
task, with the SensorTag attached to the top of the handle. 
A ball-peen hammer was used for the nailing task, with 
the SensorTag attached to the hammer halfway up the 
shaft. A Delta drill press with a sanding drum spinning at 
1150 RPM was used for the sanding task, with the 
SensorTag fixed to the front of the drill press. Figure 3 
shows six instrumented tools and sensor locations.  

 

Figure 3: Instrumented tools used in the data collection 
study. 

The environment was outfitted with the microphone and 
accelerometer module described previously. For the 
sanding task, the module was mounted to the work table 
of the drill press. For all other tasks, the sensor was 
mounted on the workbench where the activities were 
taking place.  

Two video cameras captured video and audio of the tasks 
for later review but were not used as part of the data 
capture process. 

5.3 Design 

Each participant performed 7 unique tasks: deburring, 
nailing, screwing, sawing, drilling, soldering, and sanding. 
For each task, participants performed two blocks in 
succession, each of four trials, resulting in 7 x 4 x 2 total 
trials per participant. The presentation order of the tasks 
was counterbalanced across the 14 participants. The study 
took approximately 60-80 minutes to complete. 

Between the two blocks, participants watched an 
instructional video which contained a tutorial on how to 
perform that task. This experimental design was intended 
to allow the capture of a wider range of behavior, from 
novice to more expert. 

5.4 Procedure 

All participants had received workshop safety training 
prior to participating in the study. This training covered 
general hazards, safety, and protocols in the workshop, 
but did not include any explicit instruction relevant to the 
tasks being studied.  

Prior to performing the tasks, participants were outfitted 
with the two smartwatches and the eye tracker. The eye 
tracker was then calibrated for the participant by 
adjusting the camera to capture the eye location and 
performing a routine to calibrate the eye-camera 
coordinates to the coordinates of the head-worn video 
camera. 

For each task, participants were given a piece of paper 
that had an image of the desired result for the task (e.g., a 
photo of the circuit board with the pin soldered into 
place). No further task guidance, except in cases where the 
experimental proctor intervened for safety reasons. Only 
two interventions took place, one where the participant 
attempted to set the screw in the wood using the battery 
pack of the drill, and another when the same participant 
was about to sand the wood without placing it on the 
sanding table.  

 

Figure 4: Seven physical tasks in the user study. 

For each trial of the deburring task, participants were 
asked to use the deburring tool to clean the inside edge of 
a roughly-cut aluminum pipe. For the nailing task, 
participants were asked to hammer a nail into a 2” by 2” 
piece of ¾” thick MDF at a marked location near one of 
the corners. Similarly, for screwing, participants were 
asked to use the cordless drill to screw a Robertson-head 
¾” screw into a 2” by 2” MDF wood. For sawing, 
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participants were asked to use the hand saw to make a 
straight and clean cut at a marked location on a 2” x 1” 
piece of pine. For drilling, participants were asked to use 
the cordless drill and drill a 5mm hole through a piece of 
acrylic at a marked location near the corner. For soldering, 
participants were asked to solder separate male headers 
on a general-purpose PCB. For sanding, participants were 
asked to sand a 2” by 2” ¼” thick birch plywood to the 
marked contour with the spindle-sander and drill press.  

For all tasks, the tools were setup by the experimenter 
(e.g., installed a proper drill bit and set correct speed and 
clutch) and materials were secured in place (e.g., clamp 
the material) before the participant performed the tasks. 
In this work, we only focus on the task operation, but it 
would be interesting to explore how the preparation 
process can be used to infer contextual information (e.g., 
detect expertise prior to the task beginning). The 
participant then performed the first block of trials, 
repeating the task four times, verbally indicating the 
beginning and end of each task. After each block of trials, 
the participant recorded a self-assessment of their 
performance on each of the four trials. 

6 DATA ANALYSIS 

From the collected data, we explore three elements of 
contextual information that would help fabrication tools 
and environments adapt to the user: (1) identification of 
which user is performing the task, (2) which task the user 
is performing, (3) what expertise the user has. We also 
aim to build an understanding of how different sensors in 
different locations can contribute to identifying this 
information.  

We use machine learning to identify users, recognize 
physical tasks and infer user expertise. In particular, we 
use Random Forest in our current implementation. 
Random Forest has previously been found to be accurate, 
robust, scalable, and efficient in many different 
applications [15, 37]. 

6.1 Feature Extraction 

Extracting relevant and meaningful features is critical to 
obtain the contextual information. Prior work has 
demonstrated successful identification of different 
physical activities from high frequency sensor data [35], 
which we adapt to our system’s equivalent sensors and 
derive similar features for the unique sensors in our 
system.  

For each trial, data from different types of sensors are 
divided into a set of instances via a 0.5 second sliding 
window (10% overlapping between each window). Within 
each data instance, we calculate spectral features (FFT) 

and seven statistical features (mean, STD, min, max, 
range, sum, energy) for each sensor data except for heart 
rate, gaze position and light intensity. As the heart rate is 
only sampled at 0.2Hz, we compute the mean of the heart 
rate readings on both watches that are closest to the time 
window. For gaze position data, we are interested in 
whether the user is looking at a fixed point while 
performing the task. Thus, we calculate the number of 
saccades (operationalized as changes in position at greater 
than approximately 5° per second). Due to the low 
sampling rate of the light sensor, we only compute 
statistical features. Note that we use 1024 FFT points for 
high-sample-rate sensors (e.g., environmental microphone 
and accelerometer) and 32 FFT points for low-sample-rate 
sensors (e.g., IMU sensors on Apple Watch and 
SensorTag). The phase information from the FFT is not 
used. The feature data for every sensor is then 
concatenated into a single feature vector and used to train 
the machine learning model. 

6.2 Results 

We test the prediction capabilities of the trained model for 
user identification, physical activity recognition and 
expertise inference. 

User Identification 
Classification accuracy. In order to overcome the 
possible strong correlation in data samples due to the high 
data frame rates of the sensor and the time series nature 
of data, we compute the accuracy using a leave-one-block-
out approach for each task by training the model using 
the data from one block and testing it using the data from 
the other block. The model is trained on half the data, 
then tested on the other half, this process is done twice 
(with the two data sets swapped), and the overall accuracy 
is computed as the average prediction accuracy between 
those two tests. While we are intentionally trying to 
change the user’s behavior between the two behaviors 
between the two blocks, we suspect there is unique 
characteristics for each user that persist even when their 
skill improves. We also tested with a leave-four-trials-out 
approach with slightly better results.  

The overall average accuracy (Figure 5) across all seven 
tasks with all sensor data was 93.8% (SD = 3.2%). And the 
average accuracy dropped to 87.0% (SD = 5.3%), 79.5% (SD = 
7.7%) and 59.8% (SD = 13.0%) when only using the sensor 
data from environment, tools and user respectively. From 
the results (Figure 5), several interesting patterns can be 
seen. First, it was difficult to identify different participants 
using the data from the user-worn sensors on the deburring 
task. We believe this is because of the complex nature of 
the hand movements produced in the deburring task – 
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some participants would run the tool around the inside 
repeatedly, then use a bimanual approach where they 
rotated the pipe and tool simultaneously; very few 
participants exhibited consistent movement patterns within 
a single trial.  Second, nailing achieved the most balanced 
performance using these three types of data, which meant 
that we could capture meaningful information from all 
three data sources in order to identify which user is 
hammering across a number of instrumentation scenarios. 
Third, sanding achieved the lowest accuracy with all sensor 
data available, which may be due to similar sanding 
operation behaviors among all participants. Overall, the 
environmental and tool-mounted sensors performed better 
than the user-worn sensors in identifying which participant 
was performing the tasks. This is likely due to the tool-
mounted sensors capturing the motion of the tool and the 
environmental sensors capturing the tool’s interaction with 
the material. Unique individual movements of the wrists are 
not captured by the smartwatches, and those movements 
may contain inherent information in how the task was 
being performed. 

 

Figure 5: Leave-One-Block-Out classification results for 
User Identification. 

Sensor importance. Beyond the classification accuracy, 
we were also interested in which sensor played more 
important roles in user identification. To understand 
relative feature importance, a weighted breakdown of 
merit was calculated by Random Forest feature 
importance when all sensor features were supplied to the 
classifier (Figure 6, percentages are calculated from 
normalized Random Forest feature importance). As 
expected, the microphone and accelerometer from the 
environment were weighted quite high compared to all 
sensors. Interestingly, the magnetometer on the tools was 
weighted highest. We believe this is due to the unique 
way in how participants held the tools (i.e., tool 
orientation).  

 

Figure 6: Sensor feature merit for user identification, 
activity recognition and expertise inference.  

We also examined the top ten features computed from the 
sensors. It turned out that statistical features (e.g., mean, 
sum, energy) played a more important role than spectral 
features among most sensors except for the microphone. 
This may be because the unique signatures that the user is 
producing are a result of gross motor movements and 
posture and positioning, not in the higher-frequency, 
cyclic signals resulting from things like the drill or sander 
spinning. 

Activity Recognition 
Classification accuracy. Similarly, we tested whether 
the machine learning model worked well across different 
users. To calculate the accuracy, we used the data from 
thirteen participants for training and the remaining 
participant for testing. The overall accuracy was then 
calculated by averaging the results from all fourteen 
combinations of training and test data. The overall 
average accuracy with all sensor data (Figure 7, left) was 
94.2% (SD = 7.7%). The average accuracy dropped to 78.3% 
(SD = 14.9%), 89.3% (SD = 13.5%) and 80.5% (SD = 11.5%) 
when only using the sensor data from environment, tool 
and user respectively.  

 

Figure 7: Activity classification accuracy for leave-one-
subject-out (left); Confusion Matrix when using all sensors 

data (right).   
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The confusion matrix (Figure 7, right) illustrates that it 
was difficult to clearly distinguish between screwing and 
drilling since these two tasks used the same tool and had 
similar procedure to operate, though accuracy was still 
relatively high for those two tasks (around 80%) with all 
data. More exploration is needed to be done to further 
investigate how to reliably distinguish between activities 
that utilize an equivalent tool set with similar processes, 
perhaps new sensors (e.g., force sensors) could be used, or 
capturing the activities before and after the task 
performance (e.g., loading a screw) may provide more 
insight.  

Sensor importance. We also calculated the sensor 
feature merit for activity recognition (Figure 6, orange 
bars). Unlike user identification, accelerometers and 
gyrometers on the tools contributed more to the results, 
with a strong contribution from the environmental 
accelerometer as well. We believed this is due to inherent 
similarities in how the tools are handled, and the unique 
signatures that they cause during operation (e.g., Drilling 
vs. Sanding have unique frequency responses due to the 
different rotation speeds among other differences).  And it 
was also clear that accelerometer and gyrometer in the 
Apple Watch worn on the right hand contributed more 
than the same sensors from left hand – this is 
representative of the fact that all actions were performed 
primarily with the dominant (right) hand, with the left 
hand used for support and largely idle or supportive in 
several tasks.  

Expertise Inference 
Expertise is a relatively complex and subjective 
measurement, and different individuals will judge 
expertise by differing criteria. In this work, we try to 
provide initial insights into how expertise can be inferred 
from data collected during fabrication tasks. 

Ground truth.  Two experts in fabrication (one author) 
watched the videos clips of participants performing the 
tasks. Each expert gave a rating from one to seven for 
each trial based on their opinion and expertise. A 
Spearman’s rank correlation shows a highly significant 
correlation between the ratings (p < 0.001; rs(784) = 0.7).  
The mean of these two ratings was used as the ground 
truth. 

Feature extraction. While a 0.5 second sliding window is 
long enough for user identification and physical activity 
recognition as those are relatively continuous events, we 
believe it is too short for expertise inference. Expertise is 
evident in how the tools and material are handled, and 
manifested in different ways throughout the task (e.g., 
starting the saw cut with slow pull-strokes before making 

more aggressive oscillating cuts). Thus, instead of using a 
sliding window and creating several data instances for 
each trial, we compile a single feature vector for each trial. 
We use the same features as in user identification and 
activity recognition, but they are used differently. For 
statistical features, they are calculated using the data from 
a whole trial, while for spectral features, we use a sliding 
window of 1024 points, but then collapse the windows 
into a single window of length 1024 by computing the 
mean for each point in the window.   

Measurement. Since we want to obtain a continuous 
evaluation score of user’s expertise, we use Random 
Forest Regressor instead as the model for expertise 
inference. And we evaluate the results using root-mean-
square error (RMSE).  

Regression Accuracy. For each task, we used the data 
from thirteen participants for training and inferred the 
expertise on the remaining participant. The overall RMSE 
was then calculated by averaging the RMSEs from all 
fourteen combinations of training and test data. The 
overall average RMSE with all sensor data was 1.27 (SD = 
0.45). The average RMSE increased when only using the 
sensor data from environment (1.35 (SD = 0.46)), tool (1.42 
(SD=0.43)) and user (1.42 (SD = 0.43)). While an RMSE of 
1.3 does not allow the system to reliably predict the 
expertise of a user to within a single point on the seven 
point scale, it is more than enough to distinguish novices 
from experts, and it reflects some gradation in skill. 
Additionally, the RMSE between the two expert ratings 
across all trials of all tasks was 1.37, indicating that 
expertise evaluation is somewhat subjective, and the 
automated approach performs very similarly to the 
human evaluator.  

 

Figure 8: Leave-one-subject out results for expertise 
inference. 

Among the seven different tasks, soldering skill appeared 
to be the most distinguishable, possibly due to the fact 
that the experts held the soldering iron with more stability 
than the novice, which could be easily captured by the 
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accelerometers. Screwing and drilling were also well-
recognized, possibly due to the differences in tool 
orientation between novices and experts. 

Sensor Importance. Environmental sensors (e.g., 
accelerometer and microphone) were still the most useful 
sensors in expertise inference (Figure 6). We believe this is 
because different operations from experts and novice 
users can lead to different patterns of sound and vibration. 
For example, experts tend to start the saw cut with slow 
pull-strokes before making more aggressive oscillating 
cuts. Compared with user identification and activity 
recognition, sensors on the users, especially the 
accelerometer on the user’s right hand, played more 
important role in expertise inference. One possible reason 
was that stable hands during operation were strong 
indicators for expertise, which was echoed by relative 
good regression performance. Similar effects may be seen 
in drilling and screwing as well, as novices tended to have 
a more wobbly approach to drilling and a less consistent 
application of force. It was interesting to find that we 
captured useful information from the accelerometer and 
gyrometer on user’s left hand for expertise. We believe 
that while the non-dominant hand does not play a large 
role in task identification, its use may be an indicator of 
expertise as experts used it for support, stability, or 
guidance while novices had a much less consistent 
approach to the actions of their left hand. 

Summary 
By instrumenting the environment, tools and users with 
different types of sensors, we can achieve promising 
results of user identification, activity recognition and 
expertise inference. Among the different kinds of sensors, 
the accelerometer on the environment has shown 
significant usefulness in identifying these three types of 
contextual information. Instrumenting the environment 
and tools provides more information than only 
instrumenting users, however, sensors on the users 
appear to have unique benefit for expertise inference. 

Interestingly, we did not find that biometric data 
including gaze position and heart rate conveyed much 
information. Heart rate helps to identify different users 
but does not contribute much to activity recognition and 
expertise inference. This is likely due to the little heart 
rate variation across tasks (e.g., most tasks were of similar 
difficulty and would not cause participants to worry or 
feel more confident). The gaze data that was used did not 
seem to be of much value in providing contextual 
information. One possible reason is that when users are 
performing the physical tasks, the camera and tracker 
would occasionally shift on the face, causing errors in 
alignment. Additionally, a very coarse measure was used 

from the eye-tracker (number of saccades), as it was a 
simple measure that could be computed independent of 
the tasks and scene. However, more complex eye-tracking 
or scanpath comparison methods may lead to more useful 
information from eye gaze [9]. 

7 SAMPLE USE CASES 

To illustrate the potential value in being able to identify 
expertise, users and activities during making, we outline 
several sample use cases. 

7.1 Adaptive Fabrication Environment 

By leveraging the newly available contextual information, 
and an active workspace [10, 31], the fabrication space 
could respond intelligently to a user’s needs. As the 
system detects that the user is drilling holes in wood, it 
could highlight the locations of the bolts, screws, or other 
drill bits via projection. It could also project the drilling 
state in the environment, or render it on a public display 
to provide other users with an awareness of what is 
happening in the space. An adaptive environment could 
also enforce safety measures if it detects that a user has 
insufficient skill with a particular tool. For instance, if the 
system detects the user has limited expertise in drilling 
through plastic, the system may lockout certain drawers, 
such as those containing metal drilling bits which are 
more difficult and potentially more dangerous to use. 

7.2 Workshop Management 

By tracking the users, activities and skills within a 
workshop or makerspace, the managers or coordinators of 
the space could have better tools and information at their 
disposal as they oversee the operation of their space. A 
dashboard that visualizes the types of activities currently 
happening in the space could help the managers 
understand the frequent and typical activities that occur 
within the space to help them plan for the future usage of 
the space. By observing the expertise of the users in the 
space, the manager could understand how effective their 
training programs are for different aspects, or could use 
such a view to help facilitate peer learning by identifying 
users who could learn from each other’s expertise. 

7.3 Adaptive Tutorials and Dynamic Learning 
Content 

If the fabrication environment or system can detect a 
user’s expertise using a given tool or performing a task, it 
could provide more appropriate guidance or instruction to 
the user, helping to realize the idea of digital 
apprenticeship [14]. If a user is sawing wood with low 
expertise, the system could detect this and suggest video 
tutorials or other media that would offer training. 
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Additionally, by being able to recognize which user is 
performing the action, the system can track which videos 
were shown to that user and show a variety of different 
videos over time to help users achieve greater levels of 
expertise. Additionally, if relatively high levels of 
expertise were detected, the system could provide tips and 
hints from expert craftsmen, or recommend alternative 
and more advanced workflows or tools in a non-intrusive 
manner similar to Ambient Help [43]. 

7.4 Automated Workflow Capture 

If activities and expertise can be captured and identified, 
then the system can begin to build models of common 
workflows used in fabrication contexts. By recognizing 
the workflows used by experts, the system can begin to 
build an understanding of efficient fabrication processes, 
and use that knowledge to assist novices in navigating 
their tasks. For instance, a system may suggest to novices 
to perform sanding after drilling, as that ordering is more 
common amongst experts than novices as it avoids 
potentially having to repeat a sanding step. 

8 DISCUSSION 

Overall, our results suggest that adding instrumentation 
can aid in the detection of contextual information for 
fabrication tasks, but there are important considerations 
when determining how that instrumentation should take 
place. 

8.1 Instrumenting for Context 

Depending on the use of the contextual information, 
issues of privacy and cost, different factors may impact 
what sensors are deployed and used to gather the data. 
For simple user identification tasks, no advanced sensor 
processing may be needed at all – badge-ins to access the 
space, or simply syncing a personal smartwatch to a 
central server may provide all the identification that is 
necessary to achieve the desired levels of user 
identification. However, by instrumenting the 
environment and tools, the space can track who is using 
what equipment and have an idea of how the space was 
used, or who contributed to certain projects without any 
additional information from the user. 

Similarly, activity recognition could largely be performed 
by instrumenting each tool, as in the Smart Makerspace 
[31]. However, this approach could be costly and 
cumbersome to instrument each sensor. This work shows 
that by instrumenting the user and environment (which 
can be done with minimal expenditure), high rates of 
activity recognition can be achieved across several tasks. 
Additionally, as the data from the tool sensors was not 
tagged with the tool ID, a single sensor that is transferred 

between the tool can be used to provide information 
across the tasks (e.g., users could move a single Sensor 
Tag between the tools to allow the system to recognize 
user, activity and expertise). 

8.2 Limitations and Future Work 

While the results from the study are promising, there are 
several assumptions made in the study design, and several 
limitations that need to be addressed when transferring 
these results to more ecologically valid situations. 

Expertise. We attempted to recruit participants in a wide 
range of expertise in different tasks but the expertise 
across different tasks is not completely balanced, and also 
does not capture the entire range of expertise in the 
general population (e.g., we did not include very young 
children or veteran tradespeople). Additionally, the nature 
of expertise is quite subjective, as evidenced by the 
variance between the expert raters. While taking the 
average of the two expert raters reduces the subjectivity 
somewhat, more work is needed to determine more 
objective measures of expertise that can be used as a 
baseline. 

Task complexity. While the studied tasks did have some 
complexity and varied stages, the tasks were still 
simplified and controlled. While we expect many of the 
results will transfer to the real world, more work is 
needed to ensure that tasks, activities and expertise can be 
identified as the environment, orientation, or materials 
used in the task are changed. Further, we are also 
interested in detecting multiple activities and users 
simultaneously, which needs a thorough evaluation. 

Long term robustness. Users would change their behaviors 
while gaining more experience and expertise, which may 
affect the user identification. However, with consistent 
data collection, we may be able to model these changes 
over time but a thorough long-term study is necessary for 
future work. 

Machine Learning. This work did not explore different 
machine learning models and all possible features that 
could be derived from those sensors data. Across all three 
of these aspects, future work could explore how to 
improve the results by adding and changing the various 
aspects used to process and classify the data.  

9 CONCLUSION 

The addition of contextual data such as user identification, 
activity recognition, and expertise inference have the 
potential to improve a users’ experience with interactive 
fabrication tasks. However, to achieve these visions of a 
responsive workspace, the system needs to have a better 
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understanding of the context of the space. This paper 
shows that through instrumentation of the environment, 
tools, and users, a system can recognize the activities and 
users with a high degree of accuracy and can infer the 
expertise of the user at a similar level as human raters. 
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