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Abstract A Hamiltonian stationary Lagrangian submanifold of a Kähler manifold is a
Lagrangian submanifold whose volume is stationary under Hamiltonian variations. We find
a sufficient condition on the curvature of a Kähler manifold of real dimension four to guar-
antee the existence of a family of small Hamiltonian stationary Lagrangian tori.
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1 Introduction and statement of results

Let M2n be a Kähler manifold with complex structure J, Riemannian metric g, and sym-
plectic form ω. The Lagrangian submanifolds of M are very natural and meaningful objects
to consider when M is studied from the symplectic point of view. Upon taking the metric into
account, one can study Lagrangian submanifolds which are in some way well-adapted to the
metric geometry of M . For instance, Lagrangian submanifolds which are also minimal with
respect to the metric g, i.e. which are critical points of the n-dimensional volume functional
with respect to compactly supported variations, possess a rich mathematical structure, and
their study is an active area of research (see e.g. [6,13]).

It is possible to pose two other natural variational problems amongst Lagrangian sub-
manifolds whose critical points are also mathematically quite interesting. These variational
problems are obtained by restricting the class of allowed variations. First, one can demand that
the volume of a Lagrangian submanifold � is a critical point with respect to only those varia-
tions of � which preserve the Lagrangian condition; in this case, � is said to be Lagrangian
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stationary. Since it turns out that a smooth Lagrangian stationary submanifold is necessarily
minimal (because the mean curvature vector field of � is itself the infinitesimal generator of
a Lagrangian variation, as indicated in [14]), points where a Lagrangian stationary subman-
ifold fails to be minimal must be singular points, and what is of interest is the precise nature
of the set of singularities. A second variational problem that one can pose is the following.
There is a natural sub-class of variations preserving the Lagrangian condition, namely the set
of Hamiltonian transformations, which are generated by functions on M ; hence one can also
demand that the volume of � is a critical point with respect to only Hamiltonian variations.
In this case, � is said to be Hamiltonian stationary, and there are indeed examples of non-
trivial, smooth, Hamiltonian stationary submanifolds that are not minimal (cf. Lemma 1). In
this paper, we focus on the second of these two variational problems.

Hamiltonian stationary submanifolds of a Kähler–Einstein manifold M have been studied
by several authors, notably Oh [11,10], Hélein and Romon [3–5], and Schoen and Wolfson
[14,15]. Oh initially posed the Lagrangian and Hamiltonian stationary variational problems
and derived first and second variation formulæ. Hélein and Romon showed that when M is a
Hermitian symmetric space of real dimension four, this stationarity condition can be reformu-
lated as an infinite-dimensional integrable system whose solutions possess a Weierstraß-type
representation. Moreover, they found all Hamiltonian stationary, doubly periodic immersions
of R

2 into CP2 using this representation. Finally, Schoen and Wolfson initiated the study of
Lagrangian variational problems from the geometric analysis point of view, for the purpose
of constructing minimal Lagrangian submanifolds as limits of volume-minimizing sequences
of Lagrangian submanifolds.

The approach we take in this paper is to state a general sufficient condition for the existence
of a certain type of Hamiltonian stationary submanifold in a Kähler manifold M . Namely, we
specify a condition at a point p in M which allows us to construct Hamiltonian stationary tori
of sufficiently small radii optimally situated in a neighbourhood of the point p. Of course,
a simple motivating example is C

n where one has the standard tori of any radii built with
respect to any chosen unitary frame at any chosen point. These tori will be explicitly used
in our construction and will be defined carefully below. But for a more significant exam-
ple, we note that all Kähler toric manifolds contain Hamiltonian stationary Lagrangian tori
of the type envisaged here. A Kähler toric manifold is a closed, connected 2n-dimensional
Kähler manifold (M, g, ω, J ) equipped with an effective Hamiltonian holomorphic action
τ : T

n → Diff(M) of the standard (real) n-torus T
n . The orbits of the group action turn out

to be Hamiltonian stationary Lagrangian submanifolds of M, essentially because the metric
g turns out to be equivariant under the action of τ . Furthermore, the image of the moment
map μτ : M → R

n of τ is a convex polytope P in R
n . Let M0 := μ−1

τ (int(P)); then M0

is an open, dense subset of M that is symplectomorphic to int(P) × T
n, upon which the

action is free. The orbit tori located near the corners of the polytope turn out to have small
volume tending to zero at the corners themselves. A discussion of the geometry of Kähler
toric manifolds can be found in [1].

On the other hand, in a general Kähler manifold M, one might expect that smooth, small
Hamiltonian stationary tori are rather rare, with a condition depending in some way on the
ambient geometry of M governing their existence. The archetype for this kind of a result
is an analogous construction, due to Ye [16], of small constant mean curvature spheres in
a Riemannian manifold M . Ye has shown that it is possible to perturb a sufficiently small
geodesic sphere centered at the point p ∈ M to a hypersurface of constant mean curvature,
provided that p is a non-degenerate critical point of the scalar curvature of M .

We now explain and state the Main Theorem to be proved in this paper. Let (M, g, ω, J )

be a Kähler manifold, with dimR M = 4. Let U(M) denote the unitary frame bundle of M and
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choose a point p ∈ M and a unitary frame Up ∈ U(M) at p. Let (z1, z2) be complex normal
coordinates for a neighbourhood of p whose coordinate vectors at the origin coincide with

Up . Fix r := (r1, r2) ∈ R
2+ (the open positive quadrant of R

2) with small ‖r‖ =
√

r2
1 + r2

2 ,

and define the submanifold

�r (Up) :=
{(

r1eiθ1
, r2eiθ2

)
: (θ1, θ2) ∈ T

2
}

.

If M were C
2, then �r (Up) would be Hamiltonian stationary Lagrangian for all r and Up .

In general, �r (Up) is almost Hamiltonian stationary Lagrangian when ‖r‖ is very small,
as the ambient metric is nearly Euclidean in complex normal coordinates. We express the
tangent vectors ∂

∂θk in complex notation as ∂
∂θk = irkeiθk ∂

∂zk . Given a section X of the bun-

dle J (T �r (Up)), we write X = ∑2
k=1 Xk J ( ∂

∂θk ) = ∑2
k=1 −rk Xkeiθk ∂

∂zk , and define the
deformed submanifold

μX
(
�r (Up)

) :=
{(

r1(1 − X1(θ))eiθ1
, r2(1 − X2(θ))eiθ2

)
: (θ1, θ2) ∈ T

2
}

.

The condition that the deformed submanifold be a Hamiltonian stationary Lagrangian sub-
manifold can now be phrased as a partial differential equation for the functions X1 and X2.
It will be shown in this paper that these equations can be solved subject to an existence
condition that can be expressed in terms of the complex curvature tensor of M .

In order to phrase the existence condition, we now define the relevant curvature functions

on unitary frames. Let RC

I J̄ K L̄
:= RC

(
∂

∂z I , ∂
∂ z̄ J , ∂

∂zK , ∂
∂ z̄L

)
be the components of the com-

plexified Riemann curvature tensor, and denote the components of the complex covariant
derivatives of this tensor by (DRC)I J̄ K L̄ M̄ := RC

I J̄ K L̄;M̄
. Now given any frame Up ∈ U(M)

we can define

Gr (Up) := i

⎛
⎜⎜⎝

r2
1 RC

11̄11̄;1̄ + r2
2 RC

22̄22̄;1̄
r2

1 RC

11̄11̄;2̄ + r2
2 RC

22̄22̄;2̄
2r2

2 RC

22̄21̄
− 2r2

1 RC

11̄21̄

⎞
⎟⎟⎠ ∈ C

3 ≈ R
6. (1)

Observe that the unitary group acts on U(M) by matrix multiplication in the fiber direc-
tion. The subgroup � ⊂ U (2) of unitary diagonal matrices thus acts on U(M) as well,
and furthermore, �r (Up) = �r (D · Up) for all diagonal matrices D ∈ �. The existence
condition on (Up, r) that we will use is that the curvature function Gr has a non-degenerate
zero at Up, along directions transverse to the orbit of Up under �: we say such a frame is
�-non-degenerate. By the invariance of RC under the action of �, we can define a function
Fr : U(M)/� → R by Fr ([Up]) = r2

1 RC

11̄11̄
+ r2

2 RC

22̄22̄
. We remark that the mapping Gr is

obtained precisely by applying DFr to a basis of the tangent space of U(M)/�. The top two
complex components come from the spatial derivatives, and the last component comes from
differentiating in the frame directions. Thus Up is a �-non-degenerate zero for Gr precisely
when Fr has a non-degenerate critical point at [Up]. Note that this condition is preserved
when the vector r is scaled by a constant multiple.

Main Theorem Let (M, g, ω, J ) be a Kähler manifold, with dimR M = 4. Let r :=
(r1, r2) = ‖r ‖̂r ∈ R

2+ where ‖̂r‖ = 1, and suppose Up ∈ U(M) is such that Up ∈
U(M) is a �-non-degenerate zero for Gr̂ . Then for ‖r‖ sufficiently small, there exists
Up′ ∈ U(M) and a section X ∈ �(J (T �r (Up′))) so that the submanifold μX (�r (Up′))
is smooth and Hamiltonian stationary Lagrangian. Moreover, for any α ∈ (0, 1), we have
‖X‖0,�r + ‖r‖‖∇ X‖0,�r + ‖r‖2‖∇2 X‖0,�r + ‖r‖2+α

[∇2u
]
α,�r

= O(‖r‖3), while the
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distance between Up and Up′ as points in U(M) is O(‖r‖), and the distance between p and
p′ is O(‖r‖2).

We note as a direct corollary that it is possible to extend the Main Theorem slightly in
order to answer a more general question. That is, the Main Theorem finds a Hamiltonian
stationary submanifold that is a small perturbation of �r for ‖r‖ sufficiently small. Now one
can ask if it is possible to find neighbouring Hamiltonian stationary Lagrangian submanifolds
which are perturbations of �r ′ with r ′ sufficiently close to r . The answer to this question
is that one can indeed find such submanifolds because the �-non-degenerate zeros of the
family of functionals Gr ′ with r ′ varying in a neighbourhood of r are stable. That is, if r ′ is
sufficiently close to r, then Gr ′ has a 	-non-degenerate zero Up(r ′) near Up . By the Implicit
Function Theorem, moreover, one can arrange the association r ′ 	→ Up(r ′) to be smooth.

Corollary Let r := (r1, r2) ∈ R
2+ with ‖r‖ sufficiently small, and suppose Up ∈ U(M) is a

�-non-degenerate zero for Gr . Then one can find a neighbourhood O ⊂ R
2+ containing r so

that for each r ′ ∈ O, �r ′(Up) can be perturbed into a Hamiltonian stationary Lagrangian
submanifold of M, the family of which is smoothly parametrized by r ′.

The Main Theorem will be proved following broadly similar lines as the proof of Ye’s
result. That is, for each Up and sufficiently small ‖r‖, a section X will be found so that
μX (�r (Up)) is almost Lagrangian and Hamiltonian stationary; in fact the small error will
be arranged to lie in a certain finite-dimensional space. The discrepancy comes from the fact
that the Hamiltonian stationary differential operator possesses an approximate co-kernel: the
linearized Hamiltonian stationary differential operator can be expanded in powers of ‖r‖,
where the lowest-order term is the linearized Hamiltonian stationary differential operator of
C

2, whose co-kernel contains a six-dimensional space arising from translation and U (2)-
rotation. This discrepancy constitutes an obstruction to solvability. Only when �r (Up) is
very special (such that the image of the Hamiltonian stationary differential operator acting
on �r (Up) is orthogonal to the associated co-kernel to lowest order in ‖r‖) can a solution be
found. This special situation arises exactly when Gr (Up) = 0. The perturbation μX (�r (Up))

now produces a Hamiltonian stationary Lagrangian submanifold up to an even smaller error
term—and this remaining error term can be corrected as well when the non-degeneracy
condition holds.

The existence condition described above is qualitatively similar to Ye’s condition in that
it involves the ambient curvature tensor of M . But of course the condition here takes into
account the freedom to choose the complex frame with respect to which �r (Up) is built as
well as the point p about which �r (Up) is located. As with Ye’s condition, it is not always the
case that there exists Up satisfying the non-degeneracy condition. For example, this occurs in
the case of CP2 and of C

2, despite the fact that both spaces contain small Hamiltonian sta-
tionary Lagrangian tori. These examples can be seen as analogues of situation in R

n, a space
which fails to satisfy the non-degeneracy criterion of Ye and where constant mean curvature
spheres nevertheless come in great abundance. The existence of a non-degenerate frame Up

can also fail to hold in Kähler manifolds with one-parameter families of isometries. Such
examples also occur in the study of constant mean curvature spheres, and it should be noted
that Pacard and Xu have recently strengthened Ye’s result to handle these cases. They did
this by analyzing the second-to-lowest-order term in the expansion of the linearized constant
mean curvature operator and replacing Ye’s non-degeneracy condition with a different con-
dition that can be applied even when Ye’s original condition cannot. They can deduce from
their condition that every compact Riemannian manifold must have at least one point p for
which sufficiently small geodesic spheres centered at p can be perturbed to hypersurfaces of
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constant mean curvature [12]. A similar strengthening should be possible in the Hamiltonian
stationary Lagrangian case as well.

Recent work by Joyce, Lee and Schoen [7] establishes in a very general sense the exis-
tence of Hamiltonian stationary Lagrangian submanifolds in a symplectic manifold M . The
submanifolds constructed are modeled on certain Hamiltonian stationary Lagrangian sub-
manifolds of C

n, the class of which contains the tori we use in the present work. They embed
these into M using adapted Darboux coordinates, where they are Lagrangian but only approx-
imately Hamiltonian stationary. These authors then establish that it is always possible (when
M is compact) to find an exactly Hamiltonian stationary Lagrangian submanifold near at
least one of their approximate solutions. This is because the existence condition that must be
satisfied is that a certain functional on U(M) has a critical point (and since U(M) is compact
when M is compact, the existence condition must hold for some Up ∈ U(M)).

Though some of the analysis in [7] is similar to ours, there is a key difference that we
note here. In [7], the authors employ adapted Darboux coordinates so that they are able to
embed their model submanifolds as Lagrangian submanifolds in M . This allows them to find
a nearby Hamiltonian stationary Lagrangian by solving a single, scalar differential equation.
We employ complex normal coordinates in which the metric and symplectic form of M
are perturbations of the metric and symplectic form of C

n while the complex structure is
everywhere standard. Embedding �r (Up) into this coordinate chart results in a submanifold
which is approximately Lagrangian and approximately Hamiltonian stationary. We thus have
to include the Lagrangian condition as part of the system of partial differential equations to
analyze. The reason that we do this is to exploit the fact that the metric and symplectic form
of M in this coordinate chart can be expanded in terms of the ambient curvature tensor, and
hence we can formulate our existence condition very concretely in terms of the curvature.
Since the time our work was first announced, Lee [9] was able to establish the existence of
suitable Darboux coordinates to yield such an existence result following the approach of [7].
As remarked in [7], the curvature condition in a preprint version of this work differed from
that in [9]; this was due a to sign error that has been fixed in the present work, thus giving
two independent calculations of the non-degeneracy condition.

In the case of constant mean curvature spheres, Ye’s existence condition is essentially
that the sphere for which the perturbation argument succeeds is the one for which the area
functional, subject to the constraint of constant enclosed volume, and restricted to the space
of embedded geodesic spheres, has a non-degenerate critical point. Ye then deduces the
non-degeneracy of the scalar curvature from this by expanding the constrained, restricted
area functional in terms of the background geometry of M . In the case of the Hamiltonian
stationary Lagrangian submanifolds studied by Joyce, Lee and Schoen, their existence con-
dition amounts to having a critical point for the volume functional restricted to the space of
approximate solutions, cf. [7,9]. In our case, we make a simple Ansatz for solutions, which
moves us off the constraint set of Lagrangian submanifolds, but we can arrange approximate
solutions with small enough errors so that in the end we are able to project onto the space of
Lagrangian submanifolds to a solution of the Hamiltonian stationary equation.

2 Geometric preliminaries

2.1 Kähler manifolds

A complex manifold M of real dimension 2n and integrable complex structure J is said
to be Kähler if it possesses a Riemannian metric g for which J is an isometry, as well as a
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symplectic form ω satisfying the compatibility condition ω(X, Y ) = g(J X, Y ) for all tangent
vectors X, Y . We recall that the complexification TC M of the real tangent bundle T M splits:
TC M = T (1,0)M ⊕ T (0,1)M . The map T M ↪→ TCM → T (1,0)M, defined by inclusion
followed by projection, induces an isomorphism between Tp M and T (1,0)

p M, which gives us
a way to encode Tp M in complex notation. In local coordinates zk = xk + iyk, we have

∂

∂xk
= ∂

∂zk
+ ∂

∂ z̄k
,

∂

∂yk
= i

∂

∂zk
− i

∂

∂ z̄k
,

so that under this isomorphism, ∂
∂xk corresponds to ∂

∂zk , and ∂
∂yk to i ∂

∂zk . Any vector X ∈ Tp M

thus has the form X = V + V̄ , for some V ∈ T (1,0)
p M ; we let XC = V . It is not hard to show

that if X and Y are smooth sections of T M, so that YC is holomorphic, then the Levi-Civita
connection D satisfies (DX Y )C = DXC

YC. Thus we may blur the distinction between X and
XC when using complex notation. Standard references for Kähler manifolds are [2] and [8].
What follows is a brief description, for the purpose of fixing terminology and notation, of
those aspects of Kähler geometry that will be relevant for what follows.

The question of interest is the nature of the local geometry of a Kähler manifold. In a
general Kähler manifold, it is always possible to find local complex coordinates for a neigh-
bourhood V of any point p ∈ M, and a function F : V → R, called the Kähler potential, so
that the metric and symplectic form are:

g =2Re
∑

k,�

(
∂2 F

∂zk∂ z̄�
dzk ⊗ dz̄�

)
= 1

2

∑

k,�

(
∂2 F

∂xk∂x�
+ ∂2 F

∂yk∂y�

)(
dxk ⊗ dx� + dyk ⊗ dy�

)

+1

2

∑

k,�

(
∂2 F

∂yk∂x�
− ∂2 F

∂xk∂y�

)(
dyk ⊗ dx�−dxk ⊗ dy�

)
,

ω=−2 Im
∑

k,�

(
∂2 F

∂zk∂ z̄�
dzk ⊗ dz̄�

)
= 1

2

∑

k,�

(
∂2 F

∂xk∂x�
+ ∂2 F

∂yk∂y�

)(
dxk ⊗ dy� − dyk ⊗ dx�

)

+1

2

∑

k,�

(
∂2 F

∂yk∂x�
− ∂2 F

∂xk∂y�

)(
dxk ⊗ dx�+dyk ⊗ dy�

)
,

in local complex coordinates (z1, . . . , zn) or local real coordinates (x1, . . . , xn, y1, . . . ,

yn) for V, which are related by zk = xk + iyk . Note that

ω = 1

2

∑

k

d

(
∂ F

∂xk
dyk − ∂ F

∂yk
dxk

)
,

which is consistent with the fact that dω = 0, and locally, closed forms are exact. Write
ω := dα, where α is called the Liouville form of ω, and write α̊ := 1

2

∑
k

(
xkdyk − ykdxk

)
for the Liouville form of the standard symplectic form. Note also that the Kähler potential is

unique up to the addition of a function ϕ satisfying ∂2ϕ

∂zk∂ z̄� = 0 for all k, �.
Consider the simplest example of a Kähler manifold: this is C

n equipped with the stan-
dard Euclidean metric g̊ := Re

(∑
k dzk ⊗ dz̄k

)
and the standard symplectic form ω̊ :=

−Im
(∑

k dzk ⊗ dz̄k
)

(both given in complex coordinates), as well as the standard complex
structure (which coincides with multiplication by

√−1 in complex coordinates). In a Kähler
manifold, it is always possible to find local complex coordinates for a neighbourhood V
of any point p ∈ M in which the complex structure is standard everywhere in V, and the
metric and symplectic form are standard at p with vanishing derivatives. Indeed, one can
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additionally show that it is possible to choose F near p having the following expression in
coordinates (where z = 0 corresponds to p ∈ M)

F(z, z̄) := 1

2
‖z‖2 + F̂(z, z̄) (2)

where F̂ vanishes at least to order four in z and z̄. Hence ∂2 F
∂zk∂ z̄� = 1

2 δk� + O(‖z‖2). Conse-
quently, the Kähler structures near the origin are perturbations of the standard structures g̊
and ω̊, whose Kähler potential is F̊(z, z̄) := 1

2‖z‖2. Moreover, this form for the potential,
and hence for the metric and symplectic form, is U (n)-invariant.

The complexified curvature tensor of a Kähler manifold in local coordinates in V can be
expressed in terms of the Kähler potential: the complexified curvature tensor RC satisfies [8]

RC

K L̄ M N̄
= ∂4 F

∂zK ∂ z̄L∂zM∂ z̄N
−
∑

U,V

gŪ V ∂3 F

∂zK ∂ z̄U ∂zM

∂3 F

∂ z̄L∂zV ∂ z̄N
.

For coordinates in which the Kähler potential is of the form (2), we have ∂3 F(0) = 0, so
that (where we note we use the convention that a comma denotes a partial derivative, while
a semicolon denotes a covariant derivative)

RC

K L̄ M N̄
(p) = ∂4 F(0)

∂zK ∂ z̄L∂zM∂ z̄N
and RC

K L̄ M N̄ ;S̄
(p) = ∂5 F(0)

∂zK ∂ z̄L∂zM∂ z̄N ∂ z̄ S
. (3)

This can be expressed in terms of the usual Riemann curvature tensor R by realizing that

RC

K L̄ M N̄
(p) = R

∣∣∣
p

(
∂

∂zK
,

∂

∂ z̄L
,

∂

∂zM
,

∂

∂ z̄N

)

RC

K L̄ M N̄ ;S̄
(p) = ∂

∂ z̄ S

∣∣∣∣
p

R

(
∂

∂zK
,

∂

∂ z̄L
,

∂

∂zM
,

∂

∂ z̄N

)

at the point p, setting ∂
∂zK = 1

2

(
∂

∂xk − i ∂
∂yk

)
, and similarly for the conjugate. Consequently

F,K L̄ M N̄ (0) = 1

4

((
Rk�mn − Rk�̄mn̄

)+ i
(
Rk�mn̄ + Rk�̄mn

))∣∣
p

F,K L̄ M N̄ S̄(0) = 1

8

((
Rk�mn;s − Rk�̄mn̄;s − Rk�mn̄;s̄ − Rk�̄mn;s̄

)

+ i
(
Rk�mn;s̄ − Rk�̄mn̄;s̄ + Rk�mn̄;s + Rk�̄mn;s

))∣∣
p

where an un-barred, lower-case index refers to a coordinate vector of the form ∂
∂xk , while a

barred, lower-case index refers to a coordinate vector of the form ∂
∂yk .

2.2 Hamiltonian stationary Lagrangian submanifolds

Interesting submanifolds of a Kähler manifold can be characterized by the effect of the
action of J on tangent spaces. For instance, a complex submanifold of M2n is one whose
tangent spaces are invariant under J . Two classes of submanifolds of importance in this
paper are defined in terms of a complementary condition to that of a complex submanifold.
An n-dimensional submanifold � is called Lagrangian if J (Tp�) is orthogonal to Tp� for
each p ∈ �. Hence a Lagrangian submanifold satisfies ω(X, Y ) = 0 for all X, Y ∈ Tp� and
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p ∈ �. More generally, an n-dimensional submanifold � for which J (Tp�) is transverse to
Tp� for each p ∈ � is called totally real.

We will be interested in diffeomorphisms of M that preserve some or all aspects of its
Kähler structure. The diffeomorphisms which preserve the full Kähler structure are the holo-
morphic isometries and are quite rare in general. In C

n, though, there are holomorphic isom-
etries: these are the U (n)-rotations and translations. The diffeomorphisms which preserve
the symplectic form but not necessarily the metric are called symplectomorphisms. Every
Kähler manifold possesses symplectomorphisms; indeed, for each function u : M → R the
one-parameter family of diffeomorphisms obtained by integrating the vector field X defined
by X ω := du are symplectomorphisms. These diffeomorphisms are called Hamiltonian.
The condition of being totally real or Lagrangian is preserved by symplectomorphisms.

Consider now a Lagrangian submanifold � ⊂ M . If � is a critical point of the n-dimen-
sional volume functional amongst all possible compactly supported variations, then � is
minimal, in which case the mean curvature vector 
H� of � vanishes. Suppose, however, that
� is merely a critical point of the n-dimensional volume amongst only Hamiltonian vari-
ations, and thus is Hamiltonian stationary Lagrangian. By computing the Euler-Lagrange
equations for �, it becomes clear that being Hamiltonian stationary is in general a strictly
weaker condition than being minimal. Indeed, letφt be a one-parameter family of Hamiltonian
diffeomorphisms of M with infinitesimal deformation vector field X satisfying X ω = du
for u : M → R. Then

0 = d

dt
Vol (φt (�))

∣∣∣∣
t=0

= −
∫

�

g( 
H�, X)dVol�

= −
∫

�

ω(X, J 
H�) dVol�

= −
∫

�

du(J 
H�) dVol�

=
∫

�

u ∇·
(

J 
H�

)
dVol� (4)

by Stokes’ Theorem. We let D be the connection associated with the ambient metric g, while
∇ is the induced connection of �, and ∇· is the divergence operator. Since (4) must hold for
all functions u, it must be the case that the mean curvature of � satisfies

∇·
(

J 
H�

)
= 0. (5)

Equation 5 will be solved in this paper to find Hamiltonian stationary Lagrangian submani-
folds.

Observe that since � is Lagrangian and 
H� is normal to �, then J 
H� is tangent to � and
taking its divergence with respect to the induced connection makes sense. It is convenient
to introduce some notation at this point so that the mean curvature (and second fundamental
form) of a totally real submanifold can be treated in a similar manner. To this end, let �

be totally real and define the symplectic second fundamental form and the symplectic mean
curvature of � by the formulæ

B(X, Y, Z) := ω
(
(DX Y )⊥, Z

)
and H(Z) := Trace (B(·, ·, Z))
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where W ⊥ is the orthogonal projection of a vector W = W ‖ + W ⊥ defined at a point p ∈ �

to the normal bundle of � at p. The symplectic mean curvature is thus a one-form on �, and
so the identity

H(Z) = ω( 
H�, Z) = g(J 
H�, Z)

shows that H is dual to (J 
H�)‖. In the Lagrangian setting, then, Eq. 5 can be written
∇ · H = 0. We will sometimes let H(�) := H to mark the dependence on �.

Remark The following observation about the symplectic second fundamental form is impor-
tant. If � is Lagrangian then B(X, Y, Z) = ω(DX Y, Z) for all vector fields X, Y, Z tangent to
� since ω((DX Y )‖, Z) = 0. Hence we have the usual symmetry B(X, Y, Z) = B(Y, X, Z).
In addition, we have B(X, Z , Y ) = g(J DX Z , Y ) = g(DX J Z , Y ) = −g(J Z , DX Y ) =
g(J DX Y, Z) = B(X, Y, Z). Consequently the symplectic fundamental form of a Lagrang-
ian submanifold is fully symmetric in all of its slots.

3 Constructing the approximate solution

Let us assume from now on (unless indicated otherwise) that the real dimension of the ambi-
ent manifold is four, and thus that the dimension of a Hamiltonian stationary Lagrangian
submanifold is two, since this simplifies the presentation of the results and their proofs.
Many of the forthcoming calculations are written for any dimension, while others can be
generalized to higher dimensions, and similar results will hold (cf. [7,9]).

3.1 Rescaling the ambient manifold

Choose a point p ∈ M and find local complex coordinates so that a small neighbourhood V
of p maps to a small neighbourhood V0 of the origin in C

2. Moreover, let these coordinates
be such that the metric and symplectic form are of the type discussed in Sect. 2.1. Assume
that the diameter of this neighbourhood is ρ0 ∈ (0, 1); let r = (r1, r2), with ‖r‖ < ρ0, be
the radii of the Hamiltonian stationary Lagrangian torus on which our construction will be
based, and set ρ := ‖r‖. Now consider coordinates ϕρ : ρ−1V0 → V obtained by rescaling
the given coordinates by z 	→ ρz, and also re-scale the metric and symplectic form via

gρ := ρ−2ϕ∗
ρg, and ωρ := ρ−2ϕ∗

ρω. (6)

As a result, we obtain a new Kähler metric gρ on a large neighbourhood ρ−1V0 = ‖r‖−1V0

of the origin in C
2, where the complex structure is standard and the Kähler potential is

Fρ(z, z̄) := 1

2
‖z‖2 + ρ2 F̂ρ(z, z̄) (7)

with F̂ρ(z, z̄) := ρ−4 F̂(ρz, ρ z̄). Furthermore, the Hamiltonian stationary Lagrangian con-
dition is unchanged under this re-scaling, and the torus ρ−1�r = �r̂ has unit radius vector
r̂ = (r̂1, r̂2). Therefore, in order to construct a Hamiltonian stationary Lagrangian torus of
small radii near p, it is sufficient to construct a Hamiltonian stationary Lagrangian torus with
unit radius vector near the origin in C

2 with Kähler potential Fρ, with ρ sufficiently small.
We note that as ρ → 0+, (gρ, ωρ) converges smoothly on the unit ball B to the standard
structure (g̊, ω̊) (cf. Lemma 10).

Remark The advantage of working with these scaled coordinates is that it is now possible
to express the deviation of the background geometry from Euclidean space very efficiently
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using the parameter ρ. In particular, ρ2 F̂ρ(z, z̄) = Fρ(z, z̄) − 1
2‖z‖2 has a Taylor expansion

in z and z̄ starting at order four, each (ρ-dependent) coefficient of which is O(ρ2). Note also
that the standard Hölder norms re-scale in a natural way.

3.2 The approximate solution

Let U(M) denote the unitary frame bundle of M and choose a point p ∈ M and a unitary
frame Up ∈ U(M) at p. Let (z1, z2) be complex normal coordinates for a neighbourhood of
p whose coordinate vectors at the origin coincide with Up . Now let r := (r1, r2) be some
fixed vector belonging to R

2+, the open positive quadrant of R
2, with ‖r‖ = 1. Define the

two-dimensional submanifold of C
2 given by

�r (Up) :=
{(

r1eiθ1
, r2eiθ2

)
: (θ1, θ2) ∈ T

2
}
.

Note that �r (Up) is the image of the T
2 under the embedding μ0 : (θ1, θ2) 	→(

r1eiθ1
, r2eiθ2

)
. We will denote �r := �r (Up) when it is not necessary to speak explic-

itly of the frame Up from which �r (Up) is built.
The following result motivates the use of �r as an approximate solution of the problem

of finding Hamiltonian stationary Lagrangian submanifolds in arbitrary Kähler manifolds.

Lemma 1 The submanifold �r is Hamiltonian stationary Lagrangian with respect to the
standard Kähler structure (g̊, ω̊, J ) of C

2. In fact, the symplectic second fundamental form
B̊ and the symplectic mean curvature H̊ are parallel.

Proof We include this standard calculation for the convenience of the reader. To begin, the
tangent vectors of �r can be found by differentiating in θ . In complex notation, these are
Ek := irkeiθk ∂

∂zk , for k = 1, 2. From this we can immediately compute the components of

the induced metric h̊ and those of ω̊ restricted to �r . Indeed, since the Kähler potential is
F̊(z, z̄) = 1

2‖z‖2, we can read off the induced metric and pullback of the symplectic form
in terms of the real and imaginary parts, respectively, of

∑
s

dzs ⊗ dz̄s(Ek, Ē�) =
∑

s

rkr�ieiθk
δsk(−ie−iθ�

δs�) = r2
k δk�.

Thus ω̊ vanishes on �r , and so �r is Lagrangian. The induced metric is given by h̊k� = r2
k δk�.

Let the ambient connection be D̊. The covariant derivatives of the tangent vector fields of
the embedding with respect to g̊ in complex notation, are

D̊Ek E� = ∂

∂θk
(ir�eiθ�

)
∂

∂z�
= −r�δk�eiθ� ∂

∂z�
= δk� J E�.

Since �r is Lagrangian, we therefore see that the parallel part (D̊Ek E�)
‖ vanishes. We can

now compute the symplectic second fundamental form. That is,

B̊k�j = ω̊(D̊Ek E� − (D̊Ek E�)
‖, E j ) = ω̊(D̊Ek E�, E j )

= −Im
∑

s

dzs ⊗ dz̄s
(

D̊Ek E�, Ē j

)

= −Im
∑

s

dzs ⊗ dz̄s
(

−r�δk�eiθ� ∂

∂z�
,−ir j e

−iθ j ∂

∂ z̄ j

)

= −r2
mδkmδ�mδ jm,
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where m can be any of k, � or j . This emphasizes the symmetry of B̊ in its indices, as proved
more generally above. From here we see H̊ j = ∑

k,� h̊k� B̊k�j = −1 for each j . ��
Remark The previous line shows that these tori are Hamiltonian stationary but not minimal.

Lemma 1 suggests that we should choose a point p ∈ M, find local complex coordinates in
a neighbourhood V of p as in Sect. 2.1, and consider the re-scaled coordinate map ϕρ as above.
We now let r ∈ R

2+ be a unit vector, and consider the submanifold �r ⊂ (ρ−1V0, gρ, ωρ),

which corresponds to the “small” torus �ρr ⊂ V0, which we identify with a torus in M . The
submanifold �r is Hamiltonian stationary Lagrangian with respect to the standard Kähler
structure, but it is no longer necessarily so with respect to the Kähler structure (gρ, ωρ, J )

with Kähler potential Fρ . However, if ρ is sufficiently small, then �r is totally real; moreover,
it is close, in a sense that will be made more precise later on, to being Hamiltonian stationary
Lagrangian. We will perturb it to a surface which is Hamiltonian stationary Lagrangian with
respect to (gρ, ωρ) for ρ small enough, and thus corresponds to a Hamiltonian stationary
Lagrangian torus in (M, g, ω).

3.3 The equations to solve

An exactly Hamiltonian stationary Lagrangian submanifold with respect to the Kähler struc-
ture (gρ, ωρ, J ) near the submanifold �r when ρ is sufficiently small will be found by
perturbing �r appropriately. This will be done by first defining a class of deformations of �r

and then selecting the appropriate deformation by solving a differential equation. We define
these deformations as follows. Let Ek := irkeiθk ∂

∂zk be the coordinate basis vectors of the

tangent space T �r . For every function (X1, X2) : T
2 → R

2 of suitably small norm, define
an embedding μX : �r ∼= T

2 ↪→ C
2 by

μX : (θ1, θ2) 	−→
(

r1(1 − X1(θ))eiθ1
, r2(1 − X2(θ))eiθ2

)

where we let X = X1 J E1 + X2 J E2 ∈ �(J (T �r )). Note that the Euclidean-normal bundle
of �r coincides with the bundle J (T �r ) and is spanned by the Euclidean-orthonormal vec-
tor fields Nk := eiθk ∂

∂zk for k = 1, 2, and we can write X = −r1 X1 N1 − r2 X2 N2. Thus a

geometric interpretation of this embedding is to view X (built from (X1, X2) by scaling by
the radii r1, r2 in the different coordinate directions) as the section of the bundle J (T �r ),

so that μX is the Euclidean-exponential map.
Finding X ∈ �(J (T �r )) so that μX (�r ) is Hamiltonian stationary Lagrangian with

respect to the Kähler structure (gρ, ωρ, J ) amounts to solving two equations:

μ∗
Xωρ = 0

∇ · H(μX (�r )) = 0
(8)

where H(μX (�r )) is the symplectic mean curvature one-form. Thus one should consider
the differential operator �ρ : �(J (T �r )) → �2(�r ) × �0(�r ), defined on an open neigh-
borhood of zero, given by

�ρ(X) := μ∗
X

(
ωρ,∇ · H(μX (�r ))

)

and attempt to solve the equation �ρ(X) = (0, 0). Note that the first of these equations is
first-order in the vector field X while the second equation is third-order in X . Since �r is
generally neither Hamiltonian stationary nor Lagrangian with respect to the Kähler structure
(gρ, ωρ, J ) when ρ > 0, then �ρ(0) is a tensor field on �r depending continuously on ρ in
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some way that will be determined in the sequel. Certainly, however, since (gρ, ωρ) converges
to the standard structure as ρ → 0+, one can assert that �0(0) := limρ→0+ �ρ(0) = (0, 0).

It turns out that, as it stands, Eq. 8 does not represent a strictly elliptic problem. A few
refinements are necessary in order to achieve this. First, an important observation to make is
that the operator �ρ maps onto a much smaller space. In fact, it is true that the first component
of �ρ(X) belongs to d�1(�r ), the set of exact one-forms, which can be seen as follows.
Observe that μ∗

X ωρ is closed and belongs to the same cohomology class as μ∗
t Xωρ for all

t ∈ [0, 1]. In fact this is a family of exact forms, which can be seen by pulling back the local
Liouville form, e.g. μ∗

0ωρ = dαρ

∣∣
�r

where αρ is the Liouville form of ωρ in this coordinate
chart. The second factor of �ρ(X) is a divergence; hence its integral against the volume form
of μX (�r ) must vanish.

Next, we make an Ansatz for the section X of the bundle J (T �r ). We write X :=
X1 J E1 + X2 J E2 where again Ek := irkeiθk ∂

∂zk are the coordinate basis vectors of the tan-
gent space T �r , and motivated by the Hodge decomposition, we split X into a gradient and a
curl component with respect to the metric induced on �r by the Euclidean ambient metric. In
particular, we restrict to X with vanishing harmonic component; the harmonic vector fields
correspond to non-Hamiltonian deformations of the torus (cf. the discussion at the end of
Sect. 4.2). More specifically, we choose X := X (u, v) so that X ω̊

∣∣
�r = dv + �̊du for

functions u, v : �r → R, where �̊ is the Hodge star operator of �r with respect to the
Euclidean metric. By inspection, this outcome is achieved by the vector field

X (u, v) :=
2∑

k=1

1

rk

⎛
⎝ ∂v

∂θk
+
∑

j

ε
j
k

∂u

∂θ j

⎞
⎠ eiθk ∂

∂zk
(9)

where ε
j
k satisfies ε1

1 = ε2
2 = 0 and ε2

1 = −r1/r2 and ε1
2 = r2/r1. Note that the mapping

given by (u, v) 	→ X (u, v) is linear in (u, v) and independent of ρ (recall ‖r‖ = 1 after
re-scaling).

Using the Ansatz above, one can re-formulate (8) as a pair of equations for the functions
u and v which will turn out to be elliptic. Since (8) is a mixed first- and third-order partial
differential equation and X (u, v) takes one additional derivative, the functions u and v will
be assumed to lie in C4,α . Moreover, since X (u, v) clearly remains unchanged if a constant
is added to either u or v, we impose the normalization

∫

�r

udVol◦�r
=
∫

�r

vdVol◦�r
= 0 (10)

where dVol◦�r
is the volume form of �r with respect to the metric induced on �r by the

ambient Euclidean metric. Therefore define a new differential operator, defined on an open
neighborhood of (0, 0), by

�ρ : C4,α
0 (�r ) × C4,α

0 (�r ) → C2,α(d�1(�r )) × C0,α(�r )

�ρ(u, v) := �ρ ◦ X (u, v)

where we use the zero subscript to denote a function space upon which our normalization
(10) has been imposed.
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4 Analysis of the Hamiltonian stationary Lagrangian operator

In order to solve the equation �ρ(u, v) = (0, 0) perturbatively, it is necessary to understand
the mapping properties of the linearization D(0,0)�ρ of the operator �ρ at (0, 0). We will use
the notation Lρ := D(0,0)�ρ as well as Lρ := D0�ρ in the remainder of the paper. Observe
that Lρ = Lρ ◦ X by linearity. Furthermore, since �ρ for ρ > 0 will often be compared
with its Euclidean analogue at ρ = 0, we introduce the notation �̊ := �0 and �̊ := �0 in
keeping with the convention of adorning objects associated with the Euclidean metric with
“◦”. Thus we shall denote the linearizations of these operators by L̊ := D0�̊ and L̊ := L̊ ◦X ,

respectively.
This section contains the following material. First we compute linearized operator L̊ and

determine its kernel. It will turn out that L̊ is not self-adjoint; hence we next compute the
adjoint L̊

∗
and compute its kernel. Finally, we compute Lρ with enough detail to be able to

give estimates, in terms of ρ, for the difference Pρ := Lρ − L̊.

4.1 The unperturbed linearization

Let �̊ be the Hamiltonian stationary Lagrangian differential operator with respect to the
standard Kähler structure (g̊, ω̊, J ). The task at hand is to compute its linearization at zero,
denoted by L̊. Since �̊ = �̊ ◦ X and X is linear, the main computation is to find the lineari-
zation at zero of �̊ acting on sections X of J (T �r ), denoted by L̊ and given by

L̊(X) := d

dt
μ∗

t

(
ω̊
∣∣
�r

, ∇̊ · H̊(μt (�r ))
) ∣∣∣∣

t=0
:=
(

L̊(1)(X), L̊(2)(X)
)

where μt : C
2 → C

2 is a family of diffeomorphisms generating X . In the computations
below, repeated upper and lower indices are summed, a comma denotes ordinary differenti-
ation and a semi-colon denotes covariant differentiation with respect to the induced metric.

Proposition 2 Let � ⊂ C
n be Lagrangian for the standard symplectic structure. Let X be a

C3 section of N (�) = J (T �), generated by a family of diffeomorphisms μt : C
n → C

n, and

let L̊(X) := d
dt μ

∗
t

(
ω̊
∣∣
�

, ∇̊ · H̊(μt (�))
) ∣∣∣∣

t=0
:=
(

L̊(1)(X), L̊(2)(X)
)

. Write X := X j J E j

where {E1, E2, . . . , En} is a coordinate basis for the tangent space of �. Then the following
hold (where the quantities are computed in the induced metric on �):

L̊(1)(X) = d
(
X ω̊

)

L̊(2)(X) = −(	̊Xm);m −h̊�s h̊mq Xu B̊squ H̊�;m −h̊�mh̊sk H̊s

(
Xu B̊�ku

)
;m+h̊km H̊k

(
Xu H̊u

)
;m

−h̊�mh̊ js h̊kq
(

Xu B̊squ B̊ jk�

)
;m .

Proof The formula for L̊(1) is straightforward. Recall that it is a standard computation involv-
ing the Lie derivative of a 2-form to show that d

dt μ
∗
t ω̊
∣∣
t=0 = d(X ω̊) + X dω̊. Since

dω̊ = 0, then L̊(1)(X) = d
(
X ω̊

)
follows as desired.

The remainder of the proof is the computation of L̊(2)(X). Let � be a Lagrangian sub-
manifold of C

n carrying the Euclidean metric g̊, and let X be a section of the normal bundle
of �. Extend X off of �, let μt : C

n → C
n be a one-parameter family of diffeomorphisms

with d
dt μt

∣∣
t=0 = X and set �t := μt (�). Next, choose {E1, E2, . . . , En} a local coordinate

frame for � coming from geodesic normal coordinates at p0 ∈ � in the induced metric h̊ at
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t = 0. Then {J E1, J E2, . . . , J En} is a basis for the normal bundle of � at t = 0, because
� is Lagrangian. But this does not necessarily hold for |t | �= 0, since μt is not assumed to
be a family of symplectomorphisms. However, for p near p0, TpC

n = Tp� ⊕ J (Tp�). We

write X = X j J E j along �, and ∇̊E�
(X j E j ) = X j

;�E j , and we may assume X (p0) �= 0.
Note that X and Ek commute along μt , and since X is transverse to �, we can extend the
fields Ek locally using the diffeomorphism μt to a basis for Tμt (p)�

t , for |t | small. In these
coordinates the matrix for h̊ on �t is the same as that for μ∗

t g̊ on T �. The computations
below are evaluated at p0 at t = 0.

In terms of the local coordinates introduced above, we have

∇̊ · H̊(�t ) = h̊�mh̊ jk B̊ jk�;m (11)

where h̊k� := g̊(Ek, E�) is the induced metric, h̊ jk are the components of the inverse of the
induced metric, ∇̊ is the induced connection, and

B̊ jk� = ω̊((D̊E j Ek)
⊥, E�) = ω̊(D̊E j Ek, E�) − �̊s

jkω̊(Es, E�)

with �̊s
jk the Christoffel symbols of h̊ jk and D̊ the ambient Euclidean connection.

The terms in (11) all depend on t . Since ∇̊ · H̊(�t ) = h̊�m H̊�;m = h̊�m H̊�,m − h̊�m �̊s
�m H̊s

where H̊� := h̊ jk B̊ jk�, differentiating (11) at t = 0 yields

d

dt
(∇̊ · H̊(�t ))

∣∣∣∣
t=0

= (h̊�m)′ H̊�;m − h̊�m(�̊s
�m)′ H̊s + h̊�m

(
(H̊�)

′)
;m

where a prime denotes the value of the t-derivative at t = 0.
Expressions for (h̊�m)′ and (�̊s

�m)′ and (H̊�)
′ are now required. To begin, it is straightfor-

ward to compute

(h̊�m)′ = −2h̊�s h̊mq Xu B̊squ

(�̊s
�m)′ = h̊sq

((
Xu B̊�qu

)
;m +

(
Xu B̊mqu

)
;� −

(
Xu B̊�mu

)
;q

)
.

Next
(

H̊�

)′ = (h̊ jk)′ B̊ jk� + h̊ jk(B̊ jk�)
′ = −2h̊ js h̊kq Xu B̊squ B̊ jk� + h̊ jk(B̊ jk�)

′

and the fact that both �̊s
jk(p0) and ω̊

∣∣
�t vanish at t = 0 implies

(B̊ jk�)
′ = d

dt

(
ω̊
(

D̊E j Ek, E�

)
− �̊s

jkω̊(Es, E�)
)∣∣∣∣

t=0

= d

dt

(
ω̊
(

D̊E j Ek, E�

))∣∣∣∣
t=0

= ω̊
(

D̊X D̊E j Ek, E�

)
+ ω̊

(
D̊E j Ek, D̊X E�

)

= ω̊
(

D̊E j D̊Ek X, E�

)
+ ω̊

(
D̊E j Ek, D̊E�

X
)

= E j ω̊
(

D̊Ek X, E�

)
− ω̊

(
D̊Ek X, D̊E j E�

)
+ ω̊

(
D̊E j Ek, D̊E�

X
)

= −E j g̊
(

D̊Ek (Xq Eq), E�

)
+ g̊

(
D̊Ek (Xq Eq), D̊E j E�

)
+ g̊
(
D̊E j Ek, D̊E�

(Xq Eq)
)
.

123



Hamiltonian stationary tori in Kähler manifolds

We have used that X commutes with Ek along μt , that the ambient curvature vanishes, and
that ω̊ and J are parallel. Now

D̊E�
(Xq Eq) = Xq

,�Eq + Xq D̊E�
Eq = Xq

;�Eq − Xq h̊uv B̊�qu J Ev.

Note that at t = 0, D̊Ek E j is normal to � at p0, and moreover g̊(D̊E j Ek, J Em) = −B̊ jkm

at p0. Thus we have

(B̊ jk�)
′ = −E j g̊

(
Xq

;k Eq −Xq h̊uv B̊kqu J Ev, E�

)
+ g̊

(
Xq

;k Eq − Xq h̊uv B̊kqu J Ev, D̊E j E�

)

+g̊
(

D̊E j Ek, Xq
;�Eq − Xq h̊uv B̊�qu J Ev

)

= −Xq
;k j h̊q� + Xq B̊kqu B̊ j�v h̊uv + Xq B̊ jkv B̊�qu h̊uv.

Everything can now be put together:

L̊(2)(X) = −2h̊�s h̊mq Xu B̊squ H̊�;m

−h̊sq H̊s

(
2
(

Xu B̊�qu

)
;m h̊�m −

(
Xu H̊u

)
;q

)

−2h̊�mh̊ js h̊kq
(

Xu B̊squ B̊ jk�

)
;m

+h̊�mh̊ jk
(
−Xq

;k j h̊q� + Xq B̊kqu B̊ j�v h̊uv + Xq B̊ jkv B̊�qu h̊uv
)

;m

= −(	̊Xm);m − h̊�s h̊mq Xu B̊squ H̊�;m − h̊sq H̊s

((
Xu B̊�qu

)
;m h̊�m −

(
Xu H̊u

)
;q

)

−h̊�mh̊ js h̊kq
(

Xu B̊squ B̊ jk�

)
;m

This is the desired formula. ��
To compute L̊(2) for the torus �r , note that both B̊ and H̊ are parallel tensors in this case.

Consequently the second fundamental form terms in L̊(2) become simply X 	→ − Åm
� X�

;m
where

Å�m := H̊s B̊�sm − H̊ � H̊m + B̊�
sq B̊sqm

and furthermore, we can compute this precisely: substituting h̊k� = r2
k δk� and B̊ jk� =

−r2
s δs jδskδs� for the induced metric and symplectic second fundamental form of �r (using

θ -coordinates) with respect to the Euclidean metric yields

Å�m = 2δ�m

r2
� r2

m

− 1

r2
� r2

m

.

We now let X = X (u, v) as in (9) and substitute this into the formulæ of Proposition 2 to
find the linearization L̊.

Corollary 3 Let (u, v) ∈ C4,α
0 (�r ) × C4,α

0 (�r ). Write L̊ =
(

L̊
(1)

, L̊
(2)
)

. Then

L̊
(1)

(u, v) : = d �̊ du

L̊
(2)

(u, v) : = 	̊(	̊v) + Å�mv;�m + Å�mεk
�u;mk .

123



A. Butscher, J. Corvino

4.2 The kernel of the unperturbed linearization

The determination of the kernel of the linearized operator L̊ is best done in two stages. First
one finds the kernel of L̊ and then one takes into account the effect of X . Thus the starting
point is to express the formulæ of Proposition 2 explicitly in local coordinates. To this end,
suppose that �r is given in local coordinates by its standard embedding. Make the Ansatz
X := ∑

k Xk(−rkeiθk ∂
∂zk ) for the deformation vector field in the formulæ from Proposition

2 to obtain

L̊(X) = −
⎛
⎝∑

j,k

r2
k Xk

, j dθ j ∧ dθk,
∑

j,k

1

r2
k

(
X j

,kk j − X j
,k

)
+
∑

j

2

r2
j

X j
, j

⎞
⎠ .

The operator L̊ thus becomes a constant-coefficient differential operator on the torus. Solving
the equation L̊(X) = (0, 0) for the kernel of L̊ thus becomes a matter of Fourier analysis.
The following proposition appears in [11] for the n-dimensional torus; the n = 2 case is
included here for the sake of completeness.

Proposition 4 Expressed in the local coordinates for the standard embedding of �r , the
kernel of L̊ consists of vector fields X := ∑

k Xk(−rkeiθk ∂
∂zk ) where

Xk = λk + 1

r2
k

∂ f

∂θk

with f (θ) := a +∑ j

(
b j1 cos(θ j ) + b j2 sin(θ j )

)+ c1 cos(θ1 − θ2) + c2 sin(θ1 − θ2), for
a, b js, cs, λk ∈ R.

Proof The first equation in L̊(X) = (0, 0) implies either of the following (or a linear combi-
nation thereof): that Xk is constant for every k, and thus the one-form r2

k Xkdθk is harmonic
on �r ; or else that there is a function f : T

2 → R with

Xk = 1

r2
k

∂ f

∂θk
.

In the first case, the second equation in L̊(X) = (0, 0) is satisfied trivially. Note that a one-
form of this type is not exact, implying that X is not induced by a Hamiltonian vector field.
In the second case, insert Xk := r−2

k
∂ f
∂θk into the second equation to find

∑

j,k

1

r2
j r2

k

(
f, j jkk − f, jk

)+
∑

j

2

r4
j

f, j j = 0.

This is a constant-coefficient, fourth order elliptic equation on the torus which can
be solved by taking the discrete Fourier transform. The Fourier coefficients f̂ (
n) :=

1
4π2

∫ 2π

0

∫ 2π

0 f (θ)e−i
θ ·
nd2θ of the solutions must thus satisfy
⎛
⎝∑

j,k

n2
j n

2
k + n j nk

r2
j r2

k

−
∑

j

2n2
j

r4
j

⎞
⎠ f̂ (
n) = 0.

Thus f̂ (
n) = 0 unless 
n = (n1, n2) solves the equation obtained by setting the coefficient
of f̂ (
n) to zero. One solution of this equation is n1 = n2 = 0, and this corresponds to the
constant functions. There are also non-trivial solutions of this equation: either n j = ±1 for
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some fixed j and all other nk = 0; or else n j = ±1 and nk = ∓1 for j �= k. The fact that
there are no other non-trivial solutions can be seen as follows. Summing over j, k ∈ {1, 2}
explicitly and re-arranging terms yields the equation n2

1 ± n1 + r2
1 r−2

2

(
n2

2 + n2
) = 0. But

since the quadratic x2 ± x + C2 only has the integer roots x = 0, 1 when C = 0 and no
integer roots when C �= 0, it must be the case that (n1, n2) = (1, 0), (0, 1), (1,−1) or
(−1, 1). Applying the inverse Fourier transform now yields the desired vector fields in the
kernel of L̊ . ��

Observe that there is a geometric interpretation of the kernel of L̊ . The one-parameter
families of complex structure-preserving isometries of C

2 are the unitary rotations and the
translations. Each of these is a Hamiltonian deformation where the Hamiltonians are given
by linear functions in the first case and quadratic polynomials of the form z 	→ z∗ · A · z in
the second case, where A is a Hermitian matrix. Of these, only the non-diagonal Hermitian
matrices generate non-trivial motions of �r . In fact, let (U, τ ) denote the motion of C

2 given
by z 	→ U (z) + τ where U ∈ U (2) and τ ∈ C

2. Then we consider the six-dimensional
parameter family of motions of C

2 given by

R := {
(exp(τ5 K1 + τ6 K2), τ ) : τ5, τ6 ∈ R and τ := (τ1, . . . , τ4) ∈ R

4}

where

K1 :=
(

0 i
i 0

)
and K2 :=

(
0 −1
1 0

)

are elements in the Lie algebra of U (2) that generate all non-trivial U (2)-rotations of �r .
Denote by μ̊

(i)
t for i = 1, . . . , 6, those motions which correspond to τi = t and τi ′ = 0 for

i ′ �= i . Note that each μ̊(i) is Hamiltonian with respect to the Euclidean Kähler structure,
with J ∇̊ f ( j) := d

dt μ̊
( j)
t

∣∣
t=0, where we let ∇̊ f be the ambient gradient vector of f . Indeed,

the translations μ̊
( j)
t , 1 ≤ j ≤ 4, yield Hamiltonian functions which restricted to �r are just

(up to sign) rs cos(θ s) and rs sin(θ s) for s = 1, 2, while the U (2)-rotations μ̊
(5)
t and μ̊

(6)
t

yield Hamiltonian functions which restrict to �r as (again, up to sign) r1r2 sin(θ1 − θ2) and
r1r2 cos(θ1 − θ2). The span of the restrictions of these Hamiltonian functions to �r are the
functions in the kernel of L̊ of the form

f (θ) =
∑

j

(
b j1r j cos(θ j ) + b j2r j sin(θ j )

)
+ c1r1r2 cos(θ1 − θ2) + c2r1r2 sin(θ1 − θ2)

(12)

for b js, cs ∈ R. The remaining elements of the kernel of L̊ derive from another set of
deformations of �r which preserve both the Lagrangian condition and the Hamiltonian-sta-
tionarity. These arise from allowing the radii of �r to vary—in other words the deformations
�t := �r+at for some a = (a1, a2).

Corollary 5 The kernel of L̊ is

K := {0} × span
R
{r1 cos(θ1), r1 sin(θ1), r2 cos(θ2),

r2 sin(θ2), r1r2 cos(θ1 − θ2), r1r2 sin(θ1 − θ2)}.

Note: The constant functions are not in K because the conditions
∫
�r

udVol◦�r
= ∫

�r
vdVol◦�r

=0

have been imposed on functions in the domain of L̊.
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4.3 The adjoint of the unperturbed linearization

The operator L̊ computed in Sect. 4.1 is not self-adjoint. Thus it is necessary to compute the
adjoint and find its kernel in order to determine a space onto which L̊ is surjective.

Proposition 6 The formal L2 adjoint of L̊ : C4,α
0 (�r ) × C4,α

0 (�r ) → C2,α(d�1(�r )) ×
C0,α(�r ) is the operator L̊

∗ :=
(
[L̊∗](1), [L̊∗](2)

)
: C4,α(d�1(�r )) × C4,α(�r ) →

C2,α
0 (�r ) × C0,α

0 (�r ) where

[L̊∗](1)(�̊u, v) := 	̊u + Å�mεk
�v;mk

[L̊∗](2)(�̊u, v) := 	̊(	̊v) + Å�mv�m .
(13)

and Å�m = 2r−2
� r−2

m δ�m − r−2
� r−2

m as computed earlier.

Proof Straightforward integration by parts based on the formulæ for L̊ and X . ��

The kernel K∗ of the adjoint L̊
∗

is now easy to find, given the formula (13). Consider
the equation L̊

∗
(�̊u, v) = (0, 0) for (u, v) ∈ C4,α

0 (�r ) × C4,α(�r ). The second of these
equations along with the calculations of Sect. 4.2 implies that v is of the form (12) found
before. Now u can be determined from the first of these equations via 	̊u = − Å�mεk

�v;mk .

Since the form of Å�m is known, one can in fact determine u explicitly. Note that we will
employ a slight abuse of notation below by identifying Ck,α

0 (�r ) with Ck,α(d�1(�r )) via
the Hodge star operator. Furthermore, we incorporate certain constant factors into the basis
elements for reasons that will become clear later.

Corollary 7 The kernel of L̊
∗

is

K∗ := span
R
{(0, 1)} ⊕ span

R

{
r1 cos(θ1) · w(1), r1 sin(θ1) · w(2),

r2 cos(θ2) · w(3), r2 sin(θ2) · w(4), r1r2 cos(θ1 − θ2) · w(5), r1r2 sin(θ1 − θ2) · w(6)
}

where w(1) = w(2) = (
(r1r2)

−1, 1
)

and w(3) = w(4) = (−(r1r2)
−1, 1

)
and w(5) = w(6) =

(0, ρ).

4.4 The perturbed linearization

Let�ρ be the Hamiltonian stationary Lagrangian differential operator with respect to the Käh-
ler structure (gρ, ωρ, J ) corresponding to the Kähler potential Fρ(z, z̄) = 1

2‖z‖2+ρ2 F̂ρ(z, z̄)
with ρ > 0. The present goal is to compute its linearization Lρ at zero, and express it as a
perturbation of L̊ in the form Lρ = L̊ + Pρ . Then the dependence of Pρ on ρ must be ana-
lyzed. Since �ρ = �ρ ◦X and X is linear, once again it is best to start with the linearization
Lρ of �ρ acting on sections X of J (T �r ).

We again employ the conventions that repeated indices are summed, a comma denotes
ordinary differentiation and a semi-colon denotes covariant differentiation with respect to
the induced metric.

Proposition 8 Let � be a totally real submanifold of a Kähler manifold (M, g, ω). Let X
be a C3 section of J (T �), generated by a family of diffeomorphisms μt : M → M. Let
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L(X) = d
dt μ

∗
t (ω |�,∇ · H(μt (�)))|t=0. Write X := X j J E j where {E1, E2, . . . , En} is a

coordinate basis for the tangent space of �. Then L(X) := (
L(1)(X), L(2)(X)

)
is given by

L(1)(X) := d (X ω)

L(2)(X) := E1(X) + E2(X)

where the following hold (and quantities are computed in the induced metric along �):

E1(X) : = −(	Xm);m − h�m XsRs� − h�mhqu Hq;m Xs Bus�

+ h�mh jkhuq (Xs(Bksq B j�u − Bksq B ju� − Bqsk B ju�)
)
;m

− h�mhuq Hu
(
Xs Bqs�

)
;m + h�mhuq Hu

(
Xs B�sm

)
;q

E2(X) : = −h�uhmq(h jk B jk�);mC(X)uq −
(

h�mh juhkqC(X)uq B jk�

)
;m

− 1
2 h�mh jkhsq B jks

(C(X)q�;m + C(X)rm;� − C(X)�m;q
)

+ h�mh jk Xs
(
g
(
D((DEk Es)

⊥), (DE j E�)
⊥)+g

(
(DE j Ek)

⊥, D((DE�
Es)

⊥)
))

;m

− 1

2
h�mh jkhsqωs�

(
β(X)q j;k + β(X)qk; j − β(X) jk;q

+ C(X)q j;k + C(X)qk; j − C(X) jk;q
)
;m .

Here C(X)k� := Xs
;kωs� + Xs

;�ωsk and β(X)k� := Xs (Bks� + B�sk). Also D : T M → T M
is the operator giving the difference between the orthogonal projection of a vector W ∈
Tp M onto Np� and its orthogonal projection onto J (Tp�), and Rs� = h jkR jsk�, where
R jsk� = g(R(E j , J Es, Ek), J E�) and R is the ambient curvature tensor.

Proof The formula for L(1)(X) follows as before; thus consider L(2)(X). Let � be a totally
real submanifold of M . Let X be a section of the bundle J (T �), and extend X off of �. Let
μt : M → M be a one-parameter family of diffeomorphisms with d

dt μt |t=0 = X and set
�t := μt (�). Note that although X is always transverse to �, it is not necessarily normal
to � because � is not necessarily Lagrangian.

Next, choose {E1, E2, . . . , En} a local coordinate frame for � coming from geodesic
normal coordinates at p0 ∈ � in the induced metric h at t = 0. Then {J E1, J E2, . . . , J En}
is a basis for J (Tp�) for p near p0, and Tp M = Tp� ⊕ J (Tp�) for such p. We write

X = X j J E j along �, and ∇E�
(X j E j ) = X j

;�E j , and we may assume X (p0) �= 0. Note
that X and Ek commute along μt , and since X is transverse to �, we can extend the fields
Ek locally using the diffeomorphism μt to a basis for Tμt (p)�

t , for |t | small. In these coor-
dinates the matrix for h on �t is the same as that for μ∗

t g on T �. The computations below
are evaluated at p0 at t = 0.

In terms of these coordinates, we have

∇ · H(�t ) = h�mh jk B jk�;m (14)

where hk� := g(Ek, E�) is the induced metric, h jk are the components of the inverse of the
induced metric, ∇ is the induced connection, and

B jk� = ω((DE j Ek)
⊥, E�) = ω(DE j Ek, E�) − �s

jkω(Es, E�),

where �s
jk are the Christoffel symbols of h jk , and D is the ambient connection of g.
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The terms in (14) all depend on t . We will now compute the first derivative of (14) at
t = 0. By writing

∇ · H(�t ) = h�m H�;m = h�m H�,m − h�m�s
�m Hs,

we find

d

dt
(∇ · H(�t ))

∣∣∣∣
t=0

= (h�m)′ H�;m − h�m(�s
�m)′ Hs + h�m((H�)

′);m

where once again a prime denotes the value of the t-derivative at t = 0.
We compute the first variation of the metric h. The fact that � is not assumed to be

Lagrangian for ω influences the outcome of the computation. We have

(hk�)
′ = g(DX Ek, E�) + g(Ek, DX E�)

= g(DEk X, E�) + g(DE�
X, Ek)

= Xs
;k g(J Es, E�) + Xs g(J DEk Es, E�) + Xs

;�g(J Es, Ek) + Xs g(J DE�
Es, Ek)

= Xs
;kωs� + Xs

;�ωsk + Xs (Bks� + B�sk) .

Define C(X)k� := Xs
;kωs� + Xs

;�ωsk and β(X)k� := Xs (Bks� + B�sk). Note that if � were
Lagrangian with respect to ω then C(X) would vanish identically and β(X)k� would equal
2Xs Bk�s . It is now straightforward to compute

(hk�)′ = −hkmh�q h′
mq = −hkmh�q (β(X)mq + C(X)mq

)

(�k
�m)′ = 1

2
hkq (β(X)q�;m+β(X)qm;� − β(X)�m;q+C(X)q�;m+C(X)qm;� − C(X)�m;q

)
.

Next we have

(H�)
′ = d

dt

(
h jk B jk�

)∣∣∣∣
t=0

= −h jmhkq (β(X)mq + C(X)mq
)

B jk� + h jk(B jk�)
′.

We now use the facts that ω and J are parallel, that X and Ek commute along μt , and �s
jk(p0)

vanishes at t = 0 to deduce

(B jk�)
′ = d

dt
ω
(
(DE j Ek)

⊥, E�

)∣∣∣∣
t=0

= ω
(
DX DE j Ek, E�

)+ ω
(
DE j Ek, DX E�

)− (�s
jk)

′ωs�

= ω
(
DE j DEk X, E�

)+ ω
(
DE j Ek, DE�

X
)+ ω(R(E j , X)Ek, E�) − (�s

jk)
′ωs�

= −E j
[
g
(
DEk (Xs Es), E�

)]+g
(
DEk (Xs Es), DE j E�

)+g
(
DE j Ek, DE�

(Xs Es)
)

− XsR jsk� − (�s
jk)

′ωs�

= − E j

[
g
(

Xs
;k Es + (DEk (Xs Es))

⊥, E�

)]
+g

(
Xs

;k Es +(DEk (Xs Es))
⊥, DE j E�

)

+ g
(

DE j Ek, Xs
;�Es + (DE�

(Xs Es))
⊥)− XsR jsk� − (�s

jk)
′ωs�.
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Now, using the fact that we have arranged to have DE j Ek orthogonal to � at p0 at t = 0,

we can deduce

(B jk�)
′ = −E j

[
g
(

Xs
;k Es, E�

)]
+ g

(
(DEk (Xs Es))

⊥, DE j E�

)

+ g
(

DE j Ek, (DE�
(Xs Es))

⊥)− XsR jsk� − (�s
jk)

′ωs�

= −X�;k j + Xs g
(
(DEk Es)

⊥, (DE j E�)
⊥)+ Xs g

(
(DE j Ek)

⊥, (DE�
Es)

⊥)

− XsR jsk� − (�s
jk)

′ωs�. (15)

To deal with the (DE j Ek)
⊥ terms, we introduce the operator D on Tp M which is the dif-

ference between the orthogonal projection onto Np� and the orthogonal projection onto
J (Tp�). Now, for any W ∈ Np�, we can write

W = hi j g(W, J E j )J Ei + D(W ) = −hi jω(W, E j )J Ei + D(W ).

where used the fact that J is an isometry. Consequently (15) becomes

(B jk�)
′ = −X�;k j + Xshuq Bksq B j�u + Xshuq B�sq B jku

+Xs g
(
D((DEk Es)

⊥), (DE j E�)
⊥)+ Xs g

(
(DE j Ek)

⊥, D((DE�
Es)

⊥)
)

−XsR jsk� − (�s
jk)

′ωs�.

We have now computed all the separate constituents of L(2)
ρ (X). It remains only to put

everything together. We find

L(2)
ρ (X) = (h�m)′ H�;m − h�m(�s

�m)′ Hs + h�m ((H�)
′)

;m
= −h�uhmq(h jk B jk�);m

(
β(X)uq + C(X)uq)

− 1
2 h�mh jkhsq B jks

(
β(X)q�;m + β(X)qm;� − β(X)�m;q

)

− 1
2 h�mh jkhsq B jks

(C(X)q�;m + C(X)qm;� − C(X)�m;q
)

−
(

h�mh juhkq B jk�(β(X)uq + C(X)uq)
)

;m
+ h�mh jk (−X�;k j + Xshuq Bksq B j�u + Xshuq B�sq B jku

)
;m

+ h�mh jk Xs
(
g
(
D((DEk Es)

⊥), (DE j E�)
⊥)+g

(
(DE j Ek)

⊥, D((DE�
Es)

⊥)
))

;m
− h�mh jk

(
XsR jsk� + (�s

jk)
′ωs�

)
;m = E1(X) + E2(X)

where E1(X) and E2(X) are as in the statement of the proposition. In attaining these expres-
sions, we have expanded β(X)i j = Xs(Bis j + B jsi ). The point of arranging the outcome of
the calculation in this way is because the term E1(X) has the same form as the linearization
of the Hamiltonian stationary Lagrangian differential operator at a Lagrangian submanifold
while the term E2(X) vanishes at a Lagrangian submanifold. ��

Thus we can write Lρ(X) =
(

L(1)
ρ (X), L(2)

ρ (X)
)

= (d
(
X ωρ

)
, E1(X) + E2(X)).

We express Lρ(X) as the decomposition L(s)
ρ (X) = L̊(s)(X) + P(s)

ρ (X) for s = 1, 2. Of

course, L(1)
ρ (X) = d(X ωρ), and so

P(1)
ρ (X) = d(X ωρ) − d(X ω̊) = d(X (ωρ − ω̊)).
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For P(2)
ρ (X), observe that E1(X) has the same form as L̊(2)(X) and E2(X) vanishes when

ρ = 0. Thus formally we can decompose

P(2)
ρ (X) =

(
E1(X) − L̊(2)(X)

)
+ E2(X).

We will not determine the precise form of the operator E1(X) − L̊(2)(X) since these details
will not be needed in the sequel.

Corollary 9 The components of the operator Pρ are

P(1)
ρ (X) : = d(X (ωρ − ω̊))

P(2)
ρ (X) : =

(
E1(X) − L̊(2)(X)

)
+ E2(X)

with notation as in Proposition 8.

We now obtain a corresponding decomposition L(s)
ρ := L̊

(s)+P(s)
ρ where P(s)

ρ := P(s)
ρ ◦X .

4.5 Estimates for the perturbed linearization

We work on a fixed ball B ⊂ C
2 around the origin, compactly contained inside the domain

of the Kähler potential Fρ of the metric gρ . The Ck,α norms will be taken with respect to the
background metric g̊ when the quantity being estimated is defined in C

2 and with respect to
the induced metric h̊ when the quantity being estimated is defined on a submanifold �. Note
that these norms are equivalent to those defined by the metric gρ and its induced metric h on
�. We begin with the following lemma. For simplicity of notation, we do not use a subscript
for quantities such as h, B and ∇ induced by gρ .

Lemma 10 Let � be a totally real submanifold of B equipped with the Kähler metric gρ with
Kähler potential Fρ as in (7). Fix α ∈ (0, 1) and k ∈ N. There is a constant C independent
of ρ so that for all X ∈ �(J (T �)) and W ∈ �(N�) the following estimates hold:

‖gρ − g̊‖Ck,α(B) ≤ Cρ2 ‖∇ · X − ∇̊ · X‖Ck−1,α(�) ≤ Cρ2‖X‖Ck−1,α(�)

‖ωρ − ω̊‖Ck,α(B) ≤ Cρ2 ‖C(X)‖Ck−1,α(�) ≤ Cρ2‖X‖Ck,α(�)

‖B − B̊‖Ck−1,α(�) ≤ Cρ2 ‖D(W )‖Ck,α(�) ≤ Cρ2‖W‖Ck,α(�)

‖H − H̊‖Ck−1,α(�) ≤ Cρ2 ‖E2(X)‖Ck−3,α(�) ≤ Cρ2‖X‖Ck,α(�).

Furthermore, the operator D vanishes if � is Lagrangian.

Proof The estimates mostly follow from the estimate of the Kähler potential Fρ(z, z̄) :=
1
2‖z‖2 + ρ2 F̂ρ(z, z̄), where F̂ρ(z, z̄) := ρ−4 F̂(ρz, ρ z̄). Recall that on B, for any multi-

index α the derivative ∂α F̂
∂ζα1

∂ζ̄ α2 (ζ, ζ̄ ) is O(‖ζ‖4−α) for |α| ≤ 4, and O(1) for |α| > 4. This

immediately gives the first two estimates. The estimate on the symplectic second fundamen-
tal form comes from the following (and then immediately implies the estimate on the mean
curvature one-form):

B(X, Y, Z) − B̊(X, Y, Z) = ωρ((DX Y )⊥, Z) − ω̊((D̊X Y )⊥, Z),

where (DX Y )⊥ = DX Y − hi j gρ(DX Y, E j )Ei and (D̊X Y )⊥ = D̊X Y − h̊i j g̊(D̊X Y, E j )Ei .
The above estimate of (gρ − g̊) yields the analogous estimate of D − D̊, which together
with the equation above then yields the estimate of B − B̊, as well as the estimate on the
divergence.
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We now estimate D, which, together with the above estimates, will also yield the estimate
of E2, and thus complete the proof. Let W ∈ Np� be a unit vector. Recall from above that

D(W ) = W − hi j gρ(W, J E j )J Ei = W + hi jωρ(W, E j )J Ei .

If we use the orthogonal decomposition of W with respect to the metric g̊, denoting it as
W = W̊ ‖ + W̊ ⊥, then since gρ(W, E j ) = 0, we have immediately g̊(W, E j ) =
O(ρ2). Thus W̊ ‖ = O(ρ2). Furthermore, since � is Lagrangian for ω̊, then W̊ ⊥ =
−h̊i j ω̊(W̊ ⊥, E j )J Ei = −h̊i j ω̊(W, E j )J Ei . Thus D(W ) − W̊ ‖ = W̊ ⊥ + hi jωρ(W, E j )

J Ei = O(ρ2). ��
Based on these elementary estimates, we have the following estimates of Pρ and Pρ on a

totally real submanifold �.

Proposition 11 Let � be a totally real submanifold of B equipped with the Kähler metric
gρ . Fix k ∈ N and α ∈ (0, 1). There is a constant C independent of ρ so that (with norms
computed on �)

‖P(1)
ρ (X)‖Ck,α ≤ Cρ2‖X‖Ck+1,α

‖P(2)
ρ (X)‖Ck,α ≤ Cρ2‖X‖Ck+3,α

‖P(1)
ρ (u, v)‖Ck,α ≤ Cρ2‖(u, v)‖Ck+2,α×Ck+2,α

‖P(2)
ρ (u, v)‖Ck,α ≤ Cρ2‖(u, v)‖Ck+4,α×Ck+4,α .

5 Solving the Hamiltonian stationary Lagrangian PDE

5.1 Outline

In this final section of the paper, the equation �ρ(u, v) = (0, 0) will be solved for all ρ

sufficiently small using a perturbative technique. An initial difficulty that must be overcome
is that it is not possible to find a suitable inverse for the linearized operator Lρ := D(0,0)�ρ

with ρ-independent norm because the operator L̊ := D(0,0)�̊ has a non-trivial, six-dimen-
sional kernel and fails to be surjective since its adjoint has a seven-dimensional kernel. This
fact makes a three-step approach for solving �ρ(u, v) = (0, 0) necessary. In what follows,
we identify two-forms on �r with functions via the Hodge star operator.

Step 1 The first step is to solve a projected problem wherein the difficulties engendered
by the kernel and co-kernel of L̊ are avoided. Let K be the kernel of L̊ and let K∗ be the
kernel of L̊

∗
. Let

π : C2,α(d�1(�r )) × C0,α(�r ) → (
C2,α(d�1(�r )) × C0,α(�r )

) ∩ [K∗]⊥

be the L2-orthogonal projection onto [K∗]⊥ with respect to the volume measure induced
from the Euclidean ambient metric, and consider the operator (defined near (0, 0))

π ◦ �ρ

∣∣∣K⊥ :
(

C4,α
0 (�r ) × C4,α

0 (�r )
)

∩ K⊥ → (
C2,α(d�1(�r )) × C0,α(�r )

) ∩ [K∗]⊥.

The first step is thus to solve π ◦ �ρ

∣∣K⊥ (u, v) = (0, 0). The linearization of this new oper-
ator is π ◦ Lρ

∣∣K⊥ which is by definition invertible at ρ = 0. This operator remains invertible
for sufficiently small ρ > 0, and it will be shown below that a solution of the non-linear
problem

123



A. Butscher, J. Corvino

π ◦ �ρ

∣∣K⊥ (u, v) = (0, 0)

can be found. We will denote the solution by (uρ, vρ) and let �̃r (Up) := μX (uρ ,vρ)(�r (Up))

be the perturbed submanifold generated by this solution; we will abbreviate this by �̃r when
there is no cause for confusion.

Step 2 The previous step shows that a solution (u, v) := (uρ, vρ) of the projected problem
on �r can always be found so long as ρ is sufficiently small. One should realize that the
solution (uρ, vρ) that has been found depends implicitly on the point p ∈ M and the choice
of unitary frame Up at p out of which �r has been constructed. Moreover, this dependence
is smooth as a standard consequence of the fixed-point argument used to find (uρ, vρ). The
solution is such that �ρ(uρ, vρ) is an a priori non-trivial but small quantity that belongs to K∗.

In the second step of the proof of the Main Theorem, it will be shown that when an exis-
tence condition is satisfied at the point p ∈ M, there exists p′ near p and a frame Up′ so that
�ρ(uρ, vρ) vanishes except for a component in the space span

R
{(0, 1)}. We set this up as

follows. First, write K∗ = span
R
{(0, 1)}⊕K∗

0 where K∗
0 := span

R
{ f (1)w(1), . . . , f (6)w(6)},

with the functions f ( j) and the constant vectors w( j) determined in Corollary 7. Therefore

�ρ(uρ, vρ) = a(0, 1) +
6∑

j=1

b j f ( j)w( j) for some a, b1, . . . , b6 ∈ R.

Now define a smooth mapping Gρ : U(M) → R
6 ≈ C

3 on the unitary 2-frame bundle
U(M) over M, given by

Gρ(Up) : =
(

I (1)
ρ (Up), . . . , I (6)

ρ (Up)
)

≈
(

I (1)
ρ (Up) + iI (2)

ρ (Up), I (3)
ρ (Up) + iI (4)

ρ (Up), I (5)
ρ (Up) + iI (6)

ρ (Up)
)

∈ C
3

where

I ( j)
ρ (Up) :=

∫

�r

(
f ( j) − c( j)

)
w( j) · �ρ(uρ, vρ)dVol�r (16)

and c(i) has been chosen to ensure that
∫
�r

(
f ( j) − c( j)

)
dVol�r = 0. We have

I ( j)
ρ (Up) =

6∑

k=1

bk(w
( j) · w(k))

∫

�r

( f ( j) − c( j)) f (k)dVol�r

=
6∑

k=1

bk(w
( j) · w(k))

∫

�r

( f ( j) − c( j))( f (k) − c(k))dVol�r .

We would now like to find Up so that Gρ(Up) ≡ 0. This will turn imply that bk = 0 for all
k, because the matrix whose entries are

∫
�r

( f ( j) − c( j))w( j) · ( f (k) − c(k))w(k)dVol�r is

invertible. This holds because ( f ( j) − c( j))w( j) for j = 1, . . . 6, forms an independent set;
one can also argue this by perturbation, since the matrix

∫
�r

f ( j) f (k)dVol◦�r
is diagonal and

invertible.
The idea for locating a zero of Gρ is first to find Up so that Gρ(Up) vanishes to lowest order

in a Taylor expansion in powers of ρ, but in such a way that Gρ remains locally surjective at
this Up . The inverse function theorem for finite-dimensional manifolds can then be invoked
to find a nearby Up′ for which Gρ(Up′) ≡ 0 exactly.
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Step 3 From the previous step, we now have Up′ and (uρ, vρ) so that �ρ(uρ, vρ) = (0, a).
In other words, the associated surface �̃r built from the corresponding unitary frame and

deformation vector field satisfies ∇ · H
(
�̃r

)
= a. But the divergence theorem can now be

invoked to show that a = 0, thereby completing the proof of the Main Theorem.

Remark Unless otherwise noted, the norms used below are all taken on �r .

5.2 Estimates for the approximate solution

To begin, we must compute the size of ‖�ρ(0, 0)‖C2,α×C0,α , which must be sufficiently small
for the perturbation method of Step 1 to succeed. We assume �r ⊂ B, as in Lemma 10.

Proposition 12 There is a constant C > 0 independent of ρ so that

‖�ρ(0, 0)‖C2,α×C0,α ≤ Cρ2.

Proof By Lemma 1, we have �̊(0, 0) = (0, 0). By Lemma 10, we have ‖ωρ − ω̊‖C2,α(B) ≤
Cρ2. Furthermore, by writing

∇ · H = ∇̊ · H̊ + (∇ − ∇̊) · H̊ + ∇ · (H − H̊) = (∇ − ∇̊) · H̊ + ∇ · (H − H̊),

we have

‖∇ · H‖C0,α ≤ Cρ2‖H̊‖C1,α + ‖H − H̊‖C1,α ≤ Cρ2

again using the estimates of Lemma 10. ��
5.3 Solving the projected problem

This section proves that Step 1 from the outline above can be carried out.

Theorem 13 For all ρ sufficiently small, there exists (uρ,vρ)∈
(

C4,α
0 (�r )× C4,α

0 (�r )
)
∩ K⊥

that satisfies

π ◦ �ρ(uρ, vρ) = (0, 0).

Moreover, the estimate ‖(uρ, vρ)‖C4,α×C4,α ≤ Cρ2 holds.

Proof The solvability of the equation π ◦ �ρ(u, v) = (0, 0) is governed by the behaviour
of the linearized operator π ◦ Lρ between the Banach spaces given in the statement of the
theorem, as well as on the size of ‖�ρ(0, 0)‖C2,α×C0,α , which we know to be O(ρ2) by
Proposition 12.

First, by standard elliptic theory, the operator π ◦ L̊ is invertible between K⊥ and [K∗]⊥
with the estimate

‖π ◦ L̊(u, v)‖C2,α×C0,α ≥ C‖(u, v)‖C4,α×C4,α

where C is a constant independent of ρ. Consequently, if ρ is sufficiently small, then the
operator π ◦ Lρ is uniformly injective with the estimate

‖π ◦ Lρ(u, v)‖C2,α×C0,α ≥ C

2
‖(u, v)‖C4,α×C4,α .

Hence by perturbation, the operator π ◦ Lρ is also surjective onto [K∗]⊥ and the inverse is
bounded above independently of ρ.
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The remainder of the proof uses the contraction mapping theorem. First, we note that we
will work in a convex neighborhood of (0, 0) inside the domain of �ρ, and so that for (u, v)

in this neighborhood, we have μX (u,v)(�r (Up)) ⊂ B, so that the estimates of Lemma 10
hold. We write

π ◦ �ρ(u, v) := π ◦ �ρ(0, 0) + π ◦ Lρ(u, v) + π ◦ Qρ(u, v)

where Qρ is the quadratic (in u and v) remainder of �ρ . It is fairly straightforward to show
that Qρ satisfies the estimate

‖Qρ(u1, v1) − Qρ(u2, v2)‖C2,α×C0,α

≤ C(‖(u1, v1)‖C4,α×C4,α + ‖(u2, v2)‖C4,α×C4,α )‖(u1 − u2, v1 − v2)‖C4,α×C4,α

for some constant C independent of ρ, provided ρ is sufficiently small. This follows by per-
turbation because such an estimate is certainly true for the quadratic remainder of �̊. Now let
L−1

ρ : [K∗]⊥ → K⊥ denote the inverse of Lρ onto K⊥. By proposing the Ansatz (u, v) :=
−L−1

ρ

(
(w, ξ) + π ◦ �ρ(0, 0)

)
, for (w, ξ) ∈ [K∗]⊥, the equation π ◦ �ρ(u, v) = (0, 0)

becomes equivalent to the fixed-point problem for the map

Nρ : (w, ξ) 	→ π ◦ Qρ

(−L−1
ρ

(
(w, ξ) + π ◦ �ρ(0, 0)

))

on [K∗]⊥. For small enough ρ, the non-linear mapping Nρ verifies the estimates required to
find a fixed point in a closed ball B ⊂ [K∗]⊥ of radius equal to ‖�ρ(0, 0)‖C2,α×C0,α = O(ρ2),
by virtue of the ρ-independent estimates that have been found for L−1

ρ and Qρ . For example,
for (w, ξ) ∈ B,

‖Nρ(w, ξ)‖C2,α×C0,α ≤ C‖�ρ(0, 0)‖2
C2,α×C0,α ≤ ‖�ρ(0, 0)‖C2,α×C0,α

for ρ small enough; hence the set B is mapped to itself under Nρ . Furthermore, Nρ is a
contraction on B as a result of the bilinear estimate on Qρ given above. Consequently, Nρ

must have a fixed point (w, ξ) ∈ B which thus satisfies ‖(w, ξ)‖C2,α×C0,α ≤ Cρ2 for some
constant C independent of ρ. The desired estimate follows. ��

Remark The solution (uρ, vρ) is in fact smooth by elliptic regularity theory, and the estimate
‖(uρ, vρ)‖Ck,α×Ck,α ≤ C(k)ρ2 holds for all k ∈ N, where C(k) is independent of ρ.

5.4 Derivation of the existence condition

The remainder of the proof begins with a more careful investigation of the integrals I (i)
ρ (Up)

making up the projection map Gρ : U(M) → R
6 of (16). We can relate these inte-

grals to the ambient geometry of M to lowest order in ρ using the first variation for-
mula along with Stokes’ theorem. We let ∇̊ f and ∇ f be the gradient vectors of f on
�r in the respective metrics. Define w

( j)
1 , w

( j)
2 as the first and second components of w( j),

respectively.
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Lemma 14 The following formula holds.

I ( j)
ρ (Up) = w

( j)
2

⎛
⎜⎝
∫

�r

g̊(J ∇̊ f ( j), 
H�r − 
H◦
�r

) dVol◦�r

−
∫

�r

H̊(�r )
(
∇̊ f ( j)

) (
dVol�r − dVol◦�r

)
⎞
⎟⎠

+w
( j)
1

∫

�r

f ( j) · (ωρ − ω̊) + O(ρ4). (17)

Proof With a direct computation, we find∫

�r

( f ( j) − c( j))�ρ(uρ, vρ) · w( j)dVol�r

= w
( j)
2

∫

�r

∇ · H(�r )( f ( j) − c( j))dVol�r + w
( j)
1

∫

�r

( f ( j) − c( j))(ωρ − ω̊)

+
∫

�r

( f ( j) − c( j))L̊(uρ, vρ) · w( j)dVol◦�r

+
∫

�r

( f ( j) − c( j))Lρ(uρ, vρ) · w( j) (dVol�r − dVol◦�r

)

+
∫

�r

( f ( j) − c( j))Pρ(uρ, vρ) · w( j)dVol◦�r
+
∫

�r

( f ( j) − c( j))Qρ(uρ, vρ) · w( j)dVol�r

= −w
( j)
2

∫

�r

H(�r )
(
∇ f ( j)

)
dVol�r + w

( j)
1

∫

�r

f ( j) · (ωρ − ω̊)

+
∫

�r

( f ( j) − c( j))L̊(uρ, vρ) · w( j)dVol◦�r
+ O(ρ4).

Here we have used the expansion �ρ(uρ, vρ) = �ρ(0, 0) + Lρ(uρ, vρ) + Qρ(uρ, vρ),

where Lρ = L̊ + Pρ and Qρ is the quadratic remainder of the operator �ρ, along with
Stokes’ theorem, as well as ω̊|�r = 0 and the following facts:

• ‖(uρ, vρ)‖C4,α×C4,α , ‖Lρ(uρ, vρ)‖C0 and ‖ωρ − ω‖C0 are all O(ρ2).
• ‖Pρ(uρ, vρ)‖C0 ≤ Cρ2‖(uρ, vρ)‖C4,α×C4,α = O(ρ4).
• ‖Qρ(uρ, vρ)‖C0 ≤ C‖(uρ, vρ)‖2

C4,α×C4,α = O(ρ4).

• the difference between the volume forms appearing above is O(ρ2).
• ∫

�r
f (i)dVol◦�r

= 0 which implies |c(i)| = O(ρ2).

To complete the proof of the lemma, we continue as follows. Note that since ( f ( j)−c( j))w( j)

belongs to the kernel of L̊
∗
, then

∫
�r

( f ( j) − c( j))L̊(uρ, vρ) · w( j)dVol◦�r
= 0. Furthermore,

we let 
H�r and 
H◦
�r

denote the normal vector-valued mean curvatures of �r with respect to
the metric gρ and the Euclidean metric, respectively. We let E1, E2 be a local g̊-orthonormal
tangent frame on �r , and we write (summing over repeated indices) 
H�r = Zs Es + Ẑ s J Es,
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where Zs and Ẑ s are real-valued functions, so that J 
H�r = Zs J Es − Ẑ s Es . Furthermore,
Zs Es = [ 
H�r ]‖0 = [ 
H�r − 
H◦

�r
]‖0 = O(ρ2). If h is the metric induced from gρ on �r , we

have ∇ f = hk�E�( f )Ek and ∇̊ f = δk�E�( f )Ek . Also, since (gρ − g̊) = O(ρ2), we have

−gρ(J∇ f, 
H�r ) = hk�E�( f )gρ

(
Ek, Zs J Es − Ẑ s Es

)

= hk�E�( f )
(

gρ(Ek, J Es)Zs − hks Ẑ s
)

= −E�( f )Ẑ� + hk�E�( f )Zs gρ(Ek, J Es)

= g̊(∇̊ f, J 
H�r ) + hk�E�( f )Zs(gρ − g̊)(Ek, J Es)

= −g̊(J ∇̊ f, 
H�r ) + O(ρ4).

Therefore
∫

�r

H(�r )
(
∇ f ( j)

)
dVol�r = −

∫

�r

gρ(J∇ f ( j), 
H�r )dVol�r

= −
∫

�r

g̊(J ∇̊ f ( j), 
H�r )dVol�r + O(ρ4)

= −
∫

�r

g̊(J ∇̊ f ( j), 
H�r − 
H◦
�r

) dVol�r

−
∫

�r

g̊(J ∇̊ f ( j), 
H◦
�r

)
(
dVol�r − dVol◦�r

)+ O(ρ4)

= −
∫

�r

g̊(J ∇̊ f ( j), 
H�r − 
H◦
�r

) dVol◦�r

+
∫

�r

H̊(�r )
(
∇̊ f ( j)

) (
dVol�r − dVol◦�r

)+ O(ρ4)

since the integrals
∫
�r

g̊(J ∇̊ f ( j), 
H◦
�r

) dVol◦� all vanish. The desired formula follows by
combining this result with our earlier calculation. ��

The following proposition now relates the projection map Gρ to Gr .

Proposition 15 The mapping Gρ : U(M) → R
6 ≈ C

3 satisfies

Gρ(Up) = 4π2r1r2 ρ3Gr (Up) + O(ρ4)

where

Gr (Up) := i

⎛
⎜⎝

r2
1 RC

11̄11̄;1̄ + r2
2 RC

22̄22̄;1̄
r2

1 RC

11̄11̄;2̄ + r2
2 RC

22̄22̄;2̄
2r2

2 RC

22̄21̄
− 2r2

1 RC

11̄21̄

⎞
⎟⎠ ∈ C

3 ≈ R
6.

Proof We expand the terms appearing in (17). After some preliminaries, we break up the
proof into three sections corresponding to each of the three terms appearing there.
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Let us assume that we have chosen local complex normal coordinates and performed the
re-scaling (6). The ambient metric in complex notation is then given by

gρ = 2 Re

⎡
⎣∑

I,J

[
Fρ(z, z̄)

]
,I J̄ dz I ⊗ dz̄ J

⎤
⎦

= Re

⎡
⎣∑

I,J

(
δI J + 2ρ2

[
F̂ρ(z, z̄)

]
,I J̄

)
dz I ⊗ dz̄ J

⎤
⎦ (18)

where Fρ(z, z̄) := 1
2‖z‖2 + ρ2 F̂ρ(z, z̄) is the Kähler potential. Our summations will be

indexed by capital letters running from 1 to 2, and we will use a comma to denote partial
differentiation with respect to z I or ẑ J . Let us write

[F̂ρ(z, z̄)],I J̄ := [F(z, z̄)](2)

,I J̄
+ ρ[F(z, z̄)](3)

,I J̄
+ O(ρ2)

where F (2) and F (3) are terms in the Taylor expansion of the (un-scaled) Kähler potential F :

[F(z, z̄)],(2)

I J̄
= 1

2!
∑

L ,M

(
F,I J̄ L M (0)zL zM + F,I J̄ L̄ M̄ (0)z̄L z̄M + 2F,I J̄ L M̄ (0)zL z̄M

)

[F(z, z̄)],(3)

I J̄
= 1

3!
∑

L ,M,N

(
F,I J̄ L M N (0)zL zM zN + F,I J̄ L̄ M̄ N̄ (0)z̄L z̄M z̄N

+ 3F,I J̄ L M N̄ (0)zL zM z̄N + 3F,I J̄ L M̄ N̄ (0)zL z̄M z̄N
)

.

To compress the notation somewhat in the ensuing calculations, we will replace “F,∗∗∗∗(0)”
and “F,∗∗∗∗∗(0)”, which are the various fourth and fifth derivatives of F evaluated at zero,
by “F,∗∗∗∗” and “F,∗∗∗∗∗”, respectively, in the Taylor expansions.
The difference of the volume forms calculation. The ambient metric h on the torus �r is

obtained by substituting z =
(

r1eiθ1
, r2eiθ2

)
:= reiθ into (18), yielding

h =
∑

I

r2
I (dθ I )2 + 2ρ2

∑

I,J

rI rJ Re
[

ei(θ I −θ J )
[

F̂ρ(reiθ , re−iθ )
]
,I J̄

dθ I ⊗ dθ J
]

. (19)

The associated volume form is dVol�r := √
det(h) dθ1 ∧ dθ2. Using the expansion√

det(A + ρ2 B) = √
det(A)

(
1 + 1

2ρ2Tr(A−1 B)
)+ O(ρ4), we obtain

dVol�r − dVol◦�r
= r1r2

(
1 + ρ2

∑

I

Re
[

F̂ρ(reiθ , re−iθ )
]
,I Ī

)
dθ1 ∧ dθ2 + O(ρ4) − dVol◦�r

= r1r2

(
ρ2
∑

I

Re
[
F(reiθ , re−iθ )

](2)

,I Ī + ρ3
∑

I

Re
[
F(reiθ , re−iθ )

](3)

,I Ī

)
dθ1 ∧ dθ2 + O(ρ4)

since only the quadratic and cubic terms in the series expansion of Fρ in ρ contribute to the
ρ2 and ρ3 terms in the expansion of

√
det(h).

We must now multiply the preceding by H̊(∇̊ f ( j)) for j = 1, . . . , 6, and integrate over
the torus. There are two cases to consider: j = 1, . . . , 4, corresponding to the co-kernel
generators coming from translation; and j = 5, 6, corresponding to the co-kernel generators
corresponding to U (2)-rotation.
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Case 1. In this case f ( j) is one of either rs cos(θ s) or rs sin(θ s) for s = 1, 2. It is thus the

case that the integrals of H̊(∇̊ f ( j)) · Re
[
F(reiθ , re−iθ )

](2)

,I Ī over the torus must all vanish.

Furthermore we have H̊(∇̊ f ( j)) = −(r−2
1 f ( j)

,1 + r−2
2 f ( j)

,2 ) and thus

−H̊(∇̊ f ( j)) =

⎧
⎪⎪⎨
⎪⎪⎩

−r−1
1 sin(θ1) j = 1

r−1
1 cos(θ1) j = 2

−r−1
2 sin(θ2) j = 3

r−1
2 cos(θ2) j = 4.

Hence we are left with computing the integrals

I ( j)
0 : = −w

( j)
2

∫

�r

H̊(∇̊ f ( j))
(
dVol�r − dVol◦�r

)

= −r1r2ρ
3
∑

I

∫

T2

H̊(∇̊ f ( j)) Re
[
F(reiθ , re−iθ )

](3)

,I Ī dθ1 ∧ dθ2 + O(ρ4)

= −r1r2ρ
3

6

∑

I,K ,L ,M

∫

T2

rK rLrM H̊(∇̊ f ( j))Re
[

F,I Ī K L M ei(θ K +θ L+θ M )

+ 3F,I Ī K L M̄ ei(θ K +θ L−θ M ) + 3F,I Ī K L̄ M̄ ei(θ K −θ L−θ M )

+F,I Ī K̄ L̄ M̄ e−i(θ K +θ L+θ M )
]

dθ1 ∧ dθ2 + O(ρ4).

Now in order to proceed, it is most convenient to calculate these integrals two-by-two:

I (2S−1)
0 + i I (2S)

0

= r1r2ρ
3

6rS

∑

I,K ,L ,M

∫

T2

rK rLrM ieiθ S
Re
[

F,I Ī K L M ei(θ K +θ L+θ M ) + 3F,I Ī K L M̄ ei(θ K +θ L−θ M )

+3F,I Ī K L̄ M̄ ei(θ K −θ L−θ M ) + F,I Ī K̄ L̄ M̄ e−i(θ K +θ L+θ M )
]

dθ1 ∧ dθ2 + O(ρ4)

= ir1r2ρ
3

2rS

∑

I,K ,L ,M

∫

T2

rK rLrM F,I Ī K L̄ M̄ ei(θ S+θ K −θ L−θ M ) dθ1 ∧ dθ2 + O(ρ4),

since the sum over K , L , M of the terms in the brackets is already real, and since the only
terms in this expansion that will survive the integration over the torus are those for which it
is possible to arrange θ S + θ K ± θ L ± θ M = 0, in which case the value of the integral is
4π2. These are clearly the (θ S + θ K − θ L − θ M )-terms. Amongst these, the ones yielding
non-vanishing integrals are given in the following table

S K L M
1 1 1 1
1 2 1 2
1 2 2 1
2 1 1 2
2 1 2 1
2 2 2 2
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with the resulting expansions

I (2S−1)
0 + i I (2S)

0 =
⎧
⎨
⎩

2iπ2r1r2ρ
3
∑

I

(
r2

1 F,I Ī 11̄1̄ + 2r2
2 F,I Ī 22̄1̄

)+ O(ρ4) S = 1

2iπ2r1r2ρ
3∑

I

(
2r2

1 F,I Ī 11̄2̄ + r2
2 F,I Ī 22̄2̄

)+ O(ρ4) S = 2.

Case 2. In this case f ( j) is one of either r1r2 cos(θ1 − θ2) or r1r2 sin(θ1 − θ2). It is thus the

case that the integrals of H̊(∇̊ f ( j)) · Re
[
F(reiθ , re−iθ )

](3)

,I Ī over the torus must all vanish.
Furthermore

−H̊(∇̊ f ( j)) =
⎧
⎨
⎩

−r1r2

(
r−2

1 − r−2
2

)
sin(θ1 − θ2) j = 5

r1r2

(
r−2

1 − r−2
2

)
cos(θ1 − θ2) j = 6.

Hence we are left with computing the integrals

I ( j)
0 : = −w

( j)
2

∫

�r

H̊(∇̊ f ( j))
(
dVol�r − dVol◦�r

)

= −r1r2ρ
3
∑

I

∫

T2

H̊(∇̊ f ( j)) Re
[
F(reiθ , re−iθ )

](2)

,I Ī dθ1 ∧ dθ2 + O(ρ4)

= −r1r2ρ
3

2

∑

I,K ,L

∫

T2

rK rL H̊(∇̊ f ( j))Re
[

F,I Ī K L ei(θ K +θ L )

+2F,I Ī K L̄ ei(θ K −θ L ) + F,I Ī K̄ L̄ e−i(θ K +θ L )
]

dθ1 ∧ dθ2 + O(ρ4).

As above, it is most convenient to calculate these integrals two-by-two:

I (5)
0 + i I (6)

0 =
r2

1 r2
2

(
r−2

1 − r−2
2

)
ρ3

2

∑

I,K ,L

∫

T2

rK rL iei(θ1−θ2)Re
[

F,I Ī K L ei(θ K +θ L )

+ 2F,I Ī K L̄ ei(θ K −θ L ) + F,I Ī K̄ L̄ e−i(θ K +θ L )
]

dθ1 ∧ dθ2 + O(ρ4)

= ir2
1 r2

2

(
r−2

1 − r−2
2

)
ρ3

∑

I,K ,L

∫

T2

rK rL F,I Ī K L̄ ei(θ1−θ2+θ K −θ L )dθ1 ∧ dθ2 + O(ρ4)

since the sum of the terms in the brackets over K , L is already real, and the only terms
in this expansion that will survive the integration over the torus are those for which it is
possible to arrange θ1 − θ2 ± θ K ± θ L = 0. These are clearly the (θ1 − θ2 + θ K − θ L)-
terms. Amongst these, the ones yielding non-vanishing integrals are K = 2, L = 1, with the
resulting expansion

I (5)
0 + i I (6)

0 = 4iπ2r1r2
(
r2

2 − r2
1

)
ρ3
∑

I

F,I Ī 21̄ + O(ρ4).

The difference of the mean curvatures calculation. Recall that the tangent vectors of �r are
given in complex notation by EK := irK eiθ K ∂

∂zK , for K = 1, 2. Since the component izK

of EK is holomorphic, we have DEK ĒL = 0, and so the covariant derivatives of the tangent
vector fields with respect to g are given by, in complex notation,
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DEK EL = ∂

∂θ K
(irL eiθ L

)
∂

∂zL
− rK rL ei(θ K +θ L ) D ∂

∂zK

∂

∂zL

= δK L J EL − rK rL ei(θ K +θ L )
∑

M

�M
K L

∂

∂zM
.

We have used the fact that �M̄
K L = 0. Now to continue, we deduce from the expansion (18)

that

�M
K L =

∑

J

gM J̄
ρ

∂gK J̄

∂zL
= 2ρ2

∑

J

δM J ∂

∂zL

[
F̂ρ(z, z̄)

]
,K J̄

+ O(ρ4)

= 2ρ2
[

F̂ρ(z, z̄)
]
,L K M̄

+ O(ρ4).

Thus we conclude

DEK EL = δK L J EL − 2rK rL ei(θ K +θ L )ρ2
∑

M

[
F̂ρ(z, z̄)

]
,L K M̄

∂

∂zM
+ O(ρ4).

The next step is to take the trace of the quantity above with respect to the induced metric h
of �r . Using the components of h given in Eq. 19, we deduce

hK L = 1

rK rL

(
δK L − 2ρ2Re

(
ei(θ K −θ L )

[
F̂ρ(z, z̄)

]
,K L̄

))
+ O(ρ4),

and hence,

∑

K ,L

hK L DEK EL = 
H◦
�r

−
∑

K

2ρ2

r2
K

Re
([

F̂ρ(z, z̄)
]
,K K̄

)
J EK

−2ρ2
∑

K ,M

e2iθ K
[

F̂ρ(z, z̄)
]
,K K M̄

∂

∂zM
+ O(ρ4).

For the next step in the calculation, we note that the tangential gradient of f ( j) is equal to

∇̊ f ( j) =
∑

S

1

r2
S

∂ f ( j)

∂θ S
ES

so that, using the fact that 
H�r −∑
K ,L hK L DEK EL is tangent to �r , we get

g̊(J ∇̊ f ( j), 
H�r − 
H◦
�r

) = g̊

⎛
⎝∑

S

1

r2
S

∂ f ( j)

∂θ S
J ES,

∑

K ,L

hK L DEK EL − 
H◦
�r

⎞
⎠

= (I) + (II) + O(ρ4),

where

(I) = −2ρ2
∑

K

1

r2
K

[
F̂ρ(z, z̄)

]
,K K̄

∂ f ( j)

∂θ K
(20a)

(II) = −2ρ2 Re
∑

A

dz A⊗dz̄ A

⎛
⎝∑

K ,M

e2iθ K
[

F̂ρ(z, z̄)
]
,K K M̄

∂

∂zM
,−
∑

S

1

rS
e−iθ S ∂ f ( j)

∂θ S

∂

∂ z̄ S

⎞
⎠

= 2ρ2
∑

A,K

1

rA
Re
(

ei(2θ K −θ A)
[

F̂ρ(z, z̄)
]
,K K Ā

)
∂ f ( j)

∂θ A
. (20b)
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We now turn to computing the expansions of the integrals corresponding to the terms above.
Let w

( j)
2

∫
�r

g̊(J ∇̊ f ( j), 
H�r − 
H◦
�r

) dVol◦�r
= I ( j)

1 + I ( j)
2 + O(ρ4), where I ( j)

1 and I ( j)
2

correspond to expanding each of the two leading terms in (20):

I ( j)
1 : = −2ρ2w

( j)
2

∫

�r

∑

K

1

r2
K

[
F̂ρ(z, z̄)

]
,K K̄

∂ f ( j)

∂θ K
dVol◦�r

I ( j)
2 : = 2ρ2w

( j)
2

∫

�r

∑

A,K

1

rA
Re
(

ei(2θ K −θ A)
[

F̂ρ(z, z̄)
]
,K K Ā

)
∂ f ( j)

∂θ A
dVol◦�r

.

We handle each term in two cases.
Case 1 For S = 1, 2 we write

I (2S−1)
1 + iI (2S)

1 = −2ρ2
∫

�r

∑

K

1

r2
K

(
∂ f (2S−1)

∂θ K
+ i

∂ f (2S)

∂θ K

)[
F̂ρ(z, z̄)

]
,K K̄

dVol◦�r

= −2r1r2ρ
2
∫

T2

ieiθ S

rS

[
F̂ρ(z, z̄)

]
,SS̄

dθ1 ∧ dθ2.

Up to the error term, the only term in the Taylor expansion of
[

F̂ρ(z, z̄)
]
,SS̄

that contributes to

the integral is the third-order term. Upon substituting (z1, z2) = (r1eiθ1
, r2eiθ2

) and arguing

as before, we see that only one term in the Taylor expansion of
[

F̂ρ(z, z̄)
]
,SS̄

has the correct

combination of ±θ terms for a contribution to be possible. So we get

I (2S−1)
1 + iI (2S)

1 = − ir1r2ρ
3

3rS

∑

L ,M,N

∫

T2

eiθ S
rLrMrN

(
F,SS̄L M N ei(θ L+θ M +θ N )

+ 3F,SS̄L M N̄ ei(θ L+θ M −θ N ) + 3F,SS̄L M̄ N̄ ei(θ L−θ M −θ N )

+ F,SS̄ L̄ M̄ N̄ e−i(θ L+θ M +θ N )
)

dθ1 ∧ dθ2 + O(ρ4)

= − ir1r2ρ
3

rS

∑

L ,M,N

rLrMrN F,SS̄L M̄ N̄

∫

T2

ei(θ S+θ L−θ M −θ N )dθ1 ∧ dθ2 + O(ρ4)

=
{−4iπ2r1r2ρ

3
(
r2

1 F,11̄11̄1̄ + 2r2
2 F,11̄22̄1̄

)+ O(ρ4) S = 1
−4iπ2r1r2ρ

3
(
r2

2 F,22̄22̄2̄ + 2r2
1 F,22̄11̄2̄

)+ O(ρ4) S = 2.

Case 2 For j = 5 or j = 6, we note

∑

K

1

r2
K

(
∂ f (5)

∂θ K
+ i

∂ f (6)

∂θ K

)[
F̂ρ(z, z̄)

]
,K K̄

= r1r2iei(θ1−θ2)

[
1

r2
1

[
F̂ρ(z, z̄)

]
,11̄

− 1

r2
2

[
F̂ρ(z, z̄)

]
,22̄

]
.

Note that up to the O(ρ4) error term, the only term in the Taylor expansion of
[

F̂ρ(z, z̄)
]
,K K̄

that contributes to the integral this time is the second-order term. Upon making the substitu-
tion (z1, z2) = (r1eiθ1

, r2eiθ2
) and arguing as before, we see also that only one term in this

expansion has the correct combination of ±θ terms for a contribution to be possible. Thus
we obtain
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I (5)
1 + iI (6)

1 = −ir2
1 r2

2 ρ3
∑

L ,M

rLrM

×
∫

T2

[
ei(θ1−θ2)

r2
1

(
F,11̄L M ei(θ L+θ M ) + 2F,11̄L M̄ ei(θ L−θ M ) + F,11̄L̄ M̄ e−i(θ L+θ M )

)

−ei(θ1−θ2)

r2
2

(
F,22̄L M ei(θ L+θ M ) + 2F,22̄L M̄ ei(θ L−θ M ) + F,22̄L̄ M̄ e−i(θ L+θ M )

)]
dθ1 ∧ dθ2

= 8iπ2r1r2ρ
3 (r2

1 F,22̄21̄ − r2
2 F,11̄21̄

)+ O(ρ4).

We now perform the corresponding calculation for the term (II) in (20). We first note the
Taylor expansion

[
F̂ρ(z, z̄)

]
,K K Ā

=
∑

L

(
F,K K ĀL zL + F,K K ĀL̄ z̄L

)

+ ρ

2

∑

L ,M

(
F,K K ĀL M zL zM + 2F,K K ĀL M̄ zL z̄M

+ F,K K ĀL̄ M̄ z̄L z̄M
)

+ O(ρ2).

Case 1 As above, for S = 1, 2 we write

I (2S−1)
2 + iI (2S)

2 : = 2ρ2
∫

�r

∑

A,K

(
∂ f (2S−1)

∂θ A
+ i

∂ f (2S)

∂θ A

)
Re
[

r−1
A ei(2θ K −θ A)

[
F̂ρ(z, z̄)

]
,K K Ā

]

× dVol◦�r

= 2ρ2
∫

�r

ieiθ S
Re

[∑

K

ei(2θ K −θ S)
[

F̂ρ(z, z̄)
]
,K K S̄

]
dVol◦�r

= ir1r2ρ
3
∑

K ,L ,M

rLrM

∫

T2

eiθ S
Re
[
ei(2θ K −θ S)

(
F,K K S̄L M ei(θ L+θ M )

+2F,K K S̄L M̄ ei(θ L−θ M ) + F,K K S̄L̄ M̄ e−i(θ L+θ M )
)]

dθ1 ∧ dθ2 + O(ρ4).

We can re-write the integrand as follows:

eiθ S
Re
[
ei(2θ K −θ S)

(
F,K K S̄L M ei(θ L+θ M ) + 2F,K K S̄L M̄ ei(θ L−θ M ) + F,K K S̄L̄ M̄ e−i(θ L+θ M )

)]

= 1

2
e2iθ K

(
F,K K S̄L M ei(θ L+θ M ) + 2F,K K S̄L M̄ ei(θ L−θ M ) + F,K K S̄L̄ M̄ e−i(θ L+θ M )

)

+ 1

2
ei(−2θ K +2θ S)

(
F,K̄ K̄ SL̄ M̄ e−i(θ L+θ M ) + 2F,K̄ K̄ SL̄ M ei(−θ L+θ M ) + F,K̄ K̄ SL M ei(θ L+θ M )

)
.

123



Hamiltonian stationary tori in Kähler manifolds

We can now easily integrate, and note that most terms disappear upon integration over the
torus:

I (2S−1)
2 + iI (2S)

2 = ir1r2ρ
3

2

∑

K ,L ,M

rLrM

∫

T2

(
ei(2θ K −θ L−θ M )F,K K S̄L̄ M̄

+2ei(−2θ K +2θ S−θ L+θ M )F,K̄ K̄ SL̄ M

)
dθ1 ∧ dθ2 + O(ρ4)

= 2iπ2r1r2ρ
3
∑

L

r2
L

(
F,L L̄ L L̄ S̄ + 2F,SS̄L L̄ S̄

)+ O(ρ4)

=
{

2iπ2r1r2ρ
3
(
3r2

1 F,11̄11̄1̄ + r2
2 F,22̄22̄1̄ + 2r2

2 F,11̄22̄1̄

)+ O(ρ4) S = 1
2iπ2r1r2ρ

3
(
r2

1 F,11̄11̄2̄ + 2r2
1 F,22̄11̄2̄ + 3r2

2 F,22̄22̄2̄

)+ O(ρ4) S = 2.

Case 2 Finally, we can compute

I (5)
2 + iI (6)

2 = 2ρ3
∫

�r

∑

A,K

(
∂ f (5)

∂θ A
+ i

∂ f (6)

∂θ A

)
Re
[

r−1
A ei(2θ K −θ A)

[
F̂ρ(z, z̄)

]
,K K Ā

]
dVol◦�r

= 2i(r1r2)
2ρ3

∫

T2

ei(θ1−θ2) Re

⎡
⎣∑

A,K

(−1)A+1r−1
A ei(2θ K −θ A)

[
F̂ρ(z, z̄)

]
,K K Ā

⎤
⎦ dθ1 ∧ dθ2.

We expand the integrand, and note that up to O(ρ4), only the linear terms in the expansion
will contribute. These terms in the integrand are precisely

ei(θ1−θ2)

2

⎡
⎣∑

A,K

(−1)A+1r−1
A ei(2θ K −θ A)

∑

L

rL

(
F,K K ĀL eiθ L + F,K K ĀL̄ e−iθ L

)

+
∑

A,K

(−1)A+1r−1
A ei(−2θ K +θ A)

∑

L

rL

(
F,K̄ K̄ AL̄ e−iθ L + F,K̄ K̄ AL eiθ L

)
⎤
⎦ .

There are only four of these terms which survive integration: on the first line above these cor-
respond to (K , A, L) = (2, 1, 2) or (2, 2, 1), and from the second line above to (K , A, L) =
(1, 1, 2) or (1, 2, 1). Thus upon integration we get

I (5)
2 + iI (6)

2 = 4π2i(r1r2)
2ρ3

[
F,221̄2̄(r

−1
1 r2 − r−1

2 r1) + F,1̄1̄12(r
−1
1 r2 − r−1

2 r1)
]

+ O(ρ4)

= 4iπ2r1r2(r
2
2 − r2

1 )ρ3 (F,22̄21̄ + F,11̄21̄

)+ O(ρ4).

The symplectic form calculation. The ambient symplectic form, expressed in the re-scaled
complex coordinates, is given by

ωρ = ω̊ − 2ρ2 Im

⎡
⎣∑

I,J

[
F̂ρ(z, z̄)

]
,I J̄

dz I ⊗ dz̄ J

⎤
⎦

and on �r where ω̊ vanishes, this becomes

ωρ − ω̊ = −2r1r2ρ
2 Im

[[
F̂ρ(reiθ , re−iθ )

]
,12̄

ei(θ1−θ2)

]
dθ1 ∧ dθ2.
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We’ll once again expand
[
Fρ(z, z̄)

]
,I J̄ using the Taylor expansion of the Kähler potential. We

find (where “c.c.” means the complex conjugate of the preceding term inside the brackets)

ωρ − ω̊

= ir1r2ρ
2

2

∑

K ,L

[(
F,12̄K L zK zL + 2F,12̄K L̄ zK z̄L + F,12̄K̄ L̄ z̄K z̄L

)
ei(θ1−θ2) − c.c.

]
dθ1 ∧ dθ2

+ ir1r2ρ
3

6

∑

K ,L ,M

[(
F,12̄K L M zK zL zM + 3F,12̄K L M̄ zK zL z̄M

+3F,12̄K L̄ M̄ zK z̄L z̄M + F,12̄K̄ L̄ M̄ z̄K z̄L z̄M

)
ei(θ1−θ2) − c.c.

]
dθ1 ∧ dθ2 + O(ρ4).

Now, if we set I (s)
ω := w

(s)
1

∫
�r

f (s)(ωρ − ω̊) for s = 1, . . . , 4, and compute these integrals
two-by-two in the same way as above, we find for S = 1, 2,

I (2S−1)
ω + iI (2S)

ω = (−1)S+1

r1r2

∫

�r

zS(ωρ − ω̊).

Recall also that our co-kernel calculations show that the U (2)-rotations do not contribute in
the ωρ − ω̊ integrals, i.e. I (5)

ω = 0 = I (6)
ω . Now, in computing these integrals, it is clear that

only terms having even power in z or z̄ survive the integration over �r . Moreover, only those
terms having the correct combination of ±θ terms will survive the integration. Thus we find

I (2S−1)
ω + iI (2S)

ω

=
∑

K ,L ,M

i(−1)S+1ρ3rSrK rLrM

2

⎛
⎜⎝F,12̄K L̄ M̄

∫

T2

ei(θ S+θ1−θ2+θ K −θ L−θ M )dθ1 ∧ dθ2

−F,1̄2K̄ L̄ M

∫

T2

ei(θ S−θ1+θ2−θ K −θ L+θ M )dθ1 ∧ dθ2

⎞
⎟⎠+ O(ρ5).

The following values of S, K , L , M yield non-zero integrals.

First integral: S K L M
1 2 1 1
2 1 1 1
2 2 1 2
2 2 2 1

Second integral: S K L M
1 1 2 1
1 2 1 1
1 2 2 2
2 2 2 1

Therefore

I (2S−1)
ω + iI (2S)

ω =
{−2iπ2r1r2ρ

3
(
r2

1 F,12̄21̄1̄ + r2
2 F,1̄22̄22̄

)+ O(ρ5) S = 1
−2iπ2r1r2ρ

3
(
r2

1 F,2̄11̄11̄ + r2
2 F,21̄12̄2̄

)+ O(ρ5) S = 2.

To complete the proof of Proposition 15 we just combine all the pieces computed above:

I (2S−1)
ρ + iI (2S)

ρ =
(

I (2S−1)
0 + iI (2S)

0

)
+ (I (2S−1)

1 + iI (2S)
1 ) +

(
I (2S−1)
2 + iI (2S)

2

)

+
(

I (2S−1)
ω + iI (2S)

ω

)

for S = 1, 2, 3. To conclude, we use the fact that F,J K̄ L M̄ = RC

J K̄ L M̄
(p). ��
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5.5 The proof of the main theorem

In this section, we conclude the proof of the Main Theorem by showing that if Gr has a
�-non-degenerate zero at Up ∈ U(M), i.e. if [Up] is a non-degenerate critical point of Fr ,

then it is possible to find a nearby frame Up′ for which Gρ(Up′) = 0. In this case �̃r (Up′)
is an exactly Hamiltonian stationary Lagrangian submanifold. This will then complete the
proof of the Main Theorem.

Theorem 16 Suppose Up is a �-non-degenerate zero of Gr . If ρ is sufficiently small, then
there is Up′ near Up so that the submanifold �̃r (Up′) that was obtained via Theorem 13
from the torus �r (Up′) is a Hamiltonian stationary Lagrangian submanifold. The distance
between Up and Up′ is O(ρ).

Proof We must to find Up′ so that Gρ(Up′) vanishes. The estimate of Proposition 15 says

Gρ(Up) = 4π2r1r2 ρ3 Gr (Up) + O(ρ4).

Suppose now that Gr (Up) = 0 and DGr |Up is invertible along directions transverse to the
orbit of �, so that the map

H � Uq 	→ Gr (Uq) ∈ R
6

has nonsingular derivative at Up, where H is a six-dimensional submanifold of U(M) trans-
verse at Up to the orbit of Up under �. Since the norm of the inverse of DGr |Up on TUp H must
be bounded above by a constant independent of ρ, then the (finite-dimensional) inverse func-
tion theorem implies that it is possible to find a neighbouring Up′ ∈ H so that Gρ(Up′) ≡ 0
provided ρ is sufficiently small. Furthermore the distance between Up and Up′ as points in
U(M) is O(ρ), which is a consequence of the fact that the equation Gρ(Up′) = 0 implies
Gr (Up′) = O(ρ). As indicated above, this now implies that ∇ · H(�̃r ) is constant. Then the
divergence theorem implies that it must vanish. ��
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